

Data Analytics and Unstructured Data

Actuaries 2.0

David Brown, KPMG Gary Richardson, KPMG

13 June 2014

Empowering Underwriters

to listen to the whole data conversation

High volume, velocity, variety

New data streams

Need for Greater transparency

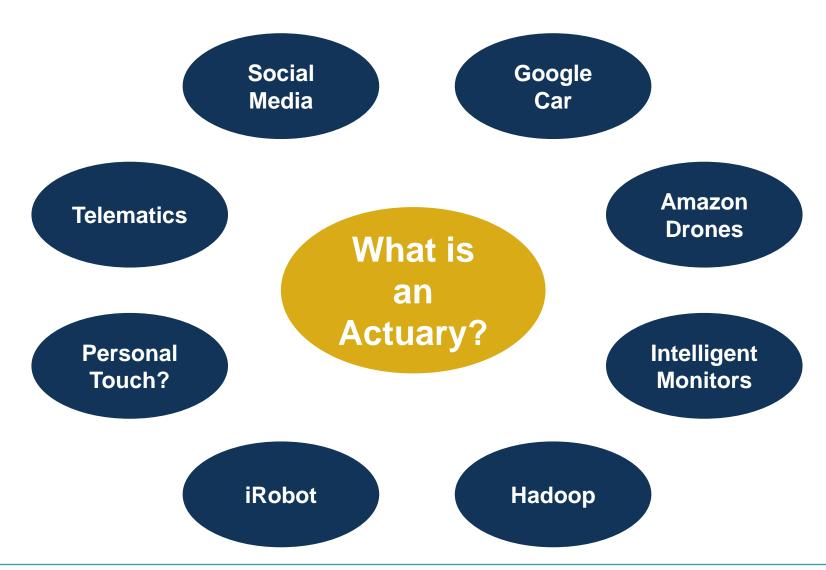
Better analytical tools

The amount of data is growing 40 times as fast as the world population 1,2

Traditionally, insurance companies have approached underwriting insights by using internal **structured data** from policy, claims and reinsurance applications. This data is enhanced with external structured data feeds such as census data and 3rd party credit scores.

Richer and more varied **unstructured data** sources are not exploited for their valuable underwriting information because:

- Organisational data silos are difficult and expensive to integrate
- Technology to analyse large diverse data has not been available
- 1. http://www.csc.com/insights/flxwd/78931-big_data_universe_beginning_to_explode
- 2. http://www.worldpopulationstatistics.com/population-rankings/world-population-by-year/

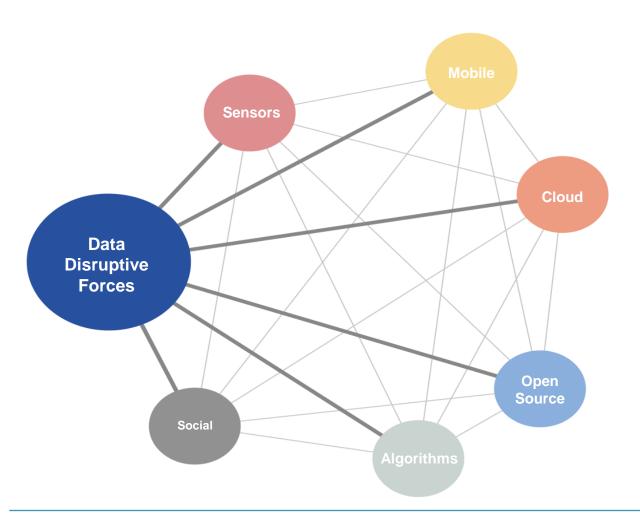

Diverse and scattered data across silos contain underwriting VALUE

Traditional data approaches are not UNLOCKING value

Technology is no longer a barrier to EXPLOITING data



Algorithms as a Service



- Data Platform enabling "War of the algorithms"
 - Platform means "Batteries Included"
 - Datasets are the currency
 - Common content accelerates competition
 - Standardised training data allows
 Algorithms to be directly compared
- Service consumers pick the winners

Data as a major disrupter

The disrupting forces

- Sensors enabling the streaming of data from the ambient environment
- Ubiquitous 3G/4G data connectivity
- Low cost, elastic, secure cloud compute and storage enabling the collection and connection of data
- Open Source software, innovative software solutions at lighting speed
- Data science driving Intimacy from Ambiguity
- Social data enabling enhanced customer understanding

