Key insights in decumulation strategies

Thomas Bernhardt
Risk Insight Lab, Heriot-Watt University

www.risk-insight-lab.com

The ‘Minimising Longevity and Investment Risk while Optimising Future Pension Plans’ research programme is being funded by the Actuarial Research Centre.
Overview

I. Introduction
II. Optimal investment strategies
III. Pooling retirement funds
IV. Questions and comments
Introduction

Since 2015, pension freedom

- Sharp decline in annuities

Battocchio et al. (2007)

- Like annuity
 - Income for life
 - Actuarial fair price

- Unlike annuity
 - One customer
 - Free to invest to create profit (Black Scholes model)

- Ruin in only 0.01% of scenarios
Introduction

State of the art, a good retirement product looks like …

Value

1st half: drawdown/investment

2nd half: fund pooling against longevity risk

High number

Stable income

Lifetime protection

Retirement

Time
Optimal investment strategies

Black-Scholes model

\[dS = S \cdot (\mu dt + \sigma dW) \]
\[dB = B \cdot r dt \]

Mathematical description

- Max life consumption
 \[\mathbb{E}\left[\int_0^T U(t, c)dt + V(T, X) \right] \]
- Max above level
 \[\mathbb{E}\left[\int_0^T U(t, c - h)dt + V(T, X - H) \right] \]
- Max expectation min variance
 \[\mathbb{E}[X(T)] - \gamma \text{Var}[X(T)] \]
- Min distance from a target
 \[\mathbb{E}\left[\int_0^T a(t) \cdot (c(t) - f(t))^2 dt + b(t) \cdot (X(t) - F(t))^2 \right] \]
- Min ruin probability
 \[\mathbb{P}[\tau < T], \quad \tau = \text{first time when } X \text{ hits } 0 \]

\(S \) Stock, \(\mu \) drift, \(\sigma \) volatility, \(W \) noise, \(B \) Bond, \(r \) interest, \(\mathbb{E} \) expectation, \(T \) maturity/lifespan, \(U \) and \(V \) utilities, \(c \) consumption, \(X \) wealth, \(h \) and \(H \) minimal levels, \(\gamma \) “risk aversion”, \(\text{Var} \) Variance, \(a \) and \(b \) time preferences, \(f \) and \(F \) targets, \(\mathbb{P} \) probability
Optimal investment strategies

Intuitive results, quantifiable answers

- Max life consumption (e.g. Merton, 1971), min ruin probability
 - Mutual fund separation ✓ Presenting equity as one thing
 - Constant mixed strategy ✓ How insurance companies invest
 - Equity ↓ then Longevity risk ↑ ✓ ~50% in equity for lowest lifetime ruin
 - Changing consumption ❌ Unstable income
 - Deplete savings ✓ Bequest is 2nd degree
 - Savings don’t last forever ✓ Annuity

- 4% rule for a stable income (Bengen, 1994)
 - Varying success (how long? how much left?)

<table>
<thead>
<tr>
<th>Years</th>
<th>3%</th>
<th>3.5%</th>
<th>4%</th>
<th>4.5%</th>
<th>5%</th>
<th>5.5%</th>
<th>6%</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>99%</td>
<td>97%</td>
<td>91%</td>
</tr>
<tr>
<td>20</td>
<td>100%</td>
<td>100%</td>
<td>98%</td>
<td>95%</td>
<td>85%</td>
<td>66%</td>
<td>41%</td>
</tr>
<tr>
<td>25</td>
<td>100%</td>
<td>97%</td>
<td>92%</td>
<td>77%</td>
<td>51%</td>
<td>28%</td>
<td>12%</td>
</tr>
<tr>
<td>30</td>
<td>97%</td>
<td>92%</td>
<td>75%</td>
<td>49%</td>
<td>27%</td>
<td>12%</td>
<td>5%</td>
</tr>
<tr>
<td>35</td>
<td>94%</td>
<td>81%</td>
<td>57%</td>
<td>33%</td>
<td>14%</td>
<td>6%</td>
<td>3%</td>
</tr>
</tbody>
</table>
Optimal investment strategies

Intuitive results, quantifiable answers

• Max above level, max expectation min variance, min distance from a target
 – Similar to max life consumption
 – Variance increases over time
 – Varying percentage
 – Stable profit

