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Workshop Overview

• Calibrating Copulas (Andrew Smith)

– Using more than one measure of tail dependence

Rank correlation and arachnitude– Rank correlation and arachnitude

– Calibrating the T-copula

– Equity Return Case Study

• Communicating Dependencies (Richard Shaw)

– Why it is important

– Economic capital aggregation, joint probability density function, scatter plot, joint 
excess probability, tail concentration function, Kendall tau correlation, coefficient of 
t il d d i li d G i l titail dependence, implied Gaussian correlation

• Conclusions and Questions

• This presentation is based on Measurement and modelling of dependencies in 
economic capital by Richard Shaw, Andrew Smith & Grigory Spivak (2010)

http://www.actuaries.org.uk/sites/all/files/documents/pdf/sm20100510.pdf
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Calibrating Copulas

2

Recall – The Gauss Copula Idea

Transform to 
uniform. 

Bivariate Normal Z
# sims = N

Replace nth

smallest by 
u = n/(N+1)

Transform to desired 
marginal distribution

For d dimensions, specify 
•Marginal distributions, d times
•Correlations: d×d matrix
This is a Gauss copula Generalisations include:

Transform to uniform

Transform to desired 
marginal distribution

This is a Gauss copula. Generalisations include:
•T copula

•Divide all Z’s by a common √χ2
df

•Individuated T copula
•Divide each Zi by its own √χ2

df(i)

•Divisors are increasing functions of each other
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Rank Correlation and Arachnitude

• Suppose we have 2 dimensions, N = 480 observations

• In each dimension, replace nth smallest by u = n/(N+1)
Correlation 
matrix

Udk Uuk (2Udk-1)2 (2Uuk-1)2

Udk 1 Rank 
correlation

0

Uuk Rank 
correlation

1 0

4

correlation

(2Udk-1)2 0 1 Arachnitude

(2Uuk-1)2 0 Arachnitude 1

Rank Correlation and Arachnitude:
UK and Denmark
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Cross Correlations: Denmark & UK

Correlation 
t i

Udk Uuk (2Udk-1)2 (2Uuk-1)2

matrix

Udk 1 46.2% 0 -12.0%

Uuk 46.2% 1 -12.5% 0

(2Udk-1)2 0 -12.5% 1 31.4%

(2Uuk-1)2 -12.0% 0 31.4% 1

Empirical estimates for UK/Danish equity returns
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Interpreting Cross Correlations

rk
)

rk
)

rk
)

Positive rank 
correlation

Positive 
arachnitude

Positive cross 
correlation
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Increase density

Reduce density

Notes:
Extreme case of arachnitude = 1 is attained 
for spider copula  (mixture of increasing and 
decreasing copulas)
Individuated T copula (and so gauss and T 
copula) imply cross correlations are zero.
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Copula Approaches: Strengths and Weaknesses

Strengths
I i t d i i

Weaknesses
M b diffi lt t fi d l• Invariant under increasing 

transforms of x and y (for 
example, taking logs)

• Captures all the information 
in the dependency structure 
without reference to marginal 
di t ib ti

• May be difficult to find copula 
functions to capture specific 
data features

• For example, negative cross 
terms

• Seldom amenable to 
distributions

• Allows unconstrained choice 
of marginal distributions

• Suitable  for Monte Carlo 

analytical calculations
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Multiple Comparisons
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Purpose of Multiple Comparisons

• We have observed specific features of the UK / Danish data set

A th l f t f th d l i di t ib ti– Are these real features of the underlying distribution or 
sampling artefact?

– Difficult to analyse mathematically because of the need to 
start with a hypothesis about the “underlying” copula

• An alternative is to test consistency across multiple economies 
in the search for “stylised facts”.