Data Collaboration Platform Value

Leveraging new types of data

Geographic

Analyse location-based data to manage operations where they occur

Server Logs

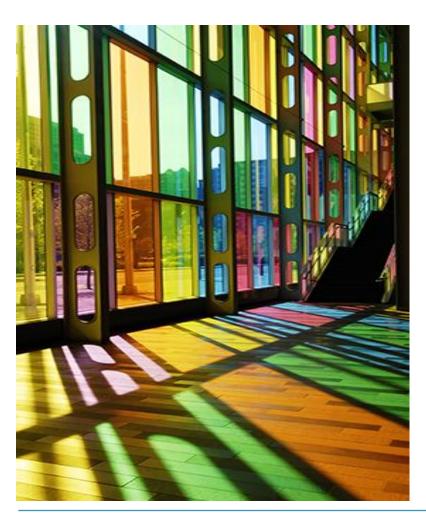
Research logs to diagnose process failures and prevent security breaches

Sentiment

Understand how customers feel about brand and products – right now

Unstructured

Understand patterns in files across millions of web pages, emails, and documents

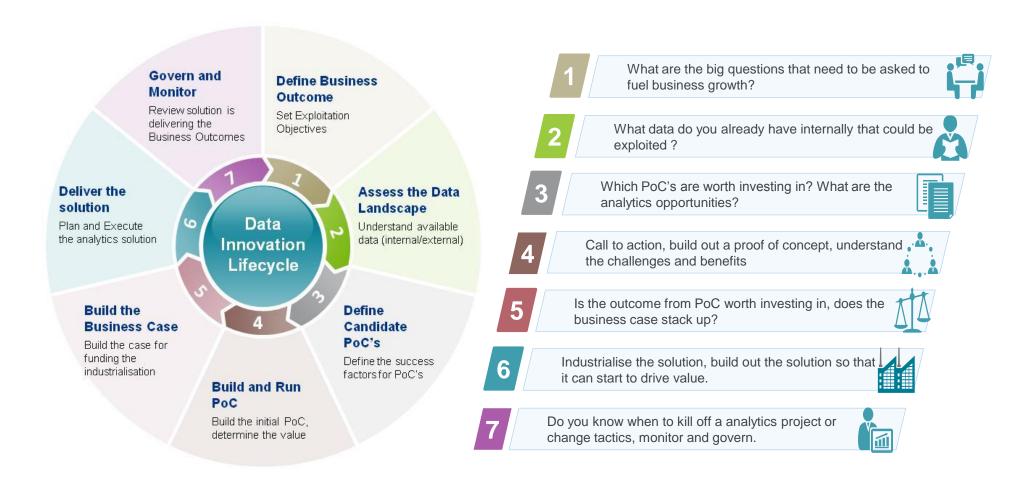

Streams

Discover patterns in data streaming automatically from remote sensors and machines

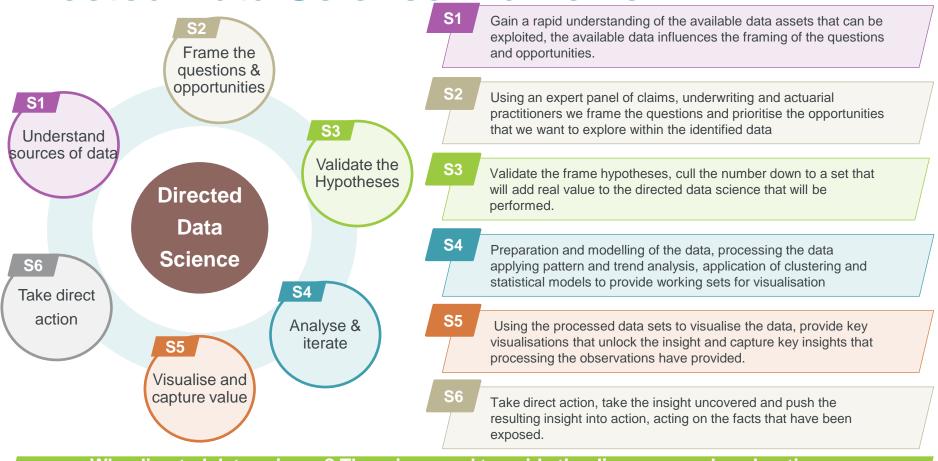
Data platforms are forming

- Increasingly we are seeing the formation of data platforms
- Driven by:
 - Data streams from Sensors
 - Ubiquitous Mobile connectivity
 - Evolving **Digital** Business
- Enabled by:
 - Compelling Visualisation
 - Scale of Hadoop
 - Low cost Cloud provisioning

