

making financial sense of the future

Finance, Investment and ERM Conference Investing to meet long term inflation working party

Agenda

- Introduction to inflation
- 1. The perfect match
 - Study: Supply and demand for UK linkers
- 2. Less than perfect ... basis risks
- 3. Property, commodities and other real assets
 - Study: Impulse function to test inflation hedge
- Conclusion

Introduction to inflation

Inflation encountered by Actuaries

Introduction to inflation

Inflation risks in more detail

- Different types of inflation risks
 - Shocks
 - Persistent trends
 - Sectoral inflation, e.g.
 Property or medical costs
- Different impact on different types of investor
 - Caps and floors
 - Balance sheet versus cash flow/accumulation
- High unexpected inflation has been devasting to real values historically

Current outlook

- UK CPI has overshot for c40 months.
 Current high inflation due to:
 - Energy Prices (c1%)
 - Import Prices/Global inflationary pressure (c2%)
 - VAT (0.8%)
- Inflation currently 'highly uncertain'.
 Medium term risks:
 - Change to inflation target
 - Higher inflation expectations
 - Commodity prices and global price pressures.

Current outlook

Longer term issues	
Global rebalancing	Growth of developing economies and their currency strength Asia as inflation, not deflation, exporter
Central bank policies	Inflation targeting Speed of tightening
Commodity scarcity	Population growth Less energy dependence than 1970s Technological and political responses uncertain

Index-linked bonds

- Inflation linked bonds
- Linkers main source for RPI swap inflation supply
- Very expensive?
- Supply / demand dynamics
- Basis risks
- Better off using other real assets

Source: Towers Watson 31 March 2011

Linker supply

- Government main issuer, with currently 17 Indexlinked gilts outstanding (making up over 90% of index-linked bonds)
- Network Rail main nongovt issuer
- We project this to 31
 March 2017 (in line with the Budget 2011)
- Taking into account:
 - Coupons/redemptions
 - Future issuance
 - Real yield levels

Source: FTSE / Barclays 31 March 2011

Includes Network Rail & 2011 issue

Linker supply projected

- Based on current yields, coupons, redemptions and expected future issuance the indexlinked bond supply is projected to increase from the current £293bn to £433bn in 2016
- From budget 2011, assuming the government issues 23% of total supply in linkers and non-gilts market size will increase proportionally with the linker market

Linker supply today and in 2016

- At an average real yield on the index of 0.62%, the initial market value is £300bn (rounded)
- Current yields imply an average real yield of around 1.00% in 2016 when the supply is around £430bn
- Nominal supply is assumed to be inelastic to real yield levels
- This curve therefore represents the market value of a supply which is fixed in nominal stock outstanding
- This explains why the curves are not perfectly vertical

Linker demand

- Estimated £200bn of linkers held by defined benefit pension funds (directly via linkers or indirectly via inflation swaps or other derivatives) and £100bn held by insurance companies and other
- With buy-out liabilities of some £1,350bn, assuming two-thirds inflation linked, this implies a potential demand from defined benefit pension funds of some £900bn (of which only £200bn is currently met)
- Demand characteristics of pension funds:
 - Mainly buy-and-hold to maturity with little appetite to re-risk
 - Large potential demand, waiting for attractive entry levels (real yield levels / funding levels)
 - This leads to asymmetric demand (buy when yields rise / hold when yields fall) which may provide a ceiling on the level of real yields
 - Funds closing, maturing and de-risking

Linker demand projected

- Assuming DB funds to be fully closed, with an average 20 year duration and journey plan to become fully funded after 20 years
- Initial DB balance sheet £1.35tr liabilities, £1.00tr assets, 20% linkers. Target balance sheet is 100% funded with 67% linkers in 2031

Source: Towers Watson / FTSE / Purple Book 31 March 2011

Linker demand today and in 2016

- At current yields the initial demand was £300bn, expected to increase to £468bn
- Demand is expected to be asymmetric, average duration is expected to be 20 years in 2011, reducing to 17 years in 2016
- Rising yields are expected to induce schemes to lock in earlier than their journey plan, while falling yields lead to only limited selling

