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Background

The ROC/GIRO Reserving Uncertainty Working Party reports 2007/2008 suggested that 
the upper tail of predictive distributions of outstanding liabilities may be underestimated.

This was considered in Section 9 and Appendix B of the 2007 report and a “key area” of 
the 2008 report.

The reports have never been published in a peer-reviewed journal.  Despite this, the 
results have generated some interest and are gaining credibility, for example:

“As shown by the ‘General Insurance Reserve Oversight Committee’, commonly used 
existing methods are inadequate to cover the full range of reserving variability.” 1

The FSA has also shown interest and is asking companies to comment on the potential 
underestimation where bootstrapping has been used2.

This presentation evaluates the evidence and sheds new light on the issues3.

(1) Source: Brooks et al (2009). Actuarial aspects of internal models for Solvency II (Appendix A, 17.3.1).  Presented to 
the Institute of Actuaries 23 Feb 2009.

(2) It is unclear whether the FSA actually believes the report, or is just using it as a way to ask insightful questions.

(3) We only consider Section 9 and Appendix B of the 2007 report and the “key areas” of the 2008 report.
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Key ROC/GIRO Working Party Questions
Assessing bootstrapping

When assessing the performance of stochastic reserving methods, the working party 
considered the following questions:

How well do stochastic reserving methods “predict” the upper tails when the claims 
generating process agrees with the underlying model?

How robust is the underlying stochastic reserving method when the claims generating 
process is different?

Obviously both questions are interesting, although we are only interested in question 1 in 
this presentation applied to bootstrapping, since it would indicate a potential flaw in the 
methodology.

[Question 2 is also interesting in practice, since we will never know for sure that the 
model is appropriate.]
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ROC/GIRO Working Party Method

1. Simulate 30,000 data sets where the future is known, consistent with the model 
assumptions

2. For each of the 30,000 data sets, consider only the “triangle” element (holding 
back the ‘true’ outstanding claims)

3. For each of the 30,000 triangles apply the stochastic method4, and record the 
percentile at which the ‘true’ value lies (amongst other statistics)

4. If the test is appropriate, then 1% of ‘true’ values should exceed the 99th

percentile

(4)  Where bootstrapping is used to obtain a predictive distribution, obtaining that percentile from the simulated results is 
straightforward. The WP used 1000 bootstrap iterations for the 2007 report, and tested 2000 iterations in the 2008 report.

Where a predictive distribution is not available, additional assumptions have to be made, for example, assuming the 
reserves are lognormally distributed – in that case the results will be dependent on the suitability (or otherwise) of that 
additional assumption.
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ROC/GIRO WP Findings
Over-dispersed Poisson model

The GIRO WP considered a special case of the over-dispersed Poisson model (constant 
scale parameter, chain ladder structure)
The 30,000 data sets were generated using “Algorithm B” (where Algorithm B supposedly 
satisfies the assumptions of the ODP model).
Using bootstrapping to obtain a predictive distribution (using England, 2002), 2.6% of true 
values were found to lie above the 99th percentile5, indicating potential under-estimation of 
the upper tail.

Should we be surprised?  Maybe.  Maybe not.  In the discussion of England & Verrall 
(2002), England says:

“Mr Murphy, Mr Sharma and Ms Cresswell mentioned extremes and taking care over the 
extremes of the predictive distribution.  I agree totally that the model assumptions should 
be scrutinised carefully if the main interest is in the extremes.”

But are the working party results correct?

(5) ROC/GIRO WP Report 2007/Section B2.4.3 and 2008/Table 2-3
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ROC/GIRO WP Findings
Mack’s model

The GIRO WP did not bootstrap Mack’s model (even though it is possible to bootstrap in a 
way that is consistent with Mack’s model6)
10,000 data sets were generated (repeatedly) using “Algorithm A”, (where Algorithm A 
supposedly “perfectly” satisfies the assumptions of Mack’s model).
Applying Mack’s method to obtain a mean and standard deviation of the forecast, then 
assuming the forecast is lognormally distributed, around 10% of true values were found to 
lie above the 99th percentile7, indicating potential under-estimation of the upper tail.
Obviously this is quite surprising.  In fact, it is so surprising that the WP decided to try it 
again:

“To provide a final comprehensive check, another member of the WP … carried out a 
completely independent simulation exercise… For the independent exercise, Mack’s 
method and Algorithm A were implemented…”

“… Having obtained essentially the same results in two quite separate and independent 
simulation exercises, we are confident that these results are genuine.”

“It is beyond the scope of this paper to definitively explain where Mack’s method goes 
wrong…”

But are the working party results correct?

(6) England & Verrall (2006)

(7) ROC/GIRO WP Report 2007 Table B-4
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EMB Research

Given the working party findings, we had some key questions:

Can we replicate the WP findings under their parameters?

Can we suggest why the WP findings may have arisen?

If so, can we suggest alternative methodologies that eliminate or ameliorate the 
issues?