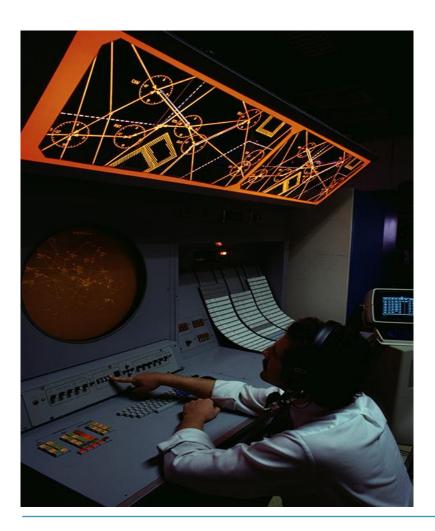
Data platforms as a marketplace


- Platforms are technology marketplaces
- Mobile operating systems are a good example:
 - Gave rise to the app marketplace
 - \$100 billion app economy in less than 7 years¹
- Data platforms as a business model:
 - Enable Marketplaces for data exploitation services
 - Have a buy-side and a sell-side
 - Has channels
 - Generates new and enhances existing revenue streams

^{1. &}lt;a href="http://appnationconference.com/main/research/">http://appnationconference.com/main/research/


Data Innovation Lifecycle

Directed Data Science Framework



Why directed data science? There is a need to guide the discovery and exploration, direction is given as to where to apply the data and algorithms based on a set of assumptions and hypothesis that are to be observed within the data.

What's a data scientist?

- The shopping list
 - A computer programmer
 - A statistician
 - A data visualisation expert
 - A machine learning expert
 - A data engineer
 - A subject matter expert
 - A database administrator
 - A Hadoop engineer
 - An actuary
- The reality?
 - You need to take a team approach
 - Each discipline is going to have to evolve

Actuary 1.0

Actuary 2.0

Hypothesis Generation – old world

Points for consideration

Additional pieces of information

- Location of claim
- Claims by Head of Damage
- Identify worst case for individual losses
- Point of underwriting
- Customer segmentation
- Risk appetite
- External market data

Potential Hypotheses to investigate

- Do certain customer segments have higher claim frequencies?
- Are older outstanding claims redundant?
- Outstanding claims remaining on settled claims?
- Are there any negative outstanding and paid claims?
- Do duplicate claims exist on the system?

Use of data in the pricing process

- Determine credibility weights in pricing depending on size of claims and claim experience on other exposures (e.g. liability)
- Separate identification of IBNR / IBNER by claim in pricing model to understand uncertainty
- Use market inflation rates to create as-if scenarios
- Tenure of policyholder

With new data there are more possibilities and opportunities.

Hypothesis Generation – new world

How does new forms of information change the characteristics of the risk?

- For motor insurance, details of 3 individuals who look similar on paper are given below.
- After each line of data update the risk ratings using the scale below:

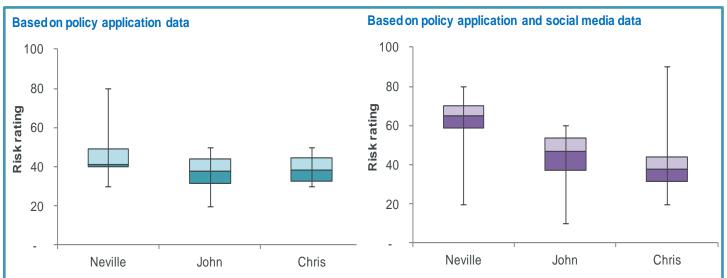
	Lower Risk	Risk Rating	Higher Risk
1			1
0			100

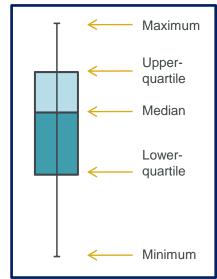
Policy application data				Risk Ratings			
Data	Neville	John	Chris	Neville	John	Chris	
Age	Mid 30s	Mid 30s	Mid 30s	50	50	50	
Driving Experience	14 years	15 years	11 years				
Car	BMW 5 Series	VW Golf	Vauxhall Insignia				

Hypothesis Generation

How does new forms of information change the characteristics of the risk?

