

Consequences of Picking the Wrong Model

Andrew Smith andrewdsmith8@deloitte.co.uk

Failures in Pricing Models

Quant Congress: Gaussian copula "failing dramatically" in pricing CDOs Author: Peter Madigan Source: Risk magazine | 08 Jul 2008 Categories: Credit Derivatives, Structured Products

📾 Send 💮 Print 🕂 Share 🕞 Comment 🛄 Send to Kindle

Gaussian copula distribution models are an overly simplistic and inadequate means of valuing tranches of collateralised debt obligations (CDOs) and other structured products, warned a senior quant yesterday.

Speaking at the Quant Congress USA in New York, Jon Gregory, formerly global head of credit quantitative analytics at Barclays Capital in London, told delegates that the Gaussian copula "fails quale dimatically when applied in practical terms to the credit market" and does not legislate for the possibility of idiosyncratic or systemic defaults.

Restand articles
 A multificator hottom-up
model for priority
 An untificator hottom-up
model for priority
 An untification hottom-up
model fore hottom-up
model for hottom-up
model for

Gregory also pointed out flaws in the assumptions Gaussian models make on the maturity of losses on a super senior tranche, given that a Gaussian distribution draws a straight upward-stoping line between the expected loss on an equity tranche of a CDO and the maturity of the structure.

WIRED MAGAZINE: 17.03

Recipe for Disaster: The Formula That Killed Wall Street

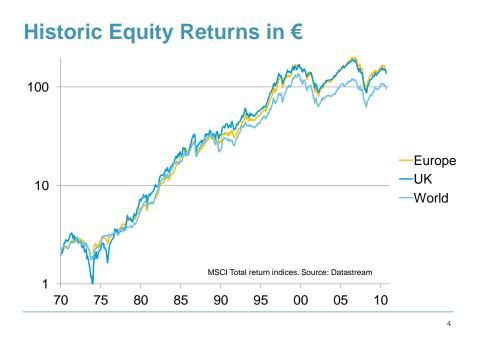
someday earn a storet quant ts-even Wall Street quant

Read ting for Hanneld Recovery Relation Transportery North Relation Transportery North Relation Transport Provide North Relation Transport Relation T

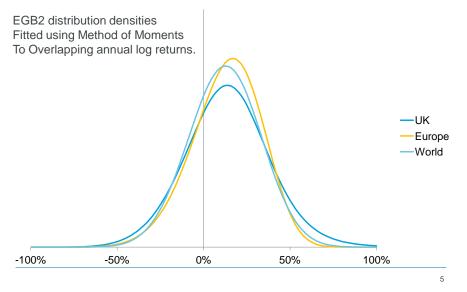


Failures of Value-at-Risk Models

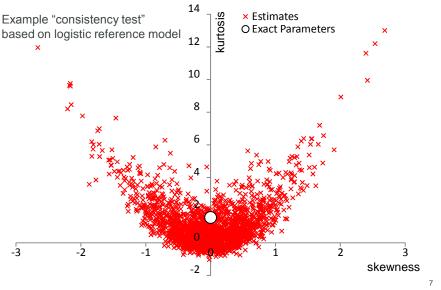
3



Will yesterday's fit work tomorrow?

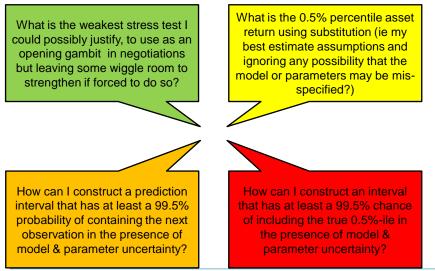


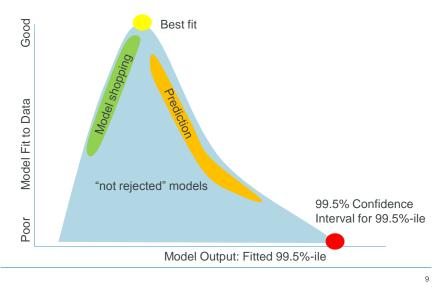
Percentiles: Substitution Method



What About Parameter Estimation Error?

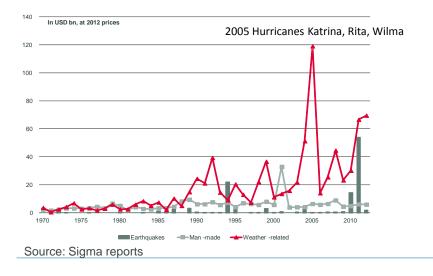
Four Possible Questions

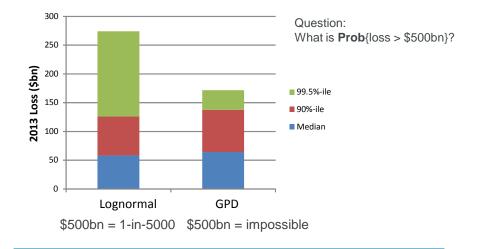




Understanding a Range of Models

Swiss Re Catastrophe History





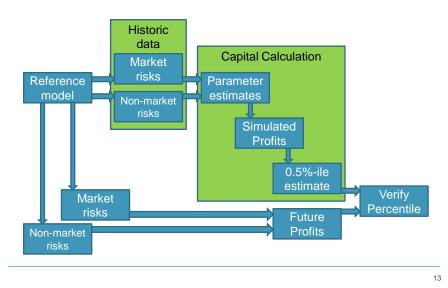
Fitted 2013 Distributions (GLM + MOM)

