The Impact of Longevity Risk Hedging on Economic Capital

Andrew J.G. Cairns

Heriot-Watt University, Edinburgh

Director, Actuarial Research Centre, IFoA

AFIR-ERM Colloquium, 2016

Actuarial
Research Centre
Institute and Faculty

Outline

- Introduction and Danish males data
- Correlations between national and sub-population mortality
- Capital requirements and index hedging options
- How to assess the impact of a hedge in 22 easy steps
- How many models do you need?
- Hedging example and numerical results

Danish Males Data

- This research: not specifically about Danish insurance problems!
- BUT:
 Denmark has very good quality national data
- Can subdivide population
- Can synthesise many different hypothetical sub-populations
- Allows experimentation with new multi-population models
- We can gain insights into general multi-population hedging problems

Danish Males Data (cont.)

- Males resident in Denmark for the previous 12 months.
- After much experimentation:
- Divide population in year t
 - into 10 equal sized Groups (approx)
 - using affluence, A
- Individuals can change groups up to age 67
- Group allocations are locked down at age 67
- Ages 55-94; Years 1985-2012

Model-inferred underlying death rates 2012

Modelling the death rates

$$\log m^{(k)}(t,x) = \beta^{(k)}(x) + \kappa_1^{(k)}(t) + \kappa_2^{(k)}(t)(x - \bar{x})$$

- Model fits the 10 groups well without a cohort effect
- Model structure is essential to preserve group rankings
 - Rankings are evident in crude data
 - "Bio-demographical reasonableness": more affluent \Rightarrow healthier

Forecast correlations

Deciles are quite narrow subgroups More diversified e.g.

- Blue collar pension plan
 ⇒ equal proportions of groups 2, 3, 4
- White collar pension plan
 ⇒ equal proportions of groups 8, 9, 10
- Mixed plan
 - \Rightarrow proportions $(0,0,1,2,\ldots,7,8)/36$ (e.g. amounts)

Forecast Correlations: Mortality Rates at Age 75

Forecast Correlations: Cohort Survivorship from Age 65

Capital Requirements

What type of capital calculations?

- e.g. Annuity portfolio
- Solvency II:
 - Solvency Capital Requirement, SCR=
 difference between
 Best estimate of annuity liabilities (BE) and
 Annuity liabilities following an immediate
 20% reduction in mortality
 - or SCR= extra capital required at time 0 to ensure solvency at time 1 with 99.5% probability
 - plus other 'equivalent' variants.

Hedging Options

What type of hedge to modify capital requirements and manage risk?

- Customised longevity swap
- Index-based hedge
 - Synthetic $\tilde{L}(T) \approx \text{true } L(T)$
 - Swap
 - Bull spread derived from underlying $\tilde{L}(T)$ Payoff at T:

$$H(T) = \left\{ \begin{array}{ll} 0 & \text{if } \tilde{L}(T) < AP \text{ (Attachment Point)} \\ \tilde{L}(T) - AP & \text{if } AP \leq \tilde{L}(T) < DP \text{ (Detachment Point)} \\ DP - AP & \text{if } DP \leq \tilde{L}(T) \end{array} \right.$$

How many models do you need?

In theory: One model In practice:

- Time 0:
 - Liability valuation model (BE + SCR)
 - Simulation model $(0 \rightarrow T)$
- Time T:
 - Hedge instrument valuation model
 - Liability valuation model
- 'Models' for extrapolating to high (and low) ages

Time 0 Models

- Unhedged Liabilities:
 Deterministic BE + 20% stress
- Simulation:
 - General: (Lee-Carter/M1)

$$\ln m_{gen}(x,t) = A(x) + B(x)K(t) \text{ (Lee-Carter/M1)}$$

Specific: (M1-M5X)

$$\ln m_{pop}(x,t) = \ln m_{gen}(x,t) + a(x) + k_1(t) + k_2(t)(x-\bar{x})$$

Time T models

- Hedge instrument:
 - Lee-Carter (M1) for general population
 - Recalibration on basis specified at time 0

$$q_{gen}^H(x,t)
ightarrow q_{gen}^H(x,t) imes ER(x,0)
ightarrow ilde{L}(T)
ightarrow H(T)$$

- Liability: specific (hedger's) population
 - Lee-Carter (M1) for general population
 - Possible different calibration from the hedge instrument
 - $q_{pop}^L(x,t)=q_{gen}^L(x,t) imes ER(x,T) o L(T)$

- Portfolio of deferred and immediate annuities, ages 50-89
 - Deferred to age 65
 - Amounts/weights: 25 for $x \le 65$
 - Amounts/weights: 90 x for 65 < x < 90
- Before and after:

Compare
$$L(T)$$
 with $L(T) - H(T)$

• SCR = 99.5% quantile — mean

Discounted Annuity Values by Age Assessed at Time 10

SCR with no hedging = 9.9% of mean

Bull Spread \longrightarrow Longevity Catastrophe Bond

- Hedger
- Bull spread
- Special Purpose Vehicle
- Cat Bond Payoff = (DP AP) H(T)
- Cat Bond Holders
 - Bond nominal = AP DP (for example)
 - Maximum loss = 100%

Hedging Example: SCR, Cat Bond Notional, Option Price

Tradeoffs and Other Considerations

How to choose Maturity, AP and DP?

- Reduction in SCR /
- Cat Bond nominal \(\sqrt{} \)
- Bull spread price \(\sqrt{} \)
- Shareholder value added
- Insurer risk appetite, hedging objectives etc.

Theory vs Practice: Bridging the Gap

Theory vs Practice: Bridging the Gap

Where we are now?

Thank You!

Questions?

Actuarial Research Centre

Institute and Faculty of Actuaries