Supply and demand

- Based on the supply and demand projections, real yields may be expected to stay around 0.60%, well below yields priced in the market at present (light blue arrow)
- However, if funds don't de-risk (and therewith move their demand curve), yields may be expected to increase beyond 1.00% (dark blue arrow), just above current yields
- Model sensitive to assumptions

 provides useful framework to
 test impact on certain
 behavioural aspects of pension
 fund actions

Model outcomes and considerations

- The relative pace and elasticity of de-risking relative to new issuance is key. Timeframe of 20 years to self-sufficiency relatively conservative? Faster collective de-risking could lead to very low yields...
- Should pension schemes wait for higher yields or buy linkers before issuance dries up and yields become even lower?

"It's just a model..."

Risk transfer

2. Less than perfect ... basis risks

- Lumpy cash flows from linkers
- Caps and floors on increases
- Hybrid increases
- Inflation lags, reference months
- Move to CPI

"Why pay dearly for an average match?"

3. Asset Class Summary

Туре	Inflation sensitivity	Asset class	Hedge reliability	Performance more likely under	Issues
Matching	Matched	ILGs/ Swaps	High	N/A	Value, basis risks
Diversified Real & Cash	Medium	Cash	Medium	Domestic/demand driven inflation	Dependant on monetary policy
		Equities/ Property	Medium	Emergence from deflation. Higher steady inflation.	Often negative betas. Stock selection required
High beta High	High	Commodities	Low	Global inflation & shocks	Roll risk, high volatility
		Precious metals	Low	Shocks & economic uncertainty	High volatility

3. Others

- Infrastructure
 - Arguably more private equity-like than perceived
 - Limited selection provide the inflation link
- Timber, farmland etc.
 - Mixture of real asset and commodity exposure
- Expect assets where the underlying income has a link to inflation, eg equities and property to act as a hedge, but risk premiums also often rise. Real assets with lower p/e ratios perform better

3. The International Alternative?

- Real yields down worldwide
 - monetary policy easing by Central Banks.
- Limited demand for inflation-linked bonds from domestic pension schemes
 - Except Netherlands
- Higher yields than UK

3. The International Alternative?

Developed IL Markets

- All G7 countries have now followed the UK's lead by issuing inflation-linked debt.
- With globalisation leading to more correlation between international inflation rates, international inflation-linked can be seen as an alternative inflation hedge.

- More Emerging Market economies have also started to issue inflation-linked debt.
- With EM inflation recently exceeding that in developed markets, interest has grown in these assets.
- •However liquidity is still relatively limited.

Emerging Markets

3. RPI and Asset Returns since 1976

3. Observations

- Correlation not satisfactory measure of dependence as not capturing long term linkages, eg:
 - Cash has the highest correlation with inflation
 - Equities have the lowest correlation with inflation
- Fit Vector Error Correction Model (VECM) to capture long term linkages
- Stress RPI by one s.d. to determine how returns in fitted model respond

3. Impulse Response Functions

Property – offers a partial hedge

Gilts – experience losses

Accumulated Response of LOG(PROP) to LOG(RPI)

Accumulated Response of LOG(GILT) to LOG(RPI)

3. Impulse Response Functions

Equities – offers a partial hedge

Commodities – experience losses

Cash – offers a partial hedge

Accumulated Response of LOG(EQ) to LOG(RPI)

Accumulated Response of LOG(COMM) to LOG(RPI)

3. Summary

Impulse response functions:

- Qualitative tool to examine dependence
- Give sense of time dependency
- Results sensitive to the data period used to fit the models
- Stable inflation/strong equity & property returns in this period
- → Diversify and consider risk/reward preferences of investor:
 - Cash, selected equities and property
 - Foreign FX exposure to protect against domestic only inflation.
 - Small amounts of commodities and precious metals against inflationary shocks
- → Cannot rely on past relationships repeating so need to balance with forward looking economic view and consideration of entry price into asset classes

4. Conclusions

- Outlook:
 - Highly uncertain with drivers changing from past
- Matching:
 - Supply/demand dynamics limit scope for cheapening of inflation protection
- Other asset classes:
 - Depends on nature of inflation, time horizon, risk preferences...and views.

Working party

- David Bowie (chair)
- Shajahan Alam
- David Dyer
- Keith Feldman
- Rawnak ul Islam
- Martijn de Vree
- James Walton

Appendix

A1. Impulse analysis: Descriptive Statistics

	Cash	Commodities	Global Equities	Gilts	Real Estate	UK Inflation
Mean	7.8	6.9	9.9	10.8	11.3	5.2
Median	6.8	8.9	14.6	10.5	15.0	4.6
Maximum	15.8	247.8	133.5	232.1	296.0	50.6
Minimum	0.5	-397.5	-251.8	-130.7	-432.0	-17.4
Std. Dev.	1.1	19.3	15.0	11.3	17.2	2.0
Skewness	0.179	-0.621	-0.880	0.617	-1.603	1.694
Kurtosis	2.301	6.523	5.525	6.285	13.931	10.829

A1. Correlations

	Cash	Commod ities	Global Equities	Gilts	Real Estate	UK Inflation
Cash	100%	4%	4%	8%	0%	41%
Commod ities		100%	23%	-3%	17%	13%
Global Equities			100%	15%	57%	4%
Gilts				100%	9%	5%
Real Estate					100%	8%
UK Inflation						100%

A1. Vector Autoregressive Models (VAR)

VAR process of order p

$$y_t = v + A_1 y_{t-1} + \ldots + A_p y_{t-p} + u_t, \quad t \in \mathbb{Z}$$

- y_t is a $k \times 1$ random vector
- the A_i are k x k fixed coefficient matrices
- is a k x 1 fixed vector of intercept terms
- u_t is a k x 1 random vector,
- a white noise or innovation process.

A1. Cointegration

- Let y_t be a $k \times 1$ random vector $y_t \sim I(d)$ (integrated of order d) if $\Delta^d y_t$ is stationary but $\Delta^{d-1} y_t$ is not
- I(0) is stationary
- y_t ~ I(d) is cointegrated
 if there exists k x 1 fixed vector β ≠ 0
 so β'y_t is integrated of order < d
- We say $y_t \sim CI(d)$

A1. Vector Error Correction Models (VECM)

VECM process of order p

$$\Delta y_t = \Pi y_{t-1} + \Gamma_1 \Delta y_{t-1} + \ldots + \Gamma_{p-1} \Delta y_{t-p+1} + u_t, \quad t \in \mathbb{Z}$$

- y_t is a k x 1 random vector, ~ CI(1)
- Π k x k fixed cointegration matrix
- the Γ_i are $k \times k$ fixed coefficient matrices
- u_t is a $k \times 1$ white noise process.
- Additionally, we assume that u_t is Gaussian

A1. VAR Lag Order Selection

VAR Lag Order Selection Criteria								
Endogenous variables: LOG(CASH) LOG(COMM) LOG(EQ) LOG(GILT) LOG(PROP) LOG(RPI)								
	Exogenous variables: C							
Date: 05/25/11								
Sample: 1976N								
Included obse								
meradea obse	1 44 (10113. 400							
Lag	LogL	LR	FPE	AIC	SC	HQ		
0	744.8051	NA	1.08E-09	-3.621594	-3.562604	-3.598251		
1	6680.003	11666.74	2.98E-22	-32.53923	-32.12631	-32.37584		
2	7189.194	985.9332	2.93e-23*	-34.85879*	-34.09193*	-34.55534*		
3	7222.64	63.77787	2.96E-23	-34.84628	-33.72548	-34.40277		
4	7244.236	40.54483	3.18E-23	-34.77567	-33.30094	-34.19211		
5	7273.062	53.27209	3.30E-23	-34.7405	-32.91184	-34.01689		
6	7295.538	40.87401	3.53E-23	-34.6742	-32.4916	-33.81054		
7	7322.907	48.96902	3.69E-23	-34.63189	-32.09536	-33.62818		
8	7340.164	30.36979	4.05E-23	-34.54002	-31.64955	-33.39625		
9	7360.105	34.50549	4.40E-23	-34.4613	-31.21689	-33.17748		
10	7393.44	56.70292	4.47E-23	-34.44824	-30.84989	-33.02436		
11	7422.503	48.58045	4.65E-23	-34.41423	-30.46195	-32.8503		
12	7459.804	61.25426*	4.64E-23	-34.42061	-30.1144	-32.71663		

• Therefore 2 lags are used

^{*} indicates lag order selected by the criterion

A1. Cointegration Rank Test

Unrestricted Co				
Llymathasizad		Trace	0.05	
Hypothesized No. of CE(s)	Eigenvalue	Statistic	Critical Value	Prob.**
	0			
None *	0.097182	134.5191	95.75366	0
At most 1 *	0.080499	91.88725	69.81889	0.0003
At most 2 *	0.054376	56.89102	47.85613	0.0057
At most 3 *	0.038066	33.57633	29.79707	0.0175
At most 4 *	0.028393	17.39282	15.49471	0.0256
At most 5 *	0.012822	5.381441	3.841466	0.0203

Unrestricted Cointegration Rank Test (Maximum Eigenvalue)						
Hypothesized		Max-Eigen	0.05			
No. of CE(s)	Eigenvalue	Statistic	Critical Value	Prob.**		
None *	0.097182	42.63189	40.07757	0.0252		
At most 1 *	0.080499	34.99623	33.87687	0.0366		
At most 2	0.054376	23.31469	27.58434	0.1604		
At most 3	0.038066	16.18351	21.13162	0.2143		
At most 4	0.028393	12.01138	14.2646	0.1102		
At most 5 *	0.012822	5.381441	3.841466	0.0203		

- Trace test indicates 6 cointegrating equations at the 0.05 level
- Max-eigenvalue test indicates 2 cointegrating equations at the 0.05 level
- Therefore 2 cointegrating equations are used

^{*} denotes rejection of the hypothesis at the 0.05 level

A1. Other Studies using longer time series data

- Today's value of £100 invested at the end of 1899 without reinvesting income would be in real terms £180 for equities and £1 for gilts
- Today's value of £100 invested at the end of 1899 with income reinvested gross would be in real terms £24,133 for equities, £369 for gilts and £286 for cash
- Importance of income and long investment horizon

A1. Cash – offers a partial hedge

- Cash initially reacts positively to inflation shocks
- After around six years the cash return starts to drop
- By year 10 the cash return due to the inflation shock is negative.

A1. Gilts – experience losses

- Gilts total return reacts negatively to inflation shocks both in the short and to 10 years.
- Nominal value is eroded by inflation
- Do not protect against unexpected inflation

A1. Equities – offers a partial hedge

- Equities react positively to an inflation shock both in the short term and to 10 years.
- The reaction is not 1 for 1 so this provides a loose hedge even if in the same direction.
- Result possibly due to stabilising effect of the dividends which match inflation very well.
- Inflation in the analysis period has been stable.

A1. Property – offers a partial hedge

- Reacts positively to inflation shocks.
- The positive reaction tails off after six years.
- Reasons similar to equities due the REITS are an equity market index even if with property focus.
- Need to find reliable unlisted property returns to eliminate this effect.

A1. Commodities – experience losses

- The GSCI total returns react negatively to inflation shocks in the short term and begins to level off after 10 years.
- Inflation in the analysis period is due to the demand pull rather than the cost push inflation.
- High volatility of commodities makes it difficult to hedge inflation which is much less volatile.
- Heavy energy sector influence on the GSCI could distort the true relationship.