11

A Range of Model Risk Tools

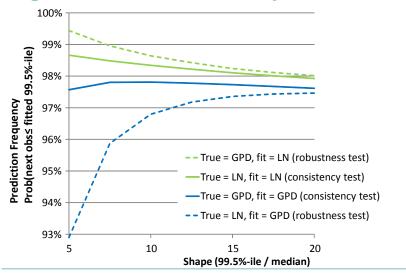
	Benchmarking Approach	Consistency Tests	Robustness Tests
Description	Comparing the outputs of different models calibrated to the same data.	Generating random data from a model, and feeding that data back into the calibration process to see if you recover the parameters you started with.	Taking random data from one model, using it to fit a different model, and seeing how good the predictions are relative to the first model.
What it tells you	The range of different experts' estimates given the data.	The likely accuracy of parameter estimates, both in terms of bias and variability.	How wrong your inference could be if you pick the wrong model.
What it doesn't tell you	How much the results might be distorted by random fluctuations in the observed history.	What happens if the model specification is incorrect?	How your fitting techniques behave on real data.

For more details, see http://www.theactuary.com/features/2013/10/gi-prepare-for-the-worst/



Testing Prediction Intervals

Lognormal fit is statistically robust

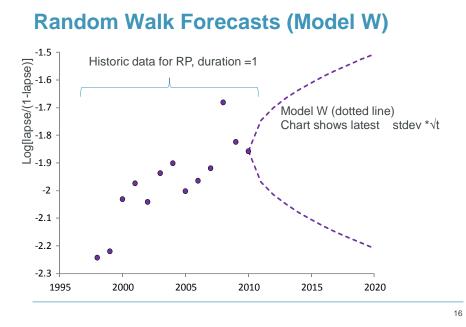


FSA Persistency Survey 2012

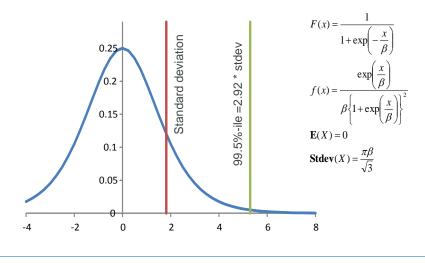
Single Premium			RP – Tied Agent					RP -	RP – IFA								
Annive rsary Start year	0	1	2	3	4	Anniver sary Start year	0	1	2	3	4	Anniv ersary Start year	0	1	2	3	4
1998	1000	987	966	933	906	1998	1000	899	811	720	630	1998	1000	918	829	744	663
1999	1000	989	966	938	906	1999	1000	894	790	685	583	1999	1000	915	811	715	638
2000	1000	987	965	932	894	2000	1000	879	762	648	561	2000	1000	879	758	666	567
2000	1000	987	964	929	870	2001	1000	869	742	635	550	2001	1000	866	765	638	548
2001	1000	983	953	892	836	2002	1000	877	777	645	569	2002	1000	881	742	640	554
2002	1000	975	950	909	865	2003	1000	885	737	648	465	2003	1000	860	748	640	551
2003	1000	981	946	908	856	2004	1000	883	771	646	517	2004	1000	849	720	605	530
2004	1000	976	949	901	843	2005	1000	885	784	710	622	2005	1000	856	733	620	518
2005	1000	971	937	895	841	2006	1000	893	799	688	582	2006	1000	863	737	607	523
2000	1000	976	940	896	855	2007	1000	897	781	669	574	2007	1000	865	711	612	518
2008	1000	972	939	901	055	2008	1000	889	798	695		2008	1000	830	715	590	
2000	1000	976	949	501		2009	1000	903	829			2009	1000	854	713		
2010	1000	980	545			2010	1000	876				2010	1000	856			

The study contains numerous other data sets, but there are concerns over accuracy (for example, negative lapse rates).