Is the test itself valid?  That is, under the test procedure, do we expect, for 
example, 1% of ‘true’ values to lie above the 99th percentile of the forecast?
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Some background on what we’d expect to see

Let’s assume the test is valid for the 
moment.
The test looks at the proportion of 
simulated data sets for which the 
(bootstrapped) projected xth percentile is 
exceeded by the (simulated) true future 
outstanding
Plotting this for all percentiles, with the xth

percentile on the x-axis, and the 
(equivalent) proportion of simulations 
where the “true” outstanding is less than 
the projected xth percentile should give a 
uniform distribution, Y=X
Effectively this is plotting the CDF of the 
distribution function Pr(“true outstanding”< 
xth percentile) for 0<x<100%
But how does the Y=X line change as we 
violate the uniformity assumption?
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Some background on what we’d expect to see

According to the test the CDF of 
the proportion of “true”
outstandings below the 
projected percentile should be 
uniform, Y=X (shown in blue)

The green line shows the 
impact of changing from the 
true distribution (assumed to be 
Normal(8,1) for this simple 
example, to one with a biased 
mean below the true mean, with 
the correct standard deviation, 
(assumed to be Normal(7.8,1) 
for this simple example) 0%
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Some background on what we’d expect to see

According to the test the CDF of 
the proportion of “true”
outstandings below the 
projected percentile should be 
uniform, Y=X (shown in blue)

The green line shows the 
impact of changing from the 
true distribution (assumed to be 
Normal(8,1) for this simple 
example, to one with a biased 
mean above the true mean, 
with the correct standard 
deviation, (assumed to be 
Normal(8.2,1) for this simple 
example)
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Some background on what we’d expect to see

According to the test the CDF of 
the proportion of “true”
outstandings below the 
projected percentile should be 
uniform, Y=X (shown in blue)

The green line shows the 
impact of changing from the 
true distribution (assumed to be 
Normal(8,1) for this simple 
example), to one with the 
correct mean, but a biased 
standard deviation below the 
true value, (assumed to be 
Normal(8,0.8) for this simple 
example)
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Some background on what we’d expect to see

According to the test the CDF of 
the proportion of “true”
outstandings below the 
projected percentile should be 
uniform, Y=X (shown in blue)

The green line shows the 
impact of changing from the 
true distribution (assumed to be 
Normal(8,1) for this simple 
example), to one with the 
correct mean, but a biased 
standard deviation above the 
true value, (assumed to be 
Normal(8,1.2) for this simple 
example)
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Some background on what we’d expect to see

According to the test the CDF of 
the proportion of “true”
outstandings below the 
projected percentile should be 
uniform, Y=X (shown in blue)
The green line shows the 
impact of changing from the 
true distribution (assumed to be 
Normal(8,1) for this simple 
example), to one with the 
correct mean, and the correct 
standard deviation, but too 
much skewness, (assumed to 
be a Lognormal distribution with 
a mean of 8 and a standard 
deviation of 1 for this simple 
example)
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Bootstrapping the ODP model

ROC/GIRO WP Parameters
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Over-dispersed Poisson model
ROC/GIRO WP ‘Algorithm B’

1. The ultimate number of claims in an origin year is generated by random sampling from a Poisson 
distribution (same parameters for each origin year, but independent sampling)

2. Each claim is assumed to be settled by a single payment, and the development year of the payment 
determined by independent random sampling from a multinomial distribution (same parameters for 
each origin year)

3. The amount of each individual claim payment is determined by independent random sampling from a 
lognormal distribution (same parameters in each cell of the triangle)

4. The amounts of claims settling in the upper left triangle of the run-off array are accumulated to create 
this run-off triangle, and all claim amounts … are accumulated to obtain the ‘true’ ultimate position for 
each origin year.

Notes: 

The method is designed to simulate incremental claim amounts where the variance in each cell is 
proportional to the mean.  The constant of proportionality is called the scale parameter.

The parameters used were not shown in the 2007 report, but are available in the 2008 report.

The ROC/GIRO WP only considered the special case of the ODP model with a constant scale 
parameter for all development years
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Over-dispersed Poisson model
EMB Analysis

EMB repeated the analysis:

Using Algorithm B and the WP parameters

Using a modified version of Algorithm B with non-constant scale parameters

Using an alternative data generation algorithm for the ODP with varying scale 
parameters, and non-parametric bootstrapping

Using an alternative data generation algorithm for the ODP with varying scale 
parameters, and parametric bootstrapping

EMB used 30,000 generated data sets and 10,000 bootstrap iterations on each 
data set

The ROC/GIRO WP used 1000 bootstrap iterations in the 2007 report, and tested 2000 
iterations in the 2008 report.



© 2009 EMB. All rights reserved. Slide 17

Over-dispersed Poisson model
EMB Analysis

Using Algorithm B and the WP 
parameters

We obtain similar results to the 
WP in the upper tails
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Over-dispersed Poisson model
EMB Analysis

Using a modified version of 
Algorithm B, with non-constant 
scale parameters 

The lognormal parameters were 
selected such that the coefficient 
of variation of the sum of 
payments in each cell is constant 
for all cells, but the scale 
parameter depends on 
development period

The proportion exceeding the 
99th percentile is now a little 
lower

2.32% chance of 
exceeding projected 

99th percentile
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Over-dispersed Poisson model
EMB Analysis

Using an alternative algorithm for the 
ODP with varying scale parameters and 
non-parametric bootstrapping

Given the mean and standard 
deviation of total payments in each 
cell, simulate from a Gamma 
distribution with parameters selected 
to give the target mean and variance

This is a simple method and in the 
spirit of the ODP generalised linear 
model, which simply specifies the first 
two moments

[Note: we could simulate from a 
Poisson with expected value equal to 
the target mean divided by the scale 
parameter, then multiply the result by 
the scale parameter.  However this 
gives a very ‘lumpy’ distribution.] 0.99% chance of 

exceeding projected 
99th percentile
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Over-dispersed Poisson model
EMB Analysis

Using an alternative algorithm for the 
ODP with varying scale parameters and 
parametric bootstrapping

Given the mean and standard 
deviation of total payments in each 
cell, simulate from a Gamma 
distribution with parameters selected 
to give the target mean and variance
When applying the bootstrap 
procedure to each data set, estimate 
the residuals and scale parameters in 
the usual way, but instead of 
resampling the residuals and inverting 
to give pseudo data, generate the 
pseudo data directly from a 
parametric distribution, given the 
mean and variance characteristics.  
We used a Gamma distribution for 
this purpose.
Note that the scale parameters (and 
hence residuals) are still required 
when using the parametric bootstrap

0.96% chance of 
exceeding projected 

99th percentile
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Bootstrapping the ODP model

EMB Data generation method

Taylor & Ashe Data
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Taylor & Ashe Data
Observed incremental values

1 2 3 4 5 6 7 8 9 10

1 357,848 766,940 610,542 482,940 527,326 574,398 146,342 139,950 227,229 67,948

2 352,118 884,021 933,894 1,183,289 445,745 320,996 527,804 266,172 425,046

3 290,507 1,001,799 926,219 1,016,654 750,816 146,923 495,992 280,405

4 310,608 1,108,250 776,189 1,562,400 272,482 352,053 206,286

5 443,160 693,190 991,983 769,488 504,851 470,639

6 396,132 937,085 847,498 805,037 705,960

7 440,832 847,631 1,131,398 1,063,269

8 359,480 1,061,648 1,443,370

9 376,686 986,608

10 344,014

Dev Factors 3.49061 1.74733 1.45741 1.17385 1.10382 1.08627 1.05387 1.07656 1.01772 1.00000



© 2009 EMB. All rights reserved. Slide 23

Taylor & Ashe Data
Fitted incremental values (chain ladder model)

1 2 3 4 5 6 7 8 9 10 Reserve

1 270,061 672,617 704,494 753,438 417,350 292,571 268,344 182,035 272,606 67,948 0

2 376,125 936,779 981,176 1,049,342 581,260 407,474 373,732 253,527 379,669 94,634 94,634

3 372,325 927,316 971,264 1,038,741 575,388 403,358 369,957 250,966 375,833 93,678 469,511

4 366,724 913,365 956,652 1,023,114 566,731 397,290 364,391 247,190 370,179 92,268 709,638

5 336,287 837,559 877,254 938,200 519,695 364,316 334,148 226,674 339,456 84,611 984,889

6 353,798 881,172 922,933 987,053 546,756 383,287 351,548 238,477 357,132 89,016 1,419,459

7 391,842 975,923 1,022,175 1,093,189 605,548 424,501 389,349 264,121 395,534 98,588 2,177,641

8 469,648 1,169,707 1,225,143 1,310,258 725,788 508,792 466,660 316,566 474,073 118,164 3,920,301

9 390,561 972,733 1,018,834 1,089,616 603,569 423,113 388,076 263,257 394,241 98,266 4,278,972

10 344,014 856,804 897,410 959,756 531,636 372,687 341,826 231,882 347,255 86,555 4,625,811

Total 18,680,856
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Taylor & Ashe Data
Scaled residuals : ODP with constant scale parameter

1 2 3 4 5 6 7 8 9 10

1 0.737 0.501 -0.488 -1.359 0.742 2.272 -1.027 -0.430 -0.379 0.000

2 -0.171 -0.238 -0.208 0.570 -0.775 -0.591 1.099 0.110 0.321

3 -0.585 0.337 -0.199 -0.094 1.008 -1.760 0.903 0.256

4 -0.404 0.889 -0.804 2.325 -1.704 -0.313 -1.142

5 0.804 -0.688 0.534 -0.759 -0.090 0.768

6 0.310 0.260 -0.342 -0.799 0.939

7 0.341 -0.566 0.471 -0.125

8 -0.701 -0.436 0.860

9 -0.097 0.061

10 0.000

Scale^0.5 229.3 229.3 229.3 229.3 229.3 229.3 229.3 229.3 229.3 229.3
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Taylor & Ashe Data
Scaled residuals : ODP with constant scale parameter

Development Residuals (Scaled, Bias-Adjusted, Zero-Average) With Scale Values
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Results using:

constant scale parameter 

non-parametric bootstrapping
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Taylor & Ashe Data
Scaled residuals : ODP with non-constant scale parameter

1 2 3 4 5 6 7 8 9 10

1 1.207 0.808 -0.731 -0.980 0.602 1.348 -0.794 -1.176 -0.873 0.000

2 -0.280 -0.383 -0.312 0.411 -0.629 -0.350 0.849 0.299 0.740

3 -0.958 0.544 -0.299 -0.068 0.818 -1.045 0.698 0.701

4 -0.662 1.433 -1.206 1.676 -1.383 -0.186 -0.883

5 1.317 -1.109 0.800 -0.548 -0.073 0.456

6 0.509 0.419 -0.513 -0.576 0.762

7 0.559 -0.913 0.706 -0.090

8 -1.149 -0.702 1.288

9 -0.159 0.099

10 0.000

Scale^0.5 139.9 142.3 153.0 318.1 282.6 386.6 296.7 83.9 99.6 83.9
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Taylor & Ashe Data
Scaled residuals: ODP with non-constant scale parameter

Development Residuals (Scaled) With Scale Values
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Taylor & Ashe Data
A note on the data generation method

It should be obvious that given the data generation method, the standard deviation of the 
simulated ‘true’ forecast should match the process error calculated analytically for the same 
model.  This was checked:

