

This work is a joint effort

Rob Thomson

18 July 2016

We have come a long way

- AFIR Colloquium 2013
- "Why the capital asset pricing model fails in a multicurrency world"

18 July 2016

We have come a long way

18 July 2016

Why use the CAPM?

- It's an equilibrium model.
- · It assumes homogenous expectations.
- · It's a simple model.

18 July 2016

· Nobody has ever proved it's wrong.

Global CAPM (GCAPM)

$$E\left\{R_{i}\right\} = R_{F} + \beta_{i}^{W} \left[E\left\{R_{W}\right\} - R_{F}\right]$$

Institute and Faculty of Actuaries

10, 20001100

18 July 2016

International CAPM (ICAPM)

$$\begin{split} E\left\{R_{i}\right\} &= R_{\mathrm{F}} + \beta_{i}^{\mathrm{W}} \left[E\left\{R_{\mathrm{W}}\right\} - R_{\mathrm{F}}\right] \\ &+ \gamma_{i}^{\mathrm{I}} \left[E\left\{R_{\mathrm{M}}^{\mathrm{I}}\right\} - R_{\mathrm{F}}^{\mathrm{I}}\right] + \ldots + \gamma_{i}^{\mathrm{C}} \left[E\left\{R_{\mathrm{M}}^{\mathrm{C}}\right\} - R_{\mathrm{F}}^{\mathrm{C}}\right] \end{split}$$

18 July 2016

What do we want?

- · A model that:
 - Treats variance as the measure of risk, regardless of source, and
 - That produces the same price.

18 July 2016

We had an idea

18 July 2016

But we ran into some problems

- Convergence problems
 - Number of constraints > number of unknowns

18 July 2016

10

So back to the drawing board!

18 July 2016

Single-factor multi-currency CAPM (SFM-CAPM) assumptions

- (1) Investors who measure their investment returns in currency c (i.e. 'currency-c investors') have indifference curves in mean—variance space, the means and variances being those measured in that currency.
- (2) All investors, regardless of the currency in which they measure returns, have homogeneous expectations of the means, variances and covariances of:
 - (a) the returns in each currency on assets issued in that currency; and
 - (b) rates of strengthening of each currency.

18 July 2016 12

The SFM-CAPM

$$E\left\{R_{di}^{c}\right\} = R_{F}^{c} + \beta_{di}^{c} \left[E\left\{R_{M}^{c}\right\} - R_{F}^{c}\right]$$

18 July 2016

SFM-CAPM constraint

If the SFM-CAPM applies in a multi-currency world then, for any currencies c and e:

$$\kappa_{di}^{c} = \kappa_{di}^{e}$$

where:

$$\kappa_{di}^{c} = \frac{\sigma_{di,\mathrm{M}}^{c} - \sigma_{d1,\mathrm{M}}^{c}}{\sigma_{\mathrm{MM}}^{c}} \left(\mu_{\mathrm{M}}^{c} - r_{c}\right)$$

18 July 2016

SFM-CAPM mark 1

Minimise:

$$D_{\mu}^{2} = \frac{1}{Q_{\mu}} \left[\sum_{c=1}^{C} \left\{ \sum_{i=2}^{n_{c}} \left(\hat{\mu}_{ci}^{(S)} - \hat{\mu}_{ci}^{(G)} \right)^{2} \right\} + \sum_{c=2}^{C} \left(\hat{\mu}_{c}^{(S)} - \hat{\mu}_{c}^{(G)} \right)^{2} \right]$$

subject to the constraints:

$$\kappa_{di}^{c} = \frac{\hat{\sigma}_{di,\mathrm{M}}^{c} - \hat{\sigma}_{d1,\mathrm{M}}^{c}}{\hat{\sigma}_{\mathrm{M},\mathrm{M}}^{c}} \Big(\hat{\mu}_{\mathrm{M}}^{c(\mathrm{S})} - r_{c} \Big) = \frac{\hat{\sigma}_{di,\mathrm{M}}^{e} - \hat{\sigma}_{d1,\mathrm{M}}^{e}}{\hat{\sigma}_{\mathrm{M},\mathrm{M}}^{e}} \Big(\hat{\mu}_{\mathrm{M}}^{c(\mathrm{S})} - r_{e} \Big) = \kappa_{di}^{e}$$

18 July 2016

18 July 2016

SFM-CAPM mark 2

Minimise:

$$D^2 = D_\mu^2 + hD_\kappa^2$$

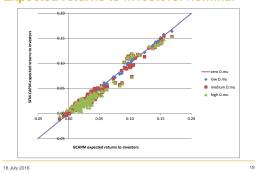
where:

$$\begin{split} D_{\mu}^{2} &= \frac{1}{Q_{\mu}} \left[\sum_{c=1}^{C} \left\{ \sum_{i=2}^{n_{c}} \left(\hat{\mu}_{ci}^{(\mathrm{S})} - \hat{\mu}_{ci}^{(\mathrm{G})} \right)^{2} \right\} + \sum_{c=2}^{C} \left(\hat{\mu}_{c}^{(\mathrm{S})} - \hat{\mu}_{c}^{(\mathrm{G})} \right)^{2} \right] \\ D_{\kappa}^{2} &= \frac{1}{Q_{\kappa}} \sum_{c,c=1}^{C} \sum_{(d,l) \in \Psi_{c}} \left(\kappa_{di}^{c} - \kappa_{di}^{e} \right)^{2} \end{split}$$

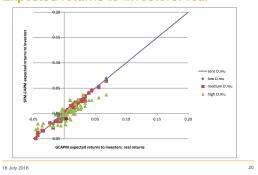
18 July 2016

.

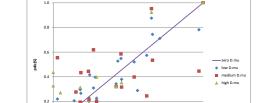
What do the results look like?



Data

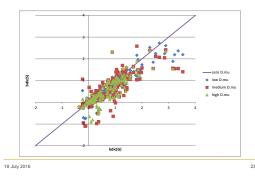

Data set	Period		USA		UK		SA		TR	
			e, cb	ilb						
	returns									
1	1975Q2	1985Q4	V		V		V			
2	1986Q1	1995Q4	√		√		√		√	
3	1996Q1	2005Q2	√		√		V		V	
4	2005Q3	2012Q1	√		√		√		√	
5	2005Q3	2012Q1	√	V	√	V	V	V		
6	2009Q4	2012Q1	√	V					√	V
7	1975Q2	2012Q1	√		√		V			
8	1986Q1	2012Q1	√		√		√		√	
real retu	ırns									
1	2003Q2	2009Q3	4	V	V	√				
2	2005Q3	2009Q3	√	1	√	√	V	V		
3	2009Q4	2012Q1	√	V					√	V
4	2005Q3	2012Q3	√	V	√	V	V	V		
5	2003Q2	2012Q3	V	√	V	√				

18 July 2016 18

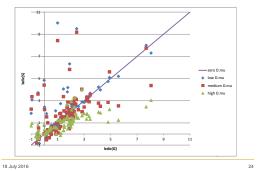

Expected returns to investors: nominal

Expected returns to investors: real

Optimal portfolios: home currency: nominal returns



Optimal portfolios: home currency: real returns



Betas: nominal returns

18 July 2016

Betas: real returns

The SFM-CAPM

$$E\left\{R_{di}^{c}\right\} = R_{F}^{c} + \beta_{di}^{c} \left[E\left\{R_{M}^{c}\right\} - R_{F}^{c}\right]$$

Why adopt the SFM-CAPM?

- · It's better than the ICAPM.
- · It's better than the GCAPM.
- · The difference is material.

18 July 2016

18 July 2016

A word of advice

- Use real returns rather than nominal returns:
 - It's closer to the GCAPM, so the adjustments required are smaller
 - The GCAPM is supposed to be about optimising consumption.
 - Financial mathematicians can't use real returns; actuaries can.

Teşekkürler Thank you

18 July 2016

18 July 2016

5