Optimal solutions are robust
Control
How investment firms invest
Predictable outcome

13 September 2018
Optimal investment strategies

Drawdown today, the 4% rule

- 50% in equity
- Inflation adjusted percentage from initial savings
- Probability to last at least …

<table>
<thead>
<tr>
<th>Years</th>
<th>3.00%</th>
<th>3.50%</th>
<th>4.00%</th>
<th>4.50%</th>
<th>5.00%</th>
<th>5.50%</th>
<th>6.00%</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>99.98%</td>
<td>99.83%</td>
<td>99.20%</td>
<td>97.30%</td>
<td>93.14%</td>
<td>87.00%</td>
<td>77.50%</td>
</tr>
<tr>
<td>20</td>
<td>98.53%</td>
<td>95.00%</td>
<td>87.70%</td>
<td>76.47%</td>
<td>63.24%</td>
<td>49.28%</td>
<td>36.48%</td>
</tr>
<tr>
<td>25</td>
<td>91.05%</td>
<td>79.27%</td>
<td>65.48%</td>
<td>48.87%</td>
<td>34.60%</td>
<td>23.52%</td>
<td>14.92%</td>
</tr>
<tr>
<td>30</td>
<td>77.37%</td>
<td>60.04%</td>
<td>43.44%</td>
<td>29.39%</td>
<td>18.63%</td>
<td>11.13%</td>
<td>6.33%</td>
</tr>
<tr>
<td>35</td>
<td>62.14%</td>
<td>44.17%</td>
<td>28.23%</td>
<td>18.16%</td>
<td>10.53%</td>
<td>5.65%</td>
<td>2.98%</td>
</tr>
</tbody>
</table>

Simulated data using a Black Scholes model
Optimal investment strategies

Max expectation min variance

- Annual optimization problem
- Inflation adjusted percentage from initial savings
- Probability to last at least …

<table>
<thead>
<tr>
<th>Years</th>
<th>3.00%</th>
<th>3.50%</th>
<th>4.00%</th>
<th>4.50%</th>
<th>5.00%</th>
<th>5.50%</th>
<th>6.00%</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>98.95%</td>
<td>96.63%</td>
<td>94.17%</td>
<td>-5.03%</td>
<td>91.10%</td>
<td>89.60%</td>
<td>85.48%</td>
</tr>
<tr>
<td>20</td>
<td>96.03%</td>
<td>90.07%</td>
<td>85.34%</td>
<td>-2.36%</td>
<td>80.35%</td>
<td>74.84%</td>
<td>63.14%</td>
</tr>
<tr>
<td>25</td>
<td>91.99%</td>
<td>82.90%</td>
<td>75.49%</td>
<td>+10.01%</td>
<td>66.26%</td>
<td>46.09%</td>
<td>23.35%</td>
</tr>
<tr>
<td>30</td>
<td>87.19%</td>
<td>+9.82%</td>
<td>75.03%</td>
<td>+14.99%</td>
<td>61.94%</td>
<td>+18.50%</td>
<td>37.28%</td>
</tr>
<tr>
<td>35</td>
<td>78.75%</td>
<td>59.83%</td>
<td>30.65%</td>
<td>+2.42%</td>
<td>3.93%</td>
<td>0.15%</td>
<td>0%</td>
</tr>
</tbody>
</table>

Simulated data using a Black Scholes model
Optimal investment strategies

Max expectation min variance

- Annual optimization problem
- Inflation adjusted percentage from initial savings
- Probability to last at least ...

<table>
<thead>
<tr>
<th>Years</th>
<th>3.00%</th>
<th>3.50%</th>
<th>4.00%</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>98.95%</td>
<td>96.63%</td>
<td>94.17% -5.03</td>
</tr>
<tr>
<td>20</td>
<td>96.03%</td>
<td>90.07%</td>
<td>85.34% -2.36</td>
</tr>
<tr>
<td>25</td>
<td>91.99%</td>
<td>82.90%</td>
<td>75.49% +10.01</td>
</tr>
<tr>
<td>30</td>
<td>87.19% +9.82</td>
<td>75.03% +14.99</td>
<td>61.94% +18.50</td>
</tr>
<tr>
<td>35</td>
<td>78.75%</td>
<td>59.83%</td>
<td>30.65% +2.42</td>
</tr>
</tbody>
</table>