Year Analytic Simulated

2 70,554 70,553

3 157,153 157,098

4 193,204 193,291

5 227,610 227,703

6 273,250 272,132

7 338,448 338,832

8 454,107 455,043

9 474,426 474,696

10 493,279 492,863

Total 976,199 987,979

ODP with constant scale
Year Analytic Simulated

2 25,802 25,802

3 66,216 66,206

4 77,830 77,870

5 187,017 186,976

6 306,709 306,114

7 390,567 390,542

8 561,627 561,663

9 534,951 535,090

10 519,047 519,142

Total 1,076,408 1,078,480

ODP with non-constant scale
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Using the ROC/GIRO WP parameters and test procedure, the proportion of ‘true’ values 
above the 99th percentile are:

ODP constant scale, non-parametric, “Algorithm B”: 2.86%

ODP non-constant scale, non-parametric, modified “Algorithm B”: 2.32%

ODP non-constant scale, non-parametric, EMB data generation method: 0.99%

ODP non-constant scale, parametric, EMB data generation method: 0.96%

Using the Taylor & Ashe data, EMB data generation method, the proportion of ‘true’ values 
above the 99th percentile are:

ODP constant scale, non-parametric: 1.54%

ODP constant scale, parametric: 1.25%

ODP non-constant scale, non-parametric: 1.37%

ODP non-constant scale, parametric: 1.06%

Over-dispersed Poisson model
Summary of Findings
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Over-dispersed Poisson model
Recommendations 1

For the ODP model, we recommend using non-constant scale parameters

This is analogous to using varying alpha parameters in Mack’s model

Some people have tried to avoid the heteroskedasticity issues by sampling residuals 
from different sections of the residuals triangle, but this is not ideal – a fundamental 
principle of bootstrapping is that the “observations” being re-sampled are iid, and 
standardising using non-constant scale parameters is a way of achieving this.

England & Verrall have tried to highlight this:

“This paper only considers the special case of a constant dispersion parameter ϕ.  Evidence of 
heteroskedasticity would require extensions to the approach … The dispersion parameters would 
need to be included in the residual definition …” - England (2002)

“The restriction that the scale parameter is constant for all observations can be relaxed.  It is 
common to allow the scale parameters to depend on development period …”

“We recommend using non-constant scale parameters (or at least checking the assumption that 
using a constant scale parameter is appropriate)…” - England & Verrall (2006)
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Over-dispersed Poisson model
Recommendations 2

We also recommend investigating parametric bootstrapping

In some ways, the common approach of using a non-parametric approach for 
bootstrapping (parameter uncertainty), then a parametric distribution at the forecasting 
stage (to include process uncertainty) is a little inconsistent.

Using non-parametric bootstrapping of residuals, the pseudo-data extremes are 
naturally limited by the extremes of the residuals (although the effect of this will reduce 
as triangle size increases)

Using an appropriate parametric approach, this issue is ameliorated

[For a given triangle however, there is no guarantee that a parametric approach will be 
more extreme]

For further information, see Björkwall et al 2008.
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ROC/GIRO WP Findings
Over-dispersed Poisson model

Another issue mentioned by the WP was the 
possibility of obtaining negative pseudo 
incremental values when using non-parametric 
bootstrapping (resampling residuals), which 
could in turn lead to negative pseudo cumulative 
values.
This is a known issue with non-parametric 
bootstrapping. For example:

“Although the [non-parametric] bootstrap/ simulation 
procedure provides prediction errors that are consistent 
with their analytic counterparts, the predictive distribution 
produced in this way might have some undesirable 
properties. For example, for some origin year reserves, 
the minimum values of the predictive distribution could be 
negative.” 8

“It [non-parametric bootstrapping] is not without its 
difficulties, for example: a small number of sets of 
pseudo data may be incompatible with the underlying 
model…” 9

(8) England (2002)

(9) England & Verrall (2006)
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This issue disappears with parametric bootstrapping
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Bootstrapping Mack’s model
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Mack’s model (1993/4)
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Note there are no parameters for the 
variance in the first development period, 
so is it really a model of the cumulative 
amounts?

Note also that the cumulative value in the 
first development period for the most 
recent origin period (bottom left of a run-off 
triangle) contributes nothing to the 
parameter estimation.  It is only required to 
set a level for forecasting

In practice, the αk parameters decrease 
rapidly as the cumulative values increase 
by development period
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Mack’s model
ROC/GIRO WP ‘Algorithm A’

1. Decide on values of the parameters fk and αk: the values we used are given in Table B-1 
2. For each origin year j, generate a value for Cj1 (representing the amount paid in the first development 

year). Mack’s assumptions say nothing about how these values are generated so we are free to use 
any method.  We used random sampling from a lognormal distribution: the same lognormal distribution 
for all years (mean = variance =1) but independent random sampling for each origin year.

3. For each origin year, generate Cjk (for k>1) recursively using Mack’s assumptions. We generated Cj,2
from a shifted lognormal distribution that gives values greater than Cj,1, with mean equal to f1Cj,1 and 
variance equal to α1

2Cj1… We continued recursively in this way … until we obtained a value for Cj,10, 
which is the ‘true’ ultimate figure for origin year j…

4. The triangle was then constructed by discarding the lower right part of the development array (the Cj,10
values were kept as the ‘true’ ultimates for comparison with estimates produced by applying Mack’s 
method to the upper left triangle)

Notes: 

The items highlighted in red are heroic assumptions.

Table B-1
Dev yr k 1 2 3 4 5 6 7 8 9
f(k ) 4.289 2.064 1.502 1.268 1.15 1.085 1.048 1.027 1.015
alpha(k ) 1 1 1 1 1 1 1 1 1

Note that the α parameters are constant, but in practice they decrease rapidly
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Mack’s model
EMB Analysis

Instead of trying to explain where 
“Mack’s method goes wrong”, we 
focussed on the alternative 
explanation that Algorithm A is wrong

Understanding Mack’s model is not 
straightforward however

It is essential to consider the 
estimation and forecasting 
components separately

For estimation, it is actually a model 
of the ratios (see Mack 1999, England 
& Verrall 2002, and England & Verrall 
2006)
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As a model of the ratios, there is no need for a variance parameter α for the cumulatives in the 
first development period

As a GLM, Mack’s estimators for f and α are obtained assuming the ratios f are normally 
distributed with weights w (see England & Verrall 2002/2006)

In a GLM context, the weights are considered fixed and known
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Mack’s model
EMB data generation process (using the Taylor & Ashe data)

1. Given the Taylor & Ashe data, obtain parameters fk and αk, and expected cumulative values 
2. Use the expected cumulative values as weights wjk for j=1..n and development year k=1..n-j+1. The 

weights are then considered fixed and known.
3. For estimation: For each origin year j for j=1..n-1 and development year k=1..n-j, simulate ratios Fjk

assuming:

4. For forecasting: For each origin year, generate Cjk (for k>n-j+1) recursively using Mack’s assumptions. 
We generated Cj,k+1 from a normal distribution, with mean equal to fkCj,k and variance equal to αk

2Cj,k. 
We continued recursively in this way, until we obtained a value for Cj,10, which is the ‘true’ ultimate 
figure for origin year j.  Note that Cj,n-j+1 is deterministic, and C10,1 is only ever used at the forecasting 
stage. The Cj,10 values were kept as the ‘true’ ultimates for comparison with estimates produced by 
bootstrapping Mack’s method in step 5.

5. The triangle of ratios Fjk together with the known weights wjk were then used in the bootstrapping 
procedure, where the volume weighted average ratios and alpha parameters were re-estimated using 
the known weights wjk before bootstrapping using England & Verrall (2006). Forecasting after the 
bootstrap procedure was performed recursively as above with Cj,n-j+1 given by wj,n-j+1.  10,000 iterations 
were used at this step.  The percentile of the ‘true’ ultimate was recorded.

6. Repeat steps three to five 30,000 times.

The analysis was also repeated using Gamma distributions for simulating the ratios and forecast 
cumulative values, parameterised to ensure the means and variances remain the same.  This ensures 
that negative ratios and cumulative values can never be simulated.
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Mack’s model
Comments on the data generation process

Given the simulated ratios, it is possible to generate a triangle of simulated 
cumulative amounts by starting with the latest cumulative diagonal, and 
recursively dividing backwards by the simulated ratios

Notice that this gives simulated amounts in the first development period, without 
additional parameters
Notice also that the incremental amounts in each cell are different for each simulation 
(except in the bottom left cell of the run-off triangle), but the sum of simulated 
incremental values in the triangle always equals the latest observed cumulative 
diagonal

However, passing this simulated triangle forwards to the bootstrapping stage 
yields biased results, unless the assumed known weights are also passed 
forwards

Note the simulated ratios will be preserved when re-creating them from the simulated 
cumulative values, but the ‘weights’ will be different if they are based on the simulated 
cumulative values
As such, simulating cumulative values in this way adds nothing
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Mack’s model
Comments on EMB data generation process

Admittedly, separating estimation from 
forecasting and treating the weights as 
fixed and known seems strange, but this 
appears to be consistent with Mack’s 
method. 

The variances of the ratios are 
consistent with Mack’s model.

Forecasting recursively from a 
deterministic diagonal also seems strange 
at first sight, but notice that the standard 
deviation of the simulated forecast ‘true’
reserves matches the process error from 
Mack’s method, as we would expect (see 
the analogous results for the ODP data 
generation method)

Simulated Simulated

Year Analytic Normal Gamma

2 48,832 48,832 48,832

3 90,524 90,515 90,515

4 102,622 102,691 102,693

5 227,880 227,653 227,665

6 366,582 366,098 366,079

7 500,202 499,748 499,736

8 785,741 784,941 784,898

9 895,570 894,441 894,427

10 1,284,882 1,287,905 1,288,171

Total 1,878,292 1,882,547 1,883,336
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Taylor & Ashe Data
Scaled residuals: Mack’s model

1 2 3 4 5 6 7 8 9

1 -0.519 -1.117 -1.152 0.772 1.490 -0.850 -1.189 -0.759 0.000

2 0.030 0.047 0.632 -0.608 -0.322 0.939 0.346 0.651

3 1.290 -0.179 0.006 0.850 -1.141 0.758 0.682

4 1.500 -1.228 1.840 -1.594 -0.282 -0.907

5 -1.540 0.689 -0.683 0.005 0.543

6 -0.197 -0.664 -0.636 0.878

7 -0.942 0.764 -0.137

8 0.693 1.647

9 0.197

Mack's alpha 400.4 194.3 204.9 123.2 117.2 90.5 21.1 33.9 21.1

Note that the α parameters decrease rapidly
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Taylor & Ashe Data
Scaled residuals: Mack’s model

Development Residuals (Scaled) With Alpha Values
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Results using:

Normal forecast distributions
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1.46% chance of 
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Taylor & Ashe Data
(as used in England & Verrall 1999 and 2006)

Results using:

Normal forecast distributions

Parametric bootstrap

1.50% chance of 
exceeding projected 

99th percentile
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Taylor & Ashe Data
(as used in England & Verrall 1999 and 2006)

Results using:

Gamma forecast distributions

Non-parametric bootstrap

1.57% chance of 
exceeding projected 

99th percentile
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Taylor & Ashe Data
(as used in England & Verrall 1999 and 2006)

Results using:

Gamma forecast distributions

Parametric bootstrap

1.65% chance of 
exceeding projected 

99th percentile
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Bootstrapping Mack’s model
Comments

The ROC/GIRO WP did not bootstrap Mack’s model to obtain the percentiles of the ‘true’
values

For example, the WP estimated the standard deviation of the forecast for each 
simulated data set, and then assumed the reserves are lognormally distributed

As such, we cannot compare our results directly with the WP results

Nevertheless we believe that ‘Algorithm A’ as used by the ROC/GIRO WP is not consistent 
with Mack’s model

This would explain why all the findings based on Algorithm A do not seem to be intuitive

Unfortunately, this means that ALL results based on Algorithm A in the ROC/GIRO WP 
reports in 2007 and 2008 cannot be relied upon

See also Dan Murphy’s presentation at the CLRS 3 weeks ago
– “Where’s the Beef? Does the Mack Method produce an undernourished range of possible

outcomes?”

We believe that our alternative data generation method is closer to Mack’s model, but 
further improvements are possible
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Bootstrapping Mack’s model
Recommendations

The common practice of estimating the standard deviation of outstanding liabilities by 
origin period and in total using Mack’s formula, then assuming the reserves are 
lognormally distributed, was useful as an approximation in 1993, but is now inadequate

Unless the dependencies between origin years are taken into account, the standard deviation of the 
total across all years will be wrong.

In fact, the problem is more complicated, since it is the distribution of cash flows in each 
origin/development period combination that is important (for discounting, say).  Assuming these are 
lognormally distributed (with parameters obtained from Mack’s formulae) will give incorrect standard 
deviations at the origin period level, and overall total level, unless the dependencies between all 
cash-flows are taken into account.  This is not straightforward.

As the cash-flows are combined, there are good reasons to expect the sum to be increasingly 
normally distributed (not lognormally distributed), even when the distributions of cash-flows are 
themselves skewed, unless the dependencies between cash-flows are extremely strong.

These issues are avoided completely when bootstrapping Mack’s model (or using MCMC 
methods), since distributions of cash-flows are obtained automatically such that the 
standard deviation of the totals (by origin period and overall) matches Mack’s formulae

The distributions of cash-flows can be used in a variety of ways, for example, for discounting, or for 
investigating the 1-year view of reserving risk.
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Bayesian MCMC Analysis
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Bayesian MCMC Methods

Suspecting that non-parametric 
bootstrapping has the potential for 
limiting the far extremes, we also 
investigated Bayesian Markov Chain 
Monte Carlo (MCMC) methods (using 
non-informative uniform priors), since 
these should not have the same 
issues.

See England & Verrall (2006)
Using MCMC methods, parameters 
are sampled directly from the log-
likelihood function

There is no need to generate sets 
of pseudo data and re-fit the model 
to each set to obtain a distribution 
of parameters

We used exactly the same data 
generation method that we used for 
testing bootstrapping

30,000 test samples
Instead of using bootstrapping for 
each test sample, we used MCMC 
methods instead

Gibbs sampling with ARS
Adaptive Metropolis-Hastings
10,000 iterations for each test 
sample
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Taylor & Ashe Data
(as used in England & Verrall 1999 and 2006)

Results using:

ODP model with a constant scale 
parameter

MCMC using adaptive 
Metropolis-Hastings

1.31% chance of 
exceeding projected 

99th percentile
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Taylor & Ashe Data
(as used in England & Verrall 1999 and 2006)

Results using:

ODP with non-constant scale 
parameter 

MCMC using Gibbs/Adaptive 
Rejection Sampling

1.37% chance of 
exceeding projected 

99th percentile
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Taylor & Ashe Data
(as used in England & Verrall 1999 and 2006)

Results using:

ODP model with non-constant 
scale parameters 

MCMC using adaptive 
Metropolis-Hastings

1.38% chance of 
exceeding projected 

99th percentile
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Taylor & Ashe Data
(as used in England & Verrall 1999 and 2006)

Results using:

Mack’s model with Normal 
forecast distributions

MCMC using Gibbs/Adaptive 
Rejection Sampling

1.43% chance of 
exceeding projected 

99th percentile
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Taylor & Ashe Data
(as used in England & Verrall 1999 and 2006)

Results using:

Mack’s model with Normal 
forecast distributions

MCMC using adaptive 
Metropolis-Hastings

1.46% chance of 
exceeding projected 

99th percentile
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Taylor & Ashe Data
(as used in England & Verrall 1999 and 2006)

Results using:

Mack’s model with Gamma 
forecast distributions 

MCMC using Gibbs/Adaptive 
Rejection Sampling

1.74% chance of 
exceeding projected 

99th percentile
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Taylor & Ashe Data
(as used in England & Verrall 1999 and 2006)

Results using:

Mack’s model with Gamma 
forecast distributions

MCMC using adaptive 
Metropolis-Hastings

1.72% chance of 
exceeding projected 

99th percentile
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Bayesian MCMC Methods
Results

