

A New Approach to Risk-Neutral Scenarios

Parit Jakhria, Bahram Mirzai, and Ulrich Müller

Brief History of ESGs

Two Types of ESG

Risk Neutral

Purpose

Calculate Market Consistent
 Valuation of Liabilities

Traditional Models

Banking Models, arbitrage-free models

Pros

 Easy to satisfy accounting regulations by perfectly replicating market prices

Cons

- Unintended consequences, e.g. negative / exploding rates
- Limited availability of key market parameters, e.g. implied volatilities

Real World

Purpose

 Realistic dynamics of market prices and estimation of extreme events

Traditional Models

Statistical Models, Mean Reverting models

Pros

 Includes features of markets that management believes in, e.g. mean reversion, fat tails

Cons

May be difficult to get within required tolerance for market data

Outline

- Valuation in Insurance
- Real-World Features
- Risk-Neutral Puzzle
- A New Approach to RN and RW Scenarios

Types to Valuation

Two alternative valuation methods for assets and liabilities:

- "Realistic" valuation based on real-world scenarios
- Market-consistent valuation based on risk-neutral scenarios or other market-consistent techniques

	Re	eal-world		Market-consistent
Pro	•	abilities and distributions a factor values including tail	•	Expected values in line with markets at valuation time, including derivative markets
	suitable for risk capital assessr	mangement, economic ment	•	Theoretical solidity: martingale property eliminates all forms of risk premium
Con	from the market	ected value may deviate t value of a replicating asset arket-consistent	•	Unrealistic distributions such as strongly negative interest rates in risk-neutral scenarios
			•	Leading to erroneous triggering of Life insurance guarantees
			•	Risk assessment in terms of VaR or economic capital is not supported as distributions are not realistic

Application Areas of Valuation

- Current value of assets/liabilities, e.g. Market-Consistent Economic Value (MCEV)
- Value of assets/liabilities at a solvency horizon, typically after 1 year, e.g.
 Solvency II and Economic Capital

Nested stochastic is computationally not efficient, therefore the need for proxy modelling

Valuation Techniques Used

Approach	Cash-flow based	Portfolio based
MCEV	 Projected cash-flows (guarantees) depend on real-world scenarios MCEV of cash-flows is obtained using risk-neutral scenarios 	MCEV = initial market value of portfolio
Solvency	 Real-world scenarios for solvency period Starting at the conditions of each real-world end point: risk-neutral scenarios for conditional MCEV calculation → full distributions at the solvency horizon, risk and capital measures Cash flows depending on real-world economy (e.g. guarantees) may be inaccurate if risk-neutral scenarios used 	 Market-Consistent Capital required for an asset portfolio (which may also be a replicating liability portfolio) Real-world scenarios for solvency period Portfolio valuation based on these scenarios → full distributions at the solvency test horizon, risk and capital measures

Outline

EVMTech

- Valuation in Insurance
- Real-World Features
- Risk-Neutral Puzzle
- A New Approach to RN and RW Scenarios

Observed Features of Market Data

Realistic RW scenarios should exhibit those **features** that are observed in historical time series.

Feature	Description
Heavy tails	Tails of observed return data deviate from normal or lognormal behavior
Asymmetric tails	Negative returns often exhibit fatter tails than positive ones
Tail dependence	Observed dependencies suggest weaker dependence under normal market conditions but higher dependence under stressed market conditions
Mean reversion	Some variables exhibit mean reversion property, such as interest rate, inflation, or credit cycle
Volatility clusters	High volatility events tend to cluster in time, e.g. equity indices, FX rates
Absence of Arbitrage	Simulated scenarios should not allow for arbitrage opportunities, e.g. interest rate parity, positive forward rates
Stationarity	Invariance of statistical properties of the returns in time
Absence of autocorrelation	Autocorrelation of investable risk factor returns is insignificant

The course of economy is subject to **crises**. **Realistic** economic scenarios should represent both normal and stressed market conditions.

Tail Patterns

Heavy Tails

AsymmetricTails

CDF of Monthly Returns of MSCI UK (1970-2010)

CDF of Monthly Returns of MSCI US (1980-2010)

Dependency Patterns

Tail Dependence

Rank Correlation of Monthly Returns MSCI US and UK (1980-2010)

Mean Reversion and Clustering Patterns

Mean Reversion of Real Interest Rate Based on USD 10Y Treasury and US CPI

Volatilty Clusters: MSCI US annual moving average volatlity

Cyclicality of Credit Risk

Historical default rates & migrations exhibit co-movement with credit cycle

Data source: S&P

- Default and migration probabilities exhibit time dependence—credit cycle
- Defaults can be 10 times higher in bad years compared to good years
- Ratio of downgrades to upgrades can be **4 times higher** in bad years relative to good years

Reproducing Observed Features

- Risk-neutral scenarios will not reproduce these features, so they miss reality in many different aspects
- «Real-world» scenarios derived from RN scenarios by a simple addition of a risk premium are not sufficient to represent reality
- Real-world scenarios have to be generated such that they reproduce all the observed features
- This does **not** imply that the simulated RW scenarios are bound to reproducing historical behaviour only

Outline

EVMTech

- Valuation in Insurance
- Real-World Features
- Risk-Neutral Puzzle
- A New Approach to RN and RW Scenarios

