Alternative Data for GI pricing

Buu Truong and Mark Lee
Insight Risk Consulting
Contents

• Why this conversation now?
• What data is currently used?
• Data augmentation
• What is alternative data?
• What is the data business model?
• New data: Data Engineering
• New data: Data Science
• So what now?
Why this conversation now?

• Conversation has moved on from Big Data to more targeted uses cases of data.
• Insurance pricing should be data driven supplemented with judgement. There is a long way to go, particularly for commercial pricing.
• Alternative data could lead to:
 – Improved underwriting experience
 – Improved pricing refinement
 – Faster and more accurate claims settlement
• In the investment industry, alternative data is well established. Hundreds of millions (USD) spent a year on alternative data in the search for ‘alpha’.
What data is currently used?

• Personal lines: Proposal form data supplemented with…
 – Vehicle data
 – Personal data
 – Financial data such as credit scores
 – Property data (natural perils)
 – Property data (building specific)

• Commercial lines: Proposal form data supplemented with…
 – Property data (natural perils)
 – Some corporate and financial data
 – Limited use of specialist look-ups
 – Qualitative risk reports
Data augmentation

• Data augmentation is a grey area which starts at data backfill.
 – Example of backfill might be car details from DVLA for motor.
 – Example of augmentation might be flood score from proprietary provider for home.
 – The theoretical split between backfill and augmentation is likely to relate to how much the policyholder knows about what is happening.

• Advantages of data augmentation include:
 – For information known to the policyholder, saves policyholder time where it can be separately sourced / verified.
 – For information not known to the policyholder, adds new information that can support pricing.
What is alternative data?

- Aggregator data
- Telematics data
- Home IoT device data
- Media / News data
- Existing policy and claims data
- Third party company scores and review data
- Risk evaluation data
- Government data
- Companies house data
- Social network data
What is the data business model?

• Data providers
 – Unique data sets – from hardware or historical advantage
 – Scraped data sets – ubiquitous but not easily collated
 – Tidied up data sets – available (often at a cost) but not always directly applicable

• Data pipelines
 – Data sets sold as a flat file or pay per click.
 – Preferred pipelines links to type of business as well as data use.
 – APIs as well as conventional feeds depending on velocity of data need.

• Difficulties may include IP issues where data ownership may be questioned or data ownership needs to be protected.
New data: Data Engineering

• Most technical challenges relate to live pricing environments where volume is high – such as current personal lines but in future likely for SME commercial.

• Two common challenges:
 – Ingesting large databases.
 – Use of API calls for live/on demand data.

• There is an increased need for actuaries and data scientists to work with developers to implement data collection, live pricing and data storage.

• There are different data challenges for low volume business though typically this might not called be called ‘data engineering’.
Data Engineering – large databases

• Postcode level data in the UK comes with 1.7 million rows. Property level data comes with ~30 million rows. This is beyond Excel.

• To match these data files with other data, either database queries (Access, SQL, NoSQL, etc) or programming tools like R or Python are needed.
Data Engineering - APIs

• Many suppliers of data will use RESTful API’s
 – Advantages:
 • Supplier manages updates, live access to latest data.
 • Get only what you need – possibly a price per click, manageable data volumes.

• RESTful API’s – essentially http requests, as for a webpage:
 – E.g.:
Data Engineering - APIs

• New skills – ability to programmatically run multiple web queries: R, Python, curl etc.

• Understanding how to parameterise the queries to get the appropriate data.

• Programmatically reading the responses – json/XML files are common – and loading the relevant fields to match to other data.

• Link data from multiple sources.

```json
{"taxed":false, "mot":true, "dateOfFirstRegistration":"23 JULY 2009", "yearOfManufacture":"2009", "make":"VOLKSWAGEN", "model":"TIGUAN SE TDI 4MOTION", "fuelType":"DIESEL", "sixMonthRate":null, "twelveMonthRate":null, "cylinderCapacity":"1968 cc", "wheelPlan":"2-AXLE-RIGID BODY", "revenueWeight":"Not available", "taxDetails":"Tax due: 01 February 2019", "taxStatus":"Not taxed", "colour":"SILVER", "typeApproval":"M1", "co2Emissions":"167 g/km", "motDetails":"Expires: 10 May 2019", "numberOfDoors":5, "vin":"XXXXXXXXXXXXXXXXXXX", "transmission":"MANUAL"}
```
Data Engineering - APIs

• Response structure can be more complicated – an example json:

```json
{
    "make": "VOLKSWAGEN",
    "model": "TIGUAN",
    "dateFirstUsed": "23 JULY 2009",
    "fuelType": "DIESEL",
    "colour": "SILVER",
    "engineSize": "1968",
    "registrationDate": "23 JULY 2009",
    " manufactureDate": "23 JULY 2009",
    "manufactureYear": "2009",
    "motTestReports": [ 
        { 
            "testDate": "11 MAY 2018",
            "expiryDate": "10 MAY 2019",
            "testResult": "PASS",
            "odometerReading": 88237,
            "odometerUnit": "mi",
            "motTestNumber": 246230668405,
            "advisoryItems": [ 
                "Front Tyre worn close to the legal limit Both (4.1.E.1)",
                "Rear Both Tyre a have low cut on tread","Front Anti-roll bar linkage ball joint dust cover damaged, but preventing the ingress of dirt Both (2.4.G.2)"
            ],
            "minorItems": [],
            "failureItems": []
        },
        {
            "testDate": "11 MAY 2018",
            "expiryDate": "",
            "testResult": "FAIL",
            "odometerReading": 88237,
            "odometerUnit": "mi",
            "motTestNumber": 436849190066,
            "advisoryItems": [ 
                "Front Tyre worn close to the legal limit Both (4.1.E.1)",
                "Rear Both Tyre a have low cut on tread",
                "Front Anti-roll bar linkage ball joint dust cover damaged, but preventing the ingress of dirt Both (2.4.G.2)"
            ],
            "minorItems": [],
            "failureItems": []
        }
    ]
}
```

"advisoryItems": [
 "Front Tyre worn close to the legal limit Both (4.1.E.1)",
 "Rear Both Tyre a have low cut on tread","Front Anti-roll bar linkage ball joint dust cover damaged, but preventing the ingress of dirt Both (2.4.G.2)"
],
 "minorItems": [],
 "failureItems": []
},

{
 "testDate": "11 MAY 2018",
 "expiryDate": "",
 "testResult": "FAIL",
 "odometerReading": 88237,
 "odometerUnit": "mi",
 "motTestNumber": 436849190066,
 "advisoryItems": [
 "Front Tyre worn close to the legal limit Both (4.1.E.1)",
 "Rear Both Tyre a have low cut on tread",
 "Front Anti-roll bar linkage ball joint dust cover damaged, but preventing the ingress of dirt Both (2.4.G.2)"
],
 "minorItems": [],
 "failureItems": []
},

...
Data Engineering – missing data

- Data provided from API’s is often “raw”.
- Missing data is a common problem. Depending on the API, the responses to individual fields may be missing, the fields themselves may be missing.
- Different responses may have different combinations of fields.
- Need to handle exceptions – impute/ask/default/decline?
- Response time can be an issue – e.g., when supplying an aggregator.

```json
{"taxed":false,
"mot":true,
"dateOfFirstRegistration":"23 JULY 2009",
"yearOfManufacture":"2009",
"make":"VOLKSWAGEN",
"model":"TIGUAN SE TDI 4MOTION",
"fuelType":"DIESEL",
"sixMonthRate":"",
"twelveMonthRate":"",
"cylinderCapacity":"1968 cc",
"wheelPlan":"2-AXLE-RIGID BODY",
"revenueWeight":"Not available",
"taxDetails":"Tax due: 01 February 2019",
"taxStatus":"Not taxed",
"colour":"SILVER",
"typeApproval":"M1",
"co2Emissions":"167 g/km",
"motDetails":"Expires: 10 May 2019",
"numberOfDoors":5,
"vin":"XXXXXXXXXXXXXXXXXXX",
"transmission":"MANUAL"}
```
Data Engineering – data storage

• Even if you are only using a couple of fields in the API response to price on, you might want to save the entire response in order to look for correlations in the future.

• API responses with many potential fields have to be stored in a data warehouse.

• For frequently refreshed data, the data may need to be collected or monitored by time.

• This can lead to “big data” – e.g. telematics raw data.
New data: Data Science

• So you now have lots of new data, so what? **Is it predictive?**
• Prove value by historical claims analysis
 – Can you backfill the data to match your back-book?
 – Potentially many gaps – can you impute?
 – If not, can you make a case to collect for future analysis?
• Short term vs long term value
 – First movers may get significant advantage, but value may change once market uses new data as standard
 – On the other hand, if you don’t get data that becomes market standard, a high risk of being selected against.
• Cost of data vs Value from data – what is the appropriate ratio?
Data Science – correlations

- A statistical exercise of finding a signal
 - With multiple new fields, the chance of a variable looking predictive by chance is much increased.
 - Look at correlations, but bear in mind that correlation does not imply causation. Understanding how predictions generalise to unseen data is crucial – use test sets or cross-validation.

www.tylervigen.com/spurious-correlations (CC licence)
Data Science - techniques

• Use new predictive models – e.g., gradient boosted models, random forests, neural networks, support vector machines. R or python are useful here.

• Use unsupervised analysis (clustering, dimensionality reduction) to look for interactions affecting just small proportion of data, or complex interactions.
Data Science - transparency

- Advanced and flexible models can be difficult to interpret – black-box like.
 - Can you explain to other stakeholders?
 - data visualisation – one-way plots,
 - developing approximate but transparent models (e.g., GLMs) to explain trends,
 - communication of test results.
 - Are you certain that the routine is not discriminating on, e.g., Gender or Race? Can you demonstrate this to a regulator?
So what now…

• We should think more about data engineering within our underwriting and pricing frameworks.
• In an Insight blog last year we talked about data actuaries (and finance actuaries). I think this is an increasing trend.
• Seek out opportunities within your firms to get involved with proof of concept work.
• Our previous talks on parameter error and increasing statistical robustness in London Market pricing (at GIRO and LMA) align to data adding value.
• More data means more modelling, and more actuarially focused pricing. This is good news for the profession!
Alternative Data for GI pricing

Buu Truong and Mark Lee
Insight Risk Consulting