The graphs for ODP non-constant 
scale do, in fact, look remarkably 
uniform

About 1.38% of ‘true’ values are above 
the 99th percentile for the Taylor & Ashe 
data

For Mack’s model:
About 1.46% of ‘true’ values are above 
the 99th percentile for the Taylor & Ashe 
data using normal distributions

About 1.74% of ‘true’ values are above 
the 99th percentile for the Taylor & Ashe 
data using gamma distributions

The same results are obtained 
regardless of MCMC algortihm used

Gibbs/ARS or Metropolis-Hastings

These results are highly consistent 
with the analogous results using 
bootstrapping, suggesting that the 
bootstrapping procedure itself is not 
creating a bias at the upper 
percentiles

This hints at a possible systematic 
issue associated with the test 
procedure
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Is the test procedure valid?



© 2009 EMB. All rights reserved. Slide 64

Is the test procedure valid?

The test procedure is justified in the WP report as:
“…we can use the well known fact that if X is a random variable, and F(x) is 
its cumulative distribution function, then the random variable F(x) has a 
uniform distribution on the unit interval [0,1]”
“In the context of stochastic reserving, X represents the total of future claim 
payments… A stochastic method produces a function F(X) that purports to be 
the distribution function of X.”
“If a stochastic method is reasonably good, F(X) should therefore have 
approximately a uniform distribution”
“Having carried out the stochastic method on a particular triangle, we can 
obtain one instance of the random variable F(X) by waiting for the triangle to 
reach its ultimate position: this give us one instance (x0 say) of the random 
variable X, hence one instance F(x0) purportedly from the uniform [0,1] 
distribution”
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Is the test procedure valid?

At first sight, the test procedure seems intuitively reasonable.

So we tested it using very simple examples.

A one parameter example.

Suppose observations follow a Poisson distribution with known mean μ. 

Simulate 30,000 samples of n observations from a Poisson(μ), together with a ‘true’
forecast t, also from a Poisson(μ)

For each sample of n observations, estimate the mean m, and perform a parametric 
bootstrap:
– Create 10,000 bootstrap samples of n observations from a Poisson(m), and for each bootstrap iteration, estimate 

the mean m*, giving a distribution of m*

For each bootstrap iteration, simulate a forecast value f from a Poisson(m*), giving a 
distribution of the forecast f. Find the percentile (p) of the ‘true’ value t from the 
distribution of f.

This give 30,000 values of p, and according to the ROC/GIRO WP methodology, p
should follow a uniform distribution, and 1% of values of p should be greater than 0.99
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Is the test procedure valid?
A one parameter Poisson problem

Results using:
True Poisson parameter μ=10
Generate 20 “data” from a 
Poisson(μ)
Calculate the mean m of the 
“data”
Use a parametric bootstrap 
(10,000 iterations) to generate 
20 “pseudo data” from a 
Poisson(m) distribution, and 
calculate the mean m* for each 
iteration
For each bootstrap iteration, 
generate a forecast from a 
Poisson(m*)
Compare a single draw from the 
true Poisson(μ) distribution 
against the forecast Poisson(m*) 
distribution
Repeat 30,000 times

1.43% chance of 
exceeding projected 

99th percentile
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Is the test procedure valid?
A one parameter Poisson problem

Results using:
True Poisson parameter μ=100
Generate 20 “data” from a 
Poisson(μ)
Calculate the mean m of the 
“data”
Use a parametric bootstrap 
(10,000 iterations) to generate 
20 “pseudo data” from a 
Poisson(m) distribution, and 
calculate the mean m* for each 
iteration
For each bootstrap iteration, 
generate a forecast from a 
Poisson(m*)
Compare a single draw from the 
true Poisson(μ) distribution 
against the forecast Poisson(m*) 
distribution
Repeat 30,000 times

1.16% chance of 
exceeding projected 

99th percentile
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Is the test procedure valid?
A one parameter Poisson problem

Results using:
True Poisson parameter μ=1000
Generate 20 “data” from a 
Poisson(μ)
Calculate the mean m of the 
“data”
Use a parametric bootstrap 
(10,000 iterations) to generate 
20 “pseudo data” from a 
Poisson(m) distribution, and 
calculate the mean m* for each 
iteration
For each bootstrap iteration, 
generate a forecast from a 
Poisson(m*)
Compare a single draw from the 
true Poisson(μ) distribution 
against the forecast Poisson(m*) 
distribution
Repeat 30,000 times

0.93% chance of 
exceeding projected 

99th percentile
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Is the test procedure valid?
A two parameter problem

A two parameter example.

Suppose observations follow a Normal distribution with known mean μ and standard 
deviation σ. 

Simulate 30,000 samples of n observations from a Normal(μ, σ), together with a ‘true’
forecast t, also from a Normal(μ, σ)

For each sample of n observations, estimate the mean m and standard deviation s, and 
perform a parametric bootstrap:
– Create 10,000 bootstrap samples of n observations from a Normal(m,s), and for each bootstrap iteration, 

estimate the mean m* and standard deviation s*, giving a joint distribution of (m*,s*)

For each bootstrap iteration, simulate a forecast value f from a Normal(m*,s*), giving a 
distribution of the forecast f. Find the percentile (p) of the ‘true’ value t from the 
distribution of f.

This give 30,000 values of p, and according to the ROC/GIRO WP methodology, p
should follow a uniform distribution, and 1% of values of p should be greater than 0.99
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Is the test procedure valid?
Variations of the two parameter problem

The bootstrapping and forecasting stages of the bootstrapping procedure were also varied, 
as follows.

For each sample of n observations, estimate the mean m and standard deviation s, and 
perform a parametric bootstrap:
– Create 10,000 bootstrap samples of n observations from a Normal(m,s), and for each bootstrap iteration, 

estimate the mean m* (but not s*)

– For each bootstrap iteration, simulate a forecast value f from a Normal(m*,s), giving a distribution of the forecast
f. Find the percentile (p) of the ‘true’ value t from the distribution of f.

– This is analogous to the usual GLM assumption that the ‘scale’ parameter is a nuisance parameter.  When 
applying bootstrapping in the context of stochastic reserving, England & Verrall also consider the scale 
parameters as nuisance parameters, and do not re-estimate them in the bootstrapping procedure. This is to give 
results from the bootstrap procedure that are analogous to results obtained analytically.

We also considered the unrealistic assumption that σ is always known:
– Create 10,000 bootstrap samples of n observations from a Normal(m,σ), and for each bootstrap iteration, 

estimate the mean m* (but not s*)

– For each bootstrap iteration, simulate a forecast value f from a Normal(m*,σ), giving a distribution of the forecast
f. Find the percentile (p) of the ‘true’ value t from the distribution of f.
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Is the test procedure valid?
A two parameter Normal problem

At the forecasting stage:
Using the mean m* and standard 
deviation s* calculated from the 
bootstrap data sets
That is, parameter uncertainty is 
considered on both the mean and 
standard deviation

1.37% chance of 
exceeding projected 

99th percentile

 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 10 20 30 40 50 60 70 80 90 100

Projected outstanding claims percentile

C
D

F  

95%

96%

97%

98%

99%

100%

95 96 97 98 99 100
 

 



© 2009 EMB. All rights reserved. Slide 72

Is the test procedure valid?
A two parameter Normal problem

At the forecasting stage:

Using the mean m* calculated 
from the bootstrap data sets and 
standard deviation s calculated 
from the data sample

That is, parameter uncertainty is 
considered on the mean only, and 
a ‘plug-in’ estimate of the standard 
deviation is used

This is analogous to the usual 
situation in stochastic reserving 
where parameter uncertainty on 
the ODP scale parameters/Mack’s 
alphas is not considered

1.50% chance of 
exceeding projected 
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Is the test procedure valid?
A two parameter Normal problem

At the forecasting stage:

Using the mean m* calculated from 
the bootstrap data sets and the 
true standard deviation σ

That is, parameter uncertainty is 
considered on the mean only, and 
the standard deviation is 
considered known

Obviously this is not realistic, but it 
gives the best results for the 
GIRO/ROC WP test.

1.01% chance of 
exceeding projected 
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Is the test procedure valid?

Although the test seems intuitively reasonable, it appears to show counter-
intuitive behaviour with even the simplest examples

For the Poisson case, the results depend on the magnitude of the mean

For the Normal case, the test only seems to work where the true standard 
deviation is considered known.

These simple cases seem to suggest that the standard procedure of including 
parameter/process uncertainty when forecasting is inconsistent with this test.

“It is beyond the scope of this presentation to definitively explain where the test 
goes wrong.”

These simple cases seem to indicate that we may expect slightly more than 1% 
of ‘true’ values to lie above the 99th percentile of the forecast distribution using 
the data generation and testing procedures.

We would recommend further research on the validity of the test itself, before 
placing over-confidence in the results of the working party (in this area).
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Conclusions and Recommendations
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Conclusions and Recommendations

When bootstrapping the ODP model, we recommend using non-constant scale 
parameters, and investigating parametric bootstrapping.

With the Taylor & Ashe data, 1.06% of ‘true’ values were above the 99th percentile.

For Mack’s model, we recommend using a bootstrapping approach to obtain 
predictive distributions of cash-flows and hence reserves.

With the Taylor & Ashe data, 1.5% of ‘true’ values were above the 99th percentile.

We do not believe that “Algorithm A” as used by the ROC/GIRO WP is 
appropriate

This invalidates ALL results in the 2007/2008 reports based on Algorithm A
Our results are repeated, even when Bayesian MCMC methods are used in 
place of bootstrapping.
Even with simple cases, the test procedure used by the ROC/GIRO WP seems 
to be inconsistent with the standard procedure of including parameter/process 
uncertainty when forecasting (except for special cases).

It is possible that we should expect more than 1% of true values to lie above 
the 99th percentile under the test procedure
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A Final Word…

We have performed trillions of calculations 
to arrive at these results

Although the results are interesting, 
focussing on whether the upper tails are 
slightly underestimated when using 
bootstrapping is a bit like focusing on a 
flea and ignoring the camel it is sitting on.

There are bigger issues!

Is the expected value correct in the first 
place?

What about model error?
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Implementation details

The bootstrap calculations were implemented using EMB Igloo Enterprise, which 
allowed the computations to be run in parallel across 20 computers (using 
distributed computing).

Generating 30,000 samples, and performing 10,000 bootstrap iterations on 
each, took about 15 minutes in total.

The Bayesian MCMC computations were performed using a specially written 
C++ dll, used in association with Igloo Enterprise.  The run times varied 
depending on the MCMC algorithm and settings used.

We implemented both Gibbs sampling with Adaptive Rejection Sampling (ARS), and 
single component adaptive Metropolis-Hastings with eigen-vector rotation.
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