The Impact of Longevity Risk Hedging on Economic Capital

Andrew J.G. Cairns
Heriot-Watt University, Edinburgh
Director, Actuarial Research Centre, IFoA

AFIR-ERM Colloquium, 2016

Actuarial
Research Centre
Institute and Faculty of Actuaries

- Introduction and Danish males data
- Correlations between national and sub-population mortality
- Capital requirements and index hedging options
- How to assess the impact of a hedge in 22 easy steps
- How many models do you need?
- Hedging example and numerical results

Danish Males Data

- This research: not specifically about Danish insurance problems!
- BUT:

Denmark has very good quality national data

- Can subdivide population
- Can synthesise many different hypothetical sub-populations
- Allows experimentation with new multi-population models
- We can gain insights into general multi-population hedging problems

Danish Males Data (cont.)

- Males resident in Denmark for the previous 12 months.
- After much experimentation:
- Divide population in year t
- into 10 equal sized Groups (approx)
- using affluence, A
- Individuals can change groups up to age 67
- Group allocations are locked down at age 67
- Ages 55-94; Years 1985-2012

Model-inferred underlying death rates 2012

Males Crude m(t,x); 2012

Males CBD-X Fitted m(t,x); 2012
Point Estimates

Actuarial
Research Centre Irstitute and Faculty
of Actursies

Modelling the death rates

$\log m^{(k)}(t, x)=\beta^{(k)}(x)+\kappa_{1}^{(k)}(t)+\kappa_{2}^{(k)}(t)(x-\bar{x})$

- Model fits the 10 groups well without a cohort effect
- Model structure is essential to preserve group rankings
- Rankings are evident in crude data
- "Bio-demographical reasonableness": more affluent \Rightarrow healthier

Forecast correlations

Deciles are quite narrow subgroups
More diversified e.g.

- Blue collar pension plan
\Rightarrow equal proportions of groups 2, 3, 4
- White collar pension plan
\Rightarrow equal proportions of groups $8,9,10$
- Mixed plan
\Rightarrow proportions $(0,0,1,2, \ldots, 7,8) / 36$ (e.g. amounts)

Forecast Correlations: Mortality Rates at Age 75

Correlation Between Group $q(\mathbf{t}, \mathbf{x})$ and Total $\mathbf{q (t , x)}$

Forecast Correlations: Cohort Survivorship from Age 65

Capital Requirements

What type of capital calculations?

- e.g. Annuity portfolio
- Solvency II:
- Solvency Capital Requirement, SCR= difference between
Best estimate of annuity liabilities (BE) and Annuity liabilities following an immediate 20% reduction in mortality
- or $\mathrm{SCR}=$ extra capital required at time 0 to ensure solvency at time 1 with 99.5% probability
- plus other 'equivalent' variants.

Hedging Options

What type of hedge to modify capital requirements and manage risk?

- Customised longevity swap
- Index-based hedge
- Synthetic $\tilde{L}(T) \approx \operatorname{true} L(T)$
- Swap
- Bull spread derived from underlying $\tilde{L}(T)$ Payoff at T :

$$
H(T)= \begin{cases}0 & \text { if } \tilde{L}(T)<A P \text { (Attachment Point) } \\ \tilde{L}(T)-A P & \text { if } A P \leq \tilde{L}(T)<D P \text { (Detachment Point) } \\ D P-A P & \text { if } D P \leq \tilde{L}(T)\end{cases}
$$

Anatomy of a Hedging Calculation: 1

Anatomy of a Hedging Calculation: 2

Anatomy of a Hedging Calculation: 3

Anatomy of a Hedging Calculation: 4

Anatomy of a Hedging Calculation: 5

Anatomy of a Hedging Calculation: 6

Anatomy of a Hedging Calculation: 7

How many models do you need?

In theory: One model

In practice:

- Time 0:
- Liability valuation model (BE + SCR)
- Simulation model $(0 \rightarrow T)$
- Time T:
- Hedge instrument valuation model
- Liability valuation model
- 'Models' for extrapolating to high (and low) ages

Time 0 Models

- Unhedged Liabilities:

Deterministic BE $+20 \%$ stress

- Simulation:
- General: (Lee-Carter/M1)

In $m_{\text {gen }}(x, t)=A(x)+B(x) K(t) \quad($ Lee-Carter $/ \mathrm{M} 1)$

- Specific: (M1-M5X)

$$
\ln m_{p o p}(x, t)=\ln m_{g e n}(x, t)+a(x)+k_{1}(t)+k_{2}(t)(x-\bar{x})
$$

Time T models

- Hedge instrument:
- Lee-Carter (M1) for general population
- Recalibration on basis specified at time 0

$$
q_{g e n}^{H}(x, t) \rightarrow q_{g e n}^{H}(x, t) \times E R(x, 0) \rightarrow \tilde{L}(T) \rightarrow H(T)
$$

- Liability: specific (hedger's) population
- Lee-Carter (M1) for general population
- Possible different calibration from the hedge instrument
- $q_{p o p}^{L}(x, t)=q_{g e n}^{L}(x, t) \times E R(x, T) \rightarrow L(T)$

Hedging Example

- Portfolio of deferred and immediate annuities, ages 50-89
- Deferred to age 65
- Amounts/weights: 25 for $x \leq 65$
- Amounts/weights: $90-x$ for $65<x<90$
- Before and after:

Compare $L(T)$ with $L(T)-H(T)$

- $\mathrm{SCR}=99.5 \%$ quantile - mean

Hedging Example

Hedging Example

Discounted Annuity Values by Age

Assessed at Time 10

Hedging Example

SCR with no hedging $=9.9 \%$ of mean

SCR (\%) with Hedge in Place as a Function of the

Hedging Example

Capital Relief When

Bull Spread \longrightarrow Longevity Catastrophe Bond

- Hedger
- Bull spread
- Special Purpose Vehicle
- Cat Bond Payoff $=(D P-A P)-H(T)$
- Cat Bond Holders
- Bond nominal $=A P-D P$ (for example)
- Maximum loss $=100 \%$

Hedging Example: SCR, Cat Bond Notional, Option Price

Actuarial
Research Centre Irstitute and Faculty

Tradeoffs and Other Considerations

How to choose Maturity, AP and DP?

- Reduction in SCR \nearrow
- Cat Bond nominal 】
- Bull spread price
- Shareholder value added
- Insurer risk appetite, hedging objectives etc.

Theory vs Practice: Bridging the Gap

OR

Try to avoid this:

Theory vs Practice: Bridging the Gap

Where we are now?

Thank You!

Questions?

Actuarial Research Centre

Institute and Faculty of Actuaries

