The Actuarial Profession making financial sense of the future

Calibration and Communication of Dependencies with a Case Study based on Market Returns

November 2010

Richard Shaw, Andrew Smith & Grigory Spivak

Workshop Overview

- · Calibrating Copulas (Andrew Smith)
 - Using more than one measure of tail dependence
 - Rank correlation and arachnitude
 - Calibrating the T-copula
 - Equity Return Case Study
- Communicating Dependencies (Richard Shaw)
 - Why it is important
 - Economic capital aggregation, joint probability density function, scatter plot, joint excess probability, tail concentration function, Kendall tau correlation, coefficient of tail dependence, implied Gaussian correlation
- Conclusions and Questions
- This presentation is based on Measurement and modelling of dependencies in economic capital by Richard Shaw, Andrew Smith & Grigory Spivak (2010)

http://www.actuaries.org.uk/sites/all/files/documents/pdf/sm20100510.pdf

The Actuarial Profession

1

Calibrating Copulas The Actuