

Risk adjustment for loss reserving by a Cost of Capital technique Bouke Posthuma and Eric Cator

GIRO Conference and Exhibition 2011

11-14 October 2011

Introduction

Fair Value of Liability

Liability Estimation

An example

Outline

Introduction

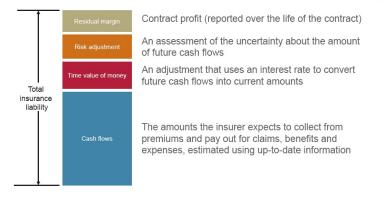
Fair Value of Liability

Liability Estimation

An example

◆□ > ◆□ > ◆三 > ◆三 > ○ ● ●

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで


Introduction

IAS Board: state of the art on Risk Adjustment

The proposals in the exposure draft

2

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

IAS Board: state of the art on Risk Adjustment

	ED proposal	Tentative decisions	
Residual margin	Objective		
Risk adjustment Time value of money	• "The maximum amount the insurer would rationally pay to be relieved of the risk that the ultimate cash flows exceed those expected."	 "The compensation the insurer requires to bear the risk that the ultimate cash flows could exceed those expected" 	
	Risk adjustment vs composite margin		
Cash flows	 Include explicit estimate of the effects of uncertainty about future cash flows. 	✓measurement of liability should include explicit risk adjustment	
To complete			
	 ? Revisit objective ? Whether to restrict permitted techniques ? Disclosures about risk adjustments ? Whether to take account of diversification benefits 		

Introduction	Fair Value of Liability	Liability Estimation	An example
000000000	0000	000000000000	000000000

Fair value = market value (price)

or

Fair value =

best estimate future cash flow adjusted for time value of money

plus

Market Value Margin

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Fair value as part of the subjective theory of value (Austrian school of economics)

Imagine two parties in a virtual exchange situation:

- The insurer who bears the risk taking
- A reinsurer who might take over that risk taking.

Fair value as part of the subjective theory of value (Austrian school of economics)

The *insurer* will consider the amount rationally being paid to be relieved of the total risk bearing (including the risk that the ultimate cash flows exceed those expected).

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Fair value as part of the subjective theory of value (Austrian school of economics)

The *reinsurer* who is willing to take over that total risk within the regulated world of Solvency II.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Fair value as part of the subjective theory of value (Austrian school of economics)

For the *reinsurer* a minimum value is calculated taking into account:

- the objective prerequisites of Solvency II, usually meaning a minimal reserve the reinsurer has to keep (VaR 99.5 %)
- the subjective earning goal expressed in its Cost of Capital rate
- using Integral Financial Modelling on two loss triangles (paid and incurred) for estimates of future payments

What is Integral Financial Modelling (IFM)

A combined stochastic model for paid and incurred run-off tables that provides an excellent tool for modern risk and capital management.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Introduction	Fair Value of Liability	Liability Estimation	An example
000000000	0000	00000000000	000000000

The remainder of this presentation consists of two parts:

 We will first discuss how this Fair Value of liability might be determined

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

 Next, we will discuss how IFM estimates the probability distribution of future payments. Fair Value of Liability

Liability Estimation

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Fair Value of Liability

Introduction	Fair Value of Liability	Liability Estimation	An example
000000000	0000	000000000000	000000000

Let $B(t_1, t_2)$ denote the future payments in $[t_1, t_2]$ and suppose we have

• a function b(t) such that

$$\mathbb{E}B(t_1,t_2)=\int_{t_1}^{t_2}b(s)\,ds$$

• a function V(t) such that

$$\mathbb{P}(B(t,\infty) \geq V(t)) = 0.995.$$

Note At time *t* the insurer must have a minimal reserve equal to V(t). This part of his capital cannot be used to yield more than the risk-free rate.

Introduction	Fair Value of Liability	Liability Estimation	An example

Now suppose the liability is tranferred to a reinsurer. Denote

- *R_f* risk free rate
- R_t total rate = $R_{coc} + R_f$

The reinsurer's capital E(t) satisfies

$$\frac{dE}{dt} = (E(t) - V(t))R_t(t) + V(t)R_f(t) - b(t)$$

subject to the boundary condition $E(\infty) = 0$. Solving this differential equation, we find

$$E(t) = \int_t^\infty \left(V(s)(R_t(s) - R_f(s)) + b(s) \right) \exp\left(- \int_t^s R_t(u) \, du \right) \, ds.$$

and in particular, we find the Fair Value E(0).

Introduction	Fair Value of Liability	Liability Estimation	An example

Interpretation

$$E(t) = \int_t^\infty \left(V(s) R_{coc} + b(s) \right) \exp \left(- \int_t^s R_t(u) \, du \right) \, ds.$$

Since the reinsurer invests her capital at the risky rate $R_t(t)$, a payment made at time $s \ge t$ (so in our setup this would be b(s) ds), should be discounted using the rate R_t . This leads to a discounted total future payment at time *t* of

$$\int_t^\infty b(s) \exp\left(-\int_t^s R_t(u) \, du\right) \, ds.$$

◆□ > ◆□ > ◆□ > ◆□ > ◆□ > ◆□ > ◆□ >

Introduction	Fair Value of Liability	Liability Estimation	An example

Interpretation

$$E(t) = \int_t^\infty \left(V(s) R_{coc} + b(s) \right) \exp \left(- \int_t^s R_t(u) \, du \right) \, ds.$$

Reserving V(s) means that the reinsurer can invest this capital only at the risk-free rate. This corresponds to a *loss* in the time interval *ds* equal to $V(s)R_{coc} ds$. This loss is then discounted at the risky rate, just like the payments:

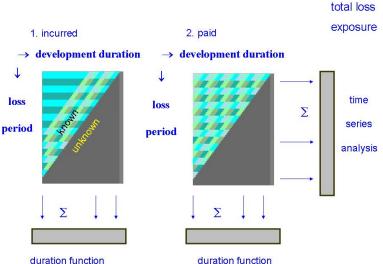
$$\int_t^\infty V(s) R_{coc} \exp\left(-\int_t^s R_t(u) \, du\right) \, ds.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Liability Estimation

Introduction	Fair Value of Liability	Liability Estimation	An example
000000000	0000	00000000000	000000000


Suppose our data consist of *two* loss triangles, namely paid and reported incurred, together with a measure for exposure.

Many methods and models have been developed for analyzing a single loss triangle.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

We model the paid and incurred *simultaneously*.

Picture of the model

Initial definitions

We will use the following notation to define our model for the paid and the incurred run-off tables.

I indicates the loss period.

k indicates the development period.

$$Y_{lk}^{(1)}$$
 indicates the incremental incurred.

 $Y_{lk}^{(2)}$ indicates the incremental paid.

Our goal is to model the vector $(Y^{(1)}, Y^{(2)})$, including all future values.

Auxiliary variables

We start with auxiliary independent Gaussian random variables:

$$egin{split} Z_{lk}^{(1)} &\sim \mathcal{N}\left(\mu_{lk}^{(1)}, \mathcal{V}_{lk}^{(1)}
ight) \ Z_{lk}^{(2)} &\sim \mathcal{N}\left(\mu_{lk}^{(2)}, \mathcal{V}_{lk}^{(2)}
ight) \end{split}$$

Now, define the event

$$R = \left\{ \sum_{k} Z_{lk}^{(1)} = \sum_{k} Z_{lk}^{(2)} \quad (\forall I) \right\}.$$

This says that for each loss period, the total amount incurred equals the total amount paid.

Introduction	Fair Value of Liability	Liability Estimation	An example

Final step

Finally we define the incremental losses by

$$Y^{(1)} \sim Z^{(1)} \mid R$$

 $Y^{(2)} \sim Z^{(2)} \mid R$

This means that $(Y^{(1)}, Y^{(2)})$ is normally distributed, and that the row sums of the two tables are always equal.

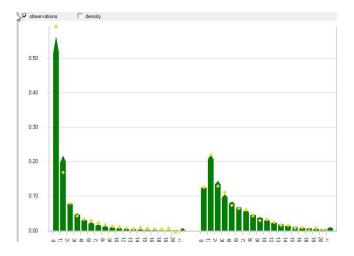
The parameters in this model are given by $\mu_{lk}^{(i)}$ and $V_{lk}^{(i)}$ for i = 1, 2. We should reduce the number of parameters.

Introduction	Fair Value of Liability	Liability Estimation	An example
000000000	0000	00000000000	0000000000

Product structure of parameters

We choose the following product structure for our parameters:

$$\mu_{lk}^{(i)} = W_l e^{(X_{\alpha})_l} \Pi_k^{(i)} \quad (i = 1, 2)$$
$$V_{lk}^{(i)} = \sigma^{(i)} W_l e^{(X_{\alpha})_l} \tilde{\Pi}_k^{(i)} \quad (i = 1, 2)$$


- W_l is the exposure measure for loss period *l*.
- Xα is a linear model for the loss ratios, with design matrix
 X and parameter vector α.
- Π⁽ⁱ⁾ and Π⁽ⁱ⁾ distribute the total expectation, respectively variation, over all development periods:

$$\sum_{k} \Pi_{k}^{(i)} = \sum_{k} \tilde{\Pi}_{k}^{(i)} = 1 \quad (i = 1, 2).$$

σ⁽ⁱ⁾ (i = 1, 2) are parameters used to tune the total
 variation.

Introduction	Fair Value of Liability	Liability Estimation	An example
000000000	0000	000000000000	0000000000

Example of parametric development curves

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ 釣べ⊙

Data and estimation

The data usually consist of aggregated cells of the two run-off tables. We allow for any kind of aggregation given by some zero-one selection matrix *S*. So if $Y = (Y^{(1)}, Y^{(2)})$, our data is given by *SY*.

Note that SY is still normally distributed, with a known distribution, given the parameters. Therefore we can use Maximum Likelihood to estimate all the parameters.

Also prediction is relatively easy, since Y | SY is again normally distributed. This structure makes our model very flexible. For a more detailed description, see "Combined analysis of Paid and Incurred Losses", CAS e-forum, Fall 2008.

Fair Value of Liability

Liability Estimation

An example

Example of aggregation

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Introduction	Fair Value of Liability	Liability Estimation	An example

We have demonstrated that our joint model for paid and incurred losses performs very well on actual data.

Moreover, our model has several important advantages in managing "difficult" data:

- 1. It is flexible in aggregating various data sets and in handling aggregation levels of the input data.
- 2. It handles loss triangles with missing cells with ease.
- 3. It incorporates in a proper way negative data coming from negative adjustments to losses.

(ロ) (同) (三) (三) (三) (三) (○) (○)

Implementation of Fair Value

We have the joined distribution of all future payments per loss period and per settlement period, conditioned on the data. If we denote $[t_{i-1}, t_i]$ as the *i*th period after the current date t = 0, we know the distribution of

$$B(t_{i-1},t_i)=\int_{t_{i-1}}^{t_i}b(s)\,ds.$$

This directly leads to an estimate of $V(t_{i-1})$. We could then assume that *V* and *b* are constant functions on each interval $[t_{i-1}, t_i]$. Calculating the Fair Value will then be straightforward from

$$E(t) = \int_t^\infty \left(V(s) R_{coc} + b(s)
ight) \exp \left(- \int_t^s R_t(u) \, du
ight) \, ds.$$

(日) (日) (日) (日) (日) (日) (日)

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Conclusion

Subjective theory of valuation together with our Integral Financial Modelling software leads straightforward to an Adjusted Loss Provision in agreement with the starting points of Solvency II and IFRS.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

An example

Line of Business: Professional Liability (claims made) Two loss Triangles: Incurred (reported) and Paid.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Data structure (accounting by loss period)

Incurred:

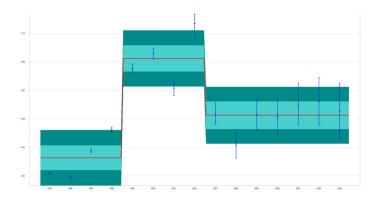
- year by year from 1995Q1
- quarter by year from 2004Q1

Paid:

quarter by quarter from 1995Q1.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

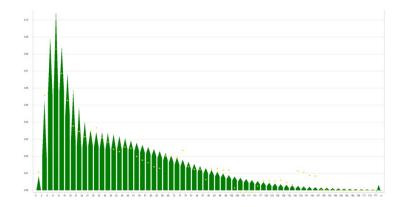
IFM one triangle analysis on paid to gain insight in:


- Loss ratio structure: Time series with regime changes at January 1999 and January 2003
- Structure Development Duration: Weibull-Gamma mixture

Fair Value of Liability

Liability Estimation

An example


Chart Time Series on Paid

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Introduction	Fair Value of Liability	Liability Estimation	An example
000000000	0000	000000000000	0000000000

Chart Development Duration on Paid

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ●臣 = の々で

Outcomes Adjusted Loss on one triangle

oss period	expected value	85% quantile	fair allocation of total quantile	IBNR	Risk Adjusted Loss F	Fair Allocation of Risk Adjusted Loss	Refresh Solve As
totals	23,851		28,521	(1,067)		28,480	U:
1995	0	4	2	2	1	1	Cash Flow
1996	3	19	11	(88)	5	5	Ultimate Loss Prediction
1997	7	40	24	(63)	14	12	Actuarial Loss Provision
1998	15	69	43	37	30	26	IFRS
1999	65	148	108	61	92	84	Completed Table
2000	120	235	180	(638)	164	151	Loss Reconciliation
2001	211	363	290	253	277	257	Solvency
2002	373	582	481	157	476	445	12 months aggregate
2003	565	924	751	(230)	747	692	
2004	1,286	1,963	1,637	651	1,669	1,551	85 % probability
2005	2,217	3,211	2,732	656	2,850	2,652	include future
2006	3,280	4,563	3,945	307	4,204	3,911	I Include tuture
2007	4,324	5,840	5,110	(158)	5,564	5,165	Yield_DNB 31_08 Yield file
2008		7,477	6,621	(1,573)	7,299	6,778	
2009q1 - 2009q3	5,685	7,422	6,585	(439)	7,269	6,752	January start month
							4 % cost of capital

IFM projection on combined Incurred and Paid triangle

loss period	expected value	95% quantile	fair allocation of total quantile	IBNR	Risk Adjusted Loss	Fair Allocation of Risk Adjusted Loss	Refresh A Solve As
totals	23,343		27,578	(2,010)		27,878	🗖 Us
1995	2	64	28	28	6	5	Cash Flow
1996	43	170	96	(3)	62	56	Ultimate Loss Prediction
1997	48	205	114	27	83	72	Actuarial Loss Provision
1998	34	217	111	105	86	69	IFRS
1999	119	431	251	204	231	193	Completed Table
2000	396	754	547	(271)	572	508	Loss Reconciliation
2001	210	606	377	340	395	329	Solvency
2002	384	845	579	255	632	540	12 months aggregate
2003	687	1,214	910	(72)	1,016	891	
2004	1,079	1,839	1,400	414	1,571	1,381	95 % probability
2005	1,882	2,852	2,292	216	2,580	2,307	include future
2006	2,922	4,104	3,421	(216)	3,856	3,487	I include tuture
2007	4,079	5,473	4,668	(601)	5,261	4,792	Yield_DNB 31_08 Yield file
2008	5,792	7,417	6,478	(1,716)	7,294	6,697	
2009g1 - 2009g3	5,668	7,175	6,305	(720)	7,125	6,552	January start month
							4 % cost of capital

Summary of outcomes (1)

loss period	expected value Loss Provision	expected value LP discounted by Yieldcurve	Risk Adjusted Loss	Fair Allocation of Risk Adjusted Loss
totals	25,908	23,851		28,480
1995	0	0	1	1
1996	3	3	5	5
1997	7	7	14	12
1998	16	15	30	26
1999	68	65	92	84
2000	126	120	163	151
2001	221	211	276	257
2002	392	373	476	445
2003	597	565	747	692
2004	1,366	1,286	1,669	1,551
2005	2,372	2,217	2,850	2,652
2006	3,539	3,280	4,204	3,911
2007	4,715	4,324	5,564	5,165
2008	6,255	5,699	7,299	6,778
2009q1 - 2009q3	6,233	5,685	7,269	6,752
	IFM Projections on th	e paid triangle (Am	ounts in € 1,000)

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ ○ < ○

Summary of outcomes (2)

loss period	expected value Loss Provision	expected value LP discounted by Yieldcurve	Risk Adjusted Loss	Fair Allocation of Risk Adjusted Loss
totals	25,766	23,343		27,878
1995	2	2	6	5
1996	44	43	62	56
1997	50	48	83	72
1998	36	34	86	69
1999	127	119	231	193
2000	434	396	572	508
2001	226	210	395	329
2002	419	384	632	540
2003	758	687	1,016	891
2004	1,186	1,079	1,571	1,381
2005	2,077	1,882	2,580	2,307
2006	3,232	2,922	3,856	3,487
2007	4,512	4,079	5,261	4,792
2008	6,404	5,792	7,294	6,697
2009q1 - 2009q3	6,262	5,668	7,125	6,552
	IFM projections on Pa	id and Incurred (An	nounts in € 1,00	0)

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ ○ < ○

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Summary of outcomes (3)

		expected value LP		
	expected value Loss			Fair Allocation of Risk
loss period	Provision	Yieldcurve	Loss	Adjusted Loss
totals	(141)	(509)	· · · · · · · · · · · · · · · · · · ·	(602)
1995	2	2	5	4
1996	41	40	56	51
1997	43	41	69	60
1998	20	19	56	43
1999	59	54	139	109
2000	308	276	408	357
2001	5	(1)	119	72
2002	27	11	157	95
2003	161	122	269	199
2004	(179)	(207)	(98)	(169)
2005	(295)	(335)	(269)	(345)
2006	(307)	(358)	(348)	(424)
2007	(203)	(245)	(303)	(373)
2008	149	92	(5)	(81)
2009q1 - 2009q3	29	(18)	(143)	(200)
	Differences IFM proje	ctions (Amounts in	€ 1,000)	
	IFM[Incurred & Paid]	minus IFM [Paid]		

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Summary of outcomes (4)

In IAS Board terms:			
	IFM proje	cted on aid & Incurred	
	Paid triangle	combined	Difference
best estimate cash flow	25,908	25,766	(142)
time value of money	(2,057)	(2,423)	(366)
risk adjustment	4,629	4,535	(94)
Risk adjusted Loss (sum)	28,480	27,878	(602)

Introduction	
0000000000	

Conclusion

In this (well-managed) portfolio Risk Adjusted Loss amounts to about 17.5 % (expressed into the best estimate cash flow).