Simulated data using a Black Scholes model

13 September 2018
Optimal investment strategies

Undesirable features

- Difficult to communicate
 - Car mechanic analogy
- Sensitive to parameters
 - Indication for wrong set-up
- Non-explicit
 - Explicit in idealistic situation, indication for outcome
- No constraints
 - Numerical solutions
Pooling retirement funds

Annuity

- Guaranteed income, in return for savings
- Actuarial fair cost
 - No investment
 - Mortality driven price
 - Not at all times favourable
- Low value at retirement
- Age ~80 longevity credits outweigh investments
- Not at all times favourable
- Optimal stopping

- State of the art
 - Investment/drawdown opposite to annuity
 - Annuity best option at high ages
 - Delay full annuitization (phase transition, delayed annuities)
Pooling retirement funds

Modern Tontine

• No guaranteed income, irreversible decision
• No cost (besides fees, taxes, …)
 – Investment High value from the beginning
 – Performance/experienced mortality driven Fluctuation

• Main ideas
 – Investment in addition to longevity credits
 – Beneficial at all ages (ignoring bequest motives)
Pooling retirement funds

Implicit Tontine

• Features
 – One pool account
 – Influenced by experienced investment (changing fund value)
 – Influenced by experienced mortality (changing income)

• Group Self-Annuitization by Piggott et al. (2005)
 – Same aged group
 – Income calculated like annuity

\[c_x = \frac{1}{l_x^*} \frac{F(x - 65)}{\ddot{a}_x} \]

\(c_x \) income at age \(x \), \(F(x - 65) \) fund value after \(x - 65 \) years, \(l_x^* \) count of survivors of age \(x \), \(\ddot{a}_x \) annuity factor age \(x \)
Pooling retirement funds

Explicit Tontine

- Features
 - Individual member accounts
 - Explicit sharing rule (actuarial gain zero)
 - In general tend to $\lambda_i X_i$ (when pool big)

- Sabin (2010)
 - Only survivors earn longevity credits
 - Implicit equations
 \[0 = \sum_{d \neq i} \lambda_d \alpha_{i,d} X_d - \lambda_i X_i, \quad \sum_{i \neq j} \alpha_{ij} = 1 \]

- Donnelly et al. (2014)
 - Survivors and deceased member earn longevity credits
 - Explicit equation
 \[\beta_i = \frac{\lambda_i X_i}{\sum_{d \in \text{Group}} \lambda_d X_d} \]

\[\lambda_i \text{ force of mortality of } i\text{-th member}, \ X_i \text{ account value of } i\text{-th member}, \alpha_{i,d} \text{ share of deceased } d\text{'s fund value to } i\text{-th member}, \beta_i \text{ share of deceased member's fund value to } i\text{-th member} \]
Pooling retirement funds

Longevity credit, current work on explicit Tontines

• Longevity credits based on investment (ruin is possible)

• Extreme sensitivity of longevity credits with respect to reasonable consumption rates
 – 80% in explicit Tontine
 – Mortality table S1PMA
 – Monetary amounts, no inflation or investment risk / value amounts, investment for exact inflation exactly
 – Constant / inflation adjusted withdrawals
 – 100,000 initial wealth

• From example
 – No ruin with 4.7% initial withdrawal percentage
 – Ruin with 5% at age 94

13 September 2018
Key Insights

• Varying percentage in equity for a stable income
• Tontines combine investment returns with longevity credits

Key Questions

• Is there an investment puzzle? Would we benefit from target driven investment?
• Are Tontines the new annuities? How could we make it work? Maybe in a CDC framework?
The views expressed in this [publication/presentation] are those of invited contributors and not necessarily those of the IFoA. The IFoA do not endorse any of the views stated, nor any claims or representations made in this [publication/presentation] and accept no responsibility or liability to any person for loss or damage suffered as a consequence of their placing reliance upon any view, claim or representation made in this [publication/presentation].

The information and expressions of opinion contained in this publication are not intended to be a comprehensive study, nor to provide actuarial advice or advice of any nature and should not be treated as a substitute for specific advice concerning individual situations. On no account may any part of this [publication/presentation] be reproduced without the written permission of the IFoA [or authors, in the case of non-IFoA research].