The following elements fully determine the dynamics of RN scenarios:

Risk-free **yield** curves at valuation time

Implied volatility
surface at
valuation time

Correlation
between different
risk factors

Martingale property

Challenges of Risk-Neutrality (I)

Risk-free **yield** curves at valuation time

- Definition of "risk-free" reference required
- Government bond yields may be slightly negative (compatibility with swaption pricing)
- Forward rates in the long-term limit are illiquid
- Simple interest rate models (e.g. 1 short rate and 1 long rate) cannot render actual form of yield curve

Implied volatility
surface at
valuation time

- Implied volatility values available only for liquid options
- For illiquid markets or non-traded assets (real-estate, hedge funds) models or judgment are used
- Moneyness dimension of interest rate derivatives often neglected (flat smile)

Challenges of Risk-Neutrality (II)

Martingale property

- Martingale condition for all investment strategies satisfied approximately
- In practice, martingale property met only for simple investment strategies
- Martingale condition does not easily reconcile with mean reversion of interest rates
- Deriving RW scenarios from RN scenarios is not an obvious task

Correlation between different risk factors

- Correlations cannot be derived from derivative markets
- Therefore a correlation model or judgment is required
- Imposing correlations means adding more conditions to an already large set of conditions

Risk-Neutral Paradigm in Practice

- For many risk-factors, the notion of "market consistent" should be revised to "model or judgment consistent", in particular in case of:
 - Less traded combinations of strike price and expiry periods
 - Assets with no derivative markets such as property, hedge fund, private equity indices
 - Correlation parameters
 - Very volatile market data (often smoothed out for robustness of results)

- Martingale property satisfied only approximately (e.g. for 10k scenarios)
 - Well satisfied for static strategies or simple rollover strategies
 - Often not satisfied for strategies with more complex rollovers

Outline

EVMTech

- Valuation in Insurance
- Real-World Features
- Risk-Neutral Puzzle
- A New Approach to RN and RW Scenarios

Motivation

- Different aspects of valuation and risk assessment require real-world as well as risk-neutral scenarios
- Example—Life liabilities:
 - RW scenario values are used to check the trigger conditions of guarantees and to calculate the ensuing cash flows
 - The corresponding RN scenario values are then used for the market-consistent valuation of the cash flows

Generating Consistent RW and RN Scenarios

- Possible ways to generate consistent real-world and risk-neutral scenarios:
 - Generate RN scenarios → derive RW scenarios (sophisticated risk premium model)
 - Generate RW scenarios → derive RN scenarios (imposing martingale conditions)
 - Generate RW and RN scenarios through a joint algorithmic process
- Precondition for the discussed method: RW scenario generator

Different Approaches

Two prevailing approaches to transform RW to RN:

Adjusting Scenario Values

RW/RN Probabilities	RW Scena	ario	RN Scenario			
p_1	S_1	\longrightarrow	$\widetilde{S}_1 = \underline{S}_1 + \Delta \underline{S}_1$			
:	:		:			
p_n	S_n	\longrightarrow	$\widetilde{S}_n = \frac{S_n}{S_n} + \Delta S_n$			
□ Market replication: $\sum_{i=1}^{n} p_i DCF_{\text{Option}^k}(S_i + \Delta S_i) = \text{Market price of } Option^k$						
Ranking preservation: $CDF(S_i) = CDF(\widetilde{S}_i)$						

Adjusting Scenario Probabilities

RW/RN Scenario	RW Probability		RN Probability		
S_1	$p_1 = \frac{1}{n}$	\longrightarrow	$\tilde{p}_1 = \frac{1}{n} + \Delta p_1$		
$arepsilon_{n}$	$\frac{\vdots}{p_n = \frac{1}{n}}$	\rightarrow	$\tilde{p}_n = \frac{1}{n} + \Delta p_n$		
□ Market replication: $\sum_{i=1}^{n} \tilde{p}_i DCF_{\text{Option}^k}(S_i) = \text{Market Price Option}^k$					
□ Probability measure: $\sum_{i=1}^{n} \Delta p_i = 0$ □ Minimal distortion: $\min \sum_{i=1}^{n} \Delta p_i^2$ (2 nd order approx)					

From RW Scenarios to RN Scenarios

- The implied volatility surface determines the distributions of risk-neutral scenarios
- These distributions are used to construct risk-neutral scenarios from realworld ones
- The construction process keeps RW scenarios consistent with the corresponding RN scenarios
- The generated risk-neutral scenarios are:
 - Consistent with the volatility surface and market prices of derivatives
 - Consistent with correlation assumptions
 - Martingale conditions are fulfilled for simple and complex investment strategies with rollovers as far as a limited number of scenarios permits

Benefits of the Approach

- Consistency between RW and RN scenarios leads to consistency between asset and liability modeling
- RN scenarios inherit those features of RW that are not conflicting with martingale property
- Provides an intrinsic approach to construct RN scenarios for risk factors with no derivative markets
- Macro-economic variables e.g. GDP can be included in RW scenario sets
 - Regulators define stress scenarios in terms of macroeconomic variables
 - Firms perform portfolio valuation contingent to those stress scenarios
 - Stressed RN scenarios can be obtained through corresponding stressed RW scenarios