Data from social media				Risk Ratings		
Neville	John	Chris		Neville	John	Chris
Wine producer – attends many wine tasting events	Sports fan – travels frequently for sports events	Technology enthusiast				
Drinks heavily	Regularly goes to the gym	Poor quality diet				
Spends a lot of time driving hire cars	Car enthusiast – knows cars and how they work	Not car savvy – couldn't turn off an automatic wiper in a car wash				
Seems to cover many miles via car	Drives to work – regularly drives on congested roads	Spends a lot of money on fuel – often travels very early in the morning				
Reasonably wealthy – middle class socio-economic position	Works in HR	Understands telematics and how they are used – seems financially astute				





Hypothesis Generation

How does new forms of information change the characteristics of the risk?

- Graphs below show the results of this exercise ran with 10 KPMG analysts.
- Results impacted by individual's perception of risk, leading to a range of values.

Social media

Data analytics for targeted marketing

Promotions

Push promotions

(low cost travel

Insurance)

through their

Social Media

Used Social Channels to

- Collect customer information
- Sharing platform to up sell insurance products
- Engagement platform to target potential customers

Outcomes

80,000 leads within 3 weeks, 58,000 users signed as friends/followers

Campaign

Digital Campaign Planning included:

- Product Offering
- Targeted Segment
- Digital Community Sourcing
- Campaign Design

Sharing

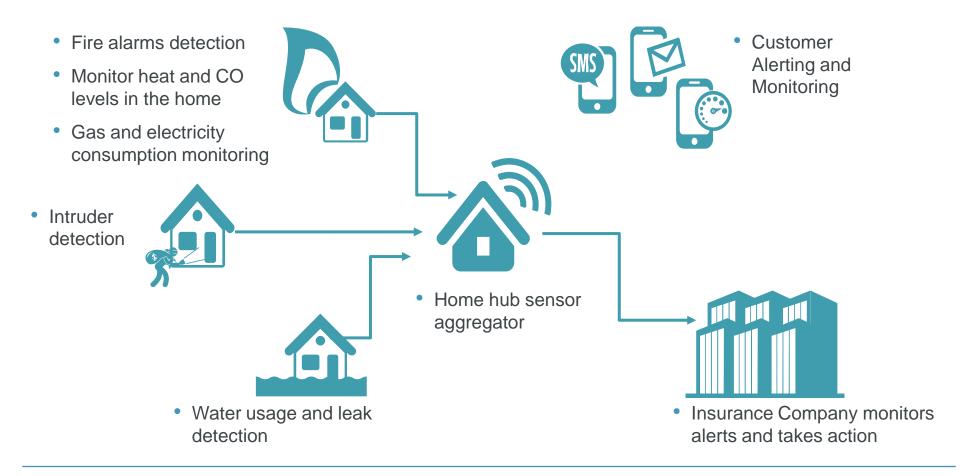
share links, offers with their friends, as well as share to other content.

Products

Other
Insurance
Product
offerings
can be found
on Social
Media

500 – 1,000 followers are added daily

Most important customer to target is the one with the most influence


300%
Improvement in Sales using Social Channels

Intelligent Monitors – Home Telematics

Home sensor network for peril detection and aggregation

KPING cutting through complexity

Telematics

Usage based Underwriting

Outcomes

Ability to stream
GPS and
Behavioural data in
real time of all
insured risks

External data such as traffic information adds greater insight

Cross sell of value add services such as First Response, Road Assist

Conclusions

- The data universe is expanding
- There is a revolution in algorithms and analysis
- There is a huge opportunity for actuaries to lead the charge in this new world, working with other disciplines
- Those not leading the charge will be left behind

Contact us

David BrownFinancial Risk Management,
Actuarial Services

T: +44 (0) 207 694 5981

M: +44 (0) 7775 004 758

E: david.brown@kpmg.co.uk

Gary RichardsonData Engineering, Technology Solutions

T: +44 (0) 207 311 4019

M: +44 (0) 7899 063 980

E: gary.richardson@kpmg.co.uk

The information contained herein is of a general nature and is not intended to address the circumstances of any particular individual or entity. Although we endeavour to provide accurate and timely information, there can be no guarantee that such information is accurate as of the date it is received or that it will continue to be accurate in the future. No one should act on such information without appropriate professional advice after a thorough examination of the particular situation.

© 2014 KPMG LLP, a UK limited liability partnership, is a subsidiary of KPMG Europe LLP and a member firm of the KPMG network of independent member firms affiliated with KPMG International Cooperative, a Swiss entity. All rights reserved.

The KPMG name, logo and "cutting through complexity" are registered trademarks or trademarks of KPMG International. June 2014.