– We could also test robustness across different time periods

– Recognise that the economies are not independent, so 
feature seen in all economies could still be statistical fluke

10

Our Chosen Data Set

• MSCI equity indices

• 31/12/1969 – 31/12/2009

M thl t t l t i di f 480 th• Monthly total return indices, coverage for 480 months

• In US Dollars

• 18 series representing different countries 

• In this presentation we analyse only two dimensional dependency There are 153 pairs

Countries represented: Australia, Austria, Belgium, Canada, Denmark, France, 
Germany, Hong Kong, Italy, Japan, Netherlands, Norway, Singapore, Spain, 
Sweden, Switzerland, UK, US

• In this presentation we analyse only two-dimensional dependency. There are 153 pairs 
of countries for which this can be analysed. In the charts that follow, each country pair 
is represented by one point.
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Equity Total Return Data 1970-2010
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Fitting a T Copula: 5 df is typical
Significant Rejection of Gauss Copula
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Negative Cross Correlations: Systematic Feature
Rejection of T copula (standard or individuated)
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Dependency Communication 
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Different Ways of thinking about Dependency

• Solvency II IMAP (Use Test) requires Senior Management to:

– Demonstrate that they understand the internal model and itsDemonstrate that they understand the internal model and its 
fit with the business model and risk management framework

– Demonstrate understanding of the limitations of the internal 
model and take account of these in their decision-making

• This section describes some simple measures that could be 
adopted by firms in the communication of dependency:

E i C it l A ti / J i t P b bilit D itEconomic Capital Aggregation / Joint Probability Density 
Function / Scatter Plot / Joint Excess Probability /                   
Tail Concentration Function  / Kendall Tau Correlation / 
Coefficient of Tail Dependence / Implied Gaussian Correlation 

16

Economic Capital Aggregation

Economic Capital - 25% Correlation
Percentile Return Gaussian t - 10 df t - 5 df t - 2 df V CV

75.0% 4 1,760 1,685 1,578 1,421 1,658
90% 10 3,688 3,610 3,582 3,418 3,763
95% 20 4 928 4 906 5 004 4 889 5 182

Lognormal distribution:
E(X) = 2,000; SD(X) = 500

95% 20 4,928 4,906 5,004 4,889 5,182
99% 100 7,423 7,916 8,177 9,049 8,212

99.5% 200 8,391 9,087 10,031 11,052 9,455
99.95% 2,000 11,082 13,926 14,929 18,544 13,468

% change cf Gaussian Copula 
Percentile Return Gaussian t - 10 df t - 5 df t - 2 df V CV

75.0% 4 0.0% -4.2% -10.3% -19.3% -5.8%
90% 10 0.0% -2.1% -2.9% -7.3% 2.0%
95% 20 0.0% -0.4% 1.6% -0.8% 5.2%
99% 100 0.0% 6.6% 10.2% 21.9% 10.6%

99.5% 200 0.0% 8.3% 19.5% 31.7% 12.7%
99 95% 2 000 0 0% 25 7% 34 7% 67 3% 21 5%

• (A) It is relatively simple to understand 

• (A) It is possible to directly measure the financial impact on a company 

• (D) No information of what is happening at an individual risk category level at each percentile of interest

• (D )The calculations are more computer intensive than those that will be discussed in the following sections

17

99.95% 2,000 0.0% 25.7% 34.7% 67.3% 21.5%
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Joint Probability Density Function 

0.4

The Joint Probability Density function is a 3 dimensional 
representation of the plot of the values from two risk factor 
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distributions, in this case risks X1 and X2. A greater density 
of points represented by a larger value of the PDF

• (A) It is relatively simple to understand

• (A) The exhibits are relatively easy to create

• (D) Simulation error may distort the presence or otherwise of ‘tail’ dependency strength

• (D) There is no numerical measure that reflects the degree of dependency between risks 

• (D) One can only use this method for a pair of risks at a time
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Scatter Plot 

Interest Rate  UW Non-Cat

1.0

A scatter plot involves a plot of the joint values 
simulated from two risk distributions. In this 
example the values (u,v) corresponding to 
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amounts x and y from risk distributions X and Y 
have been plotted. 

Furthermore, u and v are defined by the 
relationships FX(x)  = u and FY(y) = v, where u 
and v are values on the interval [0,1]. 