15



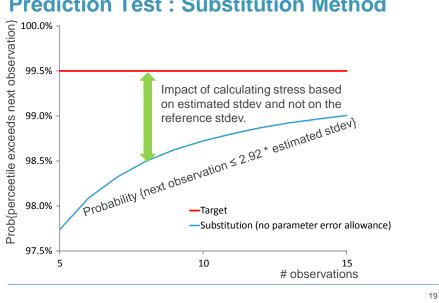
Assume Logistic Distribution for Increments



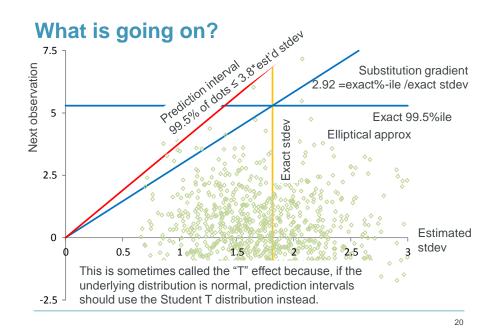
17

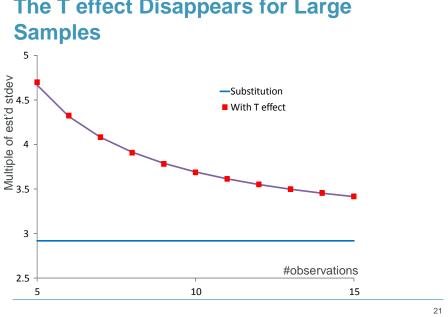
Some Unrealistic Assumptions

Assumption	Response
Log[lapse rate / (1-lapse rate)] performs a random walk	???
Increments have a logistic distribution	???
Sample standard deviation is a good way to measure dispersion of a logistic distribution.	???
We know the standard deviation of the increments	???
The same model applies to the future as to the past	???



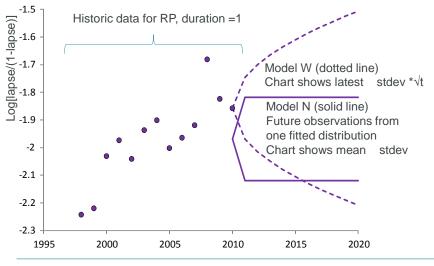
Prediction Test : Substitution Method

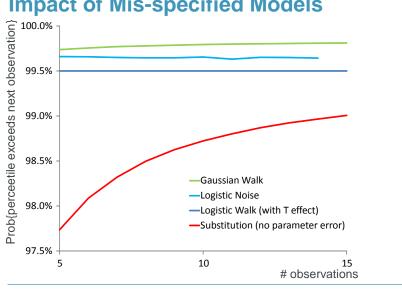




The T effect Disappears for Large

Alternative Models: Noise & Walk



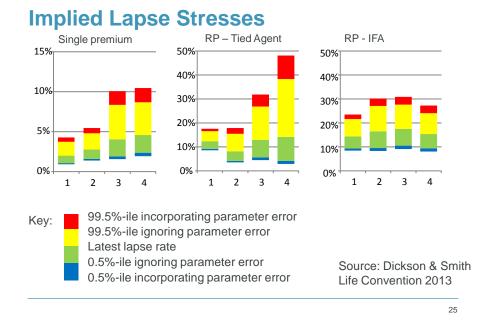


Impact of Mis-specified Models

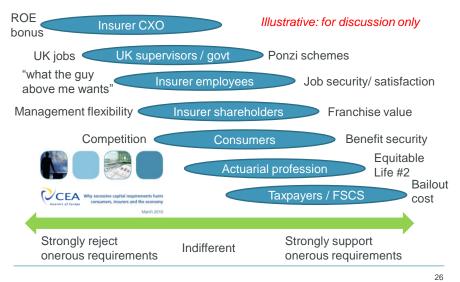
Unrealistic Assumptions Revisited

Assumption	Response
Log[lapse rate / (1-lapse rate)] performs a random walk	Prediction interval is cautious if the lapse rates are independent.
Increments have a logistic distribution	Prediction interval is cautious if we assume normal distributions instead,
Sample standard deviation is a good way to measure dispersion of a logistic distribution.	The prediction test is evidence that the method works; how we derived the estimates is irrelevant.
We know the standard deviation of the increments	Use a larger multiple of estimated standard deviation
The same model applies to the future as to the past	You cannot get rid of all limitations and exclusions with clever statistics.

23



Serious about Model Risk: Who Wins?



Conclusions

- A regulatory requirement to validate a single "best fit" internal model may address model shopping more than it addresses model error.
- "Picking the right model" is not a practical solution to model error; inevitably there are many possible models capable of passing validation and we cannot know which (if any) is correct.
- A theoretical approach to model and parameter risk is to randomise data sets using reference models in order to test prediction intervals, but this is not yet market practice in financial firms. There is a limit to statistical methods which inevitably make some form of "future will be like the past" assumption.
- There is a need for reflexivity: ability or willingness by employees within an organisation to question its dominant beliefs, norms and expectations (Spicer & Alvesson)
- · Commercial incentives, functional stupidity and personal integrity.

27

Consequences of Picking the Wrong Model

Andrew Smith andrewdsmith8@deloitte.co.uk