The extent of the clustering of points in the 
region of (1,1) indicates the level of ‘tail’ 
dependency between two risks

• (A) It is relatively simple to understand

• (A) The exhibits are very easy to create

• (D) Simulation error may distort the presence or otherwise of ‘tail’ dependency strength

• (D) There is no numerical measure that reflects the degree of dependency between risks 

• (D) It may be difficult to distinguish a pair or risks with higher tail dependence from a pair of risks with higher 
correlation but lower tail dependence. One can only use this method for a pair of risks at a time
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Joint Excess Probability 

For a pair of risks, the Joint Excess Probability 
is the joint probability that 2 risks are either 
greater or lower than some threshold 

 
Interest Rate  UW Non-Cat

1.0

A

(A) It i l ti l i l t d t d d ti l

RJEP(z) = P( u>z, v>z ) 
LJEP(z) = P( u<z, v<z ) 
where: by FX(x)  = u and FY(y) = v 

For independence the values of RJEP(z) and 
LJEP(z) are (1-z)2 and z2 respectively   

RJEP(0.8) = No. of Points in A / Total No. of 
Points (in this case 1,000) 
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• (A) It is relatively simple to understand and practical  

• (A) The calculation is relatively easy to perform

• (A) It allows the quantification of the level of dependence at a given percentile in a way which is both 
mathematically tractable, and simple to understand

• (A) It provides a consistent methodology for comparing the relative strength of dependency between two or 
more risks whether the dependence between them is expressed using copulas or correlations
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Joint Excess Probability 

RJEP(Z):  t Copula 5 d.f. z 95.0%
No. 1 2 3 4 5 6 7 8 9 10

Equity 1 0.87% 1.08% 1.07% 1.04% 0.98% 1.00% 0.89% 0.87% 0.98%
Property 2 1.04% 0.98% 0.97% 0.95% 0.98% 1.00% 0.95% 0.96%

(D) F t f titi d t li l ti thi ld b t d f i

p y
Interest Rate 3 1.12% 1.06% 1.03% 1.10% 1.09% 1.04% 1.10%
Credit Spread 4 1.02% 0.99% 1.19% 1.01% 1.07% 1.17%
Credit Default 5 0.97% 1.05% 1.02% 1.00% 1.00%
UW - Cat 6 0.93% 0.91% 0.96% 1.07%
UW Non-Cat 7 0.97% 0.98% 1.09%
Reserve 8 1.04% 1.05%
Expenses 9 0.98%
Operational 10

Independence 0.25%

• (D) For most of practitioners used to linear correlations this would be a new concept and some confusion 
between the two numbers is possible. In particular, it could be mistaken to be a ‘tail correlation’, i.e. the level of 
correlation in the tail. In fact, the RJEP(z) and LJEP(z) functions are probabilities, i.e. take values between 0 
and 1 whereas a correlation coefficient takes values between -1 and 1.

• (D) It is difficult to translate a value of RJEP(z) or LJEP(z) into a number that is commonly understood e.g. 
linear correlation, or its equivalent at the ‘tails’. 

• (D) Simulation error may distort the presence or otherwise of ‘tail’ dependency strength
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Tail Concentration Function 

For a pair of risks, the strength of ‘tail’ dependence 
between risk factors can be defined using the Right 
and Left Tail Concentration Functions R(z) and L(z) 

 
Interest Rate  UW Non-Cat

1.0

A

(A) It i ti l d th t i l ti l t d t d
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respectively as follows:

Right Tail Concentration Function: R(z) = P(v>z / u>z) 
= P(v>z, u>z) / P (u>z)
Left Tail Concentration Function:   L(z) = P(v<z / u<z) 
= P(v<z, u<z) / P (u<z)

R(0.8) = No. of Points in A / (Total Points (A + B))
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B

• (A) It is practical and the concept is relatively easy to understand 

• (A) The calculation is relatively easy to perform

• (A) It allows the quantification of dependence at a given percentile which is mathematically tractable

• (A) It is closely linked to another important copula parameter: “Coefficient of Tail Dependence” which is a 
limiting case of the tail concentration function

• (A) It provides a consistent methodology for comparing the relative strength of dependency

22

Tail Concentration Function 

R(Z):  t Copula 5 d.f. z 95.0%
No. 1 2 3 4 5 6 7 8 9 10

Equity 1 17.58% 21.85% 21.61% 20.89% 19.68% 20.16% 17.98% 17.58% 19.68%
Property 2 21.18% 20.03% 19.87% 19.38% 20.03% 20.36% 19.38% 19.71%

(D) F t f titi d t li l ti thi ld b t d f i

p y
Interest Rate 3 21.20% 19.98% 19.45% 20.82% 20.67% 19.68% 20.89%
Credit Spread 4 19.06% 18.46% 22.20% 18.91% 19.96% 21.82%
Credit Default 5 19.13% 20.71% 20.16% 19.61% 19.76%
UW - Cat 6 18.87% 18.46% 19.35% 21.62%
UW Non-Cat 7 19.27% 19.51% 21.74%
Reserve 8 21.06% 21.38%
Expenses 9 19.48%
Operational 10

Independence 5.0%

• (D) For most of practitioners used to linear correlations this would be a new concept and some confusion 
between the two numbers is possible. In particular, it could be misunderstood to be a ‘tail correlation’, i.e. the 
level of correlation in the tail. In fact, the tail concentration functions are different mathematical objects: they 
are probabilities, i.e. take values between 0 and 1 whereas correlation takes values between -1 and 1

• (D) It is difficult to translate R(z) or L(z) into a number that is commonly understood i.e. linear correlation 

• (D) Simulation error may distort the presence or otherwise of ‘tail’ dependency strength
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Kendall Tau Correlation 

Kendall Tau:  t Copula 5 d.f.
No. 1 2 3 4 5 6 7 8 9 10

Equity 1 17.62% 16.72% 17.74% 18.31% 16.29% 17.73% 16.72% 16.49% 17.50%
Property 2 15.38% 15.92% 16.39% 15.72% 17.20% 16.43% 16.29% 17.25%
Interest Rate 3 16 02% 16 67% 17 29% 17 66% 16 68% 16 71% 17 02%

• The Kendall Tau correlation measures dependency as the tendency of two variables, X and Y, to move in the 
same (opposite) direction. Let (Xi,Yi) and (Xj ,Yj) be a pair of observations of X and Y

Interest Rate 3 16.02% 16.67% 17.29% 17.66% 16.68% 16.71% 17.02%
Credit Spread 4 16.27% 17.17% 16.70% 15.94% 15.96% 16.02%
Credit Default 5 16.35% 17.22% 15.75% 15.68% 17.25%
UW - Cat 6 15.61% 15.16% 16.71% 17.90%
UW Non-Cat 7 15.56% 15.86% 17.63%

Reserve 8 16.73% 17.26%

Expenses 9 16.19%
Operational 10

• If (Xj - Xi) and (Yj - Yi) have the same sign, then we say that the pair is concordant, if they have opposite signs, 
then we say that the pair is discordant

• Let C (number of concordant pairs) and D (number of discordant pairs). A simple intuitive way to measure the 
strength of a relationship is to compute S=C-D, a quantity known as Kendall S. 

• The normalised value of S is known as the Kendall Tau correlation coefficient, or Kendall Tau. 
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Coefficient of Tail Dependence 

T d.f. 
10 2.6%

5 10.7%

• The Coefficient of Tail Dependence between two risks is an asymptotic measure of the dependence in the tails 
of the bivariate distribution (X,Y).

• For a multivariate distribution with a Gaussian copula, the tail dependence between any pair of risks is always 
zero. This is one of the important deficiencies of the Gaussian copula for modelling dependence.

• For continuously distributed random variables with the t Copula the Coefficient of Tail Dependence is:

2 27.2%

 = 2tn+1(-(n+1)0.5(1- )0.5/ (1+)0.5)

• where  is the pairwise correlation coefficient between two risks

• Note: In this example  = 25%

25



10/11/2010

14

Implied Gaussian Correlation 

R(z) Function
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• The approach can be used to determine a so-called ‘Implied’ Gaussian correlation between risk pairs 
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• For example, at 99.0% the value of R(z) = 15.96% for the t copula (5 df) and 5.31% for the Gaussian copula 
assuming a correlation of 25%. 

• If the linear correlation is increased from 25% to 54% then the value of R(z) at 99.0% with the Gaussian copula 
now equals the same value of R(z) = 15.96% as before. 

• The values of these so-called ‘Implied’ Gaussian correlations can be used to compare model outputs
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Questions or comments?

Expressions of individual views by 
members of The Actuarial Profession 
and are encouraged.

The views expressed in this presentation 
are solely those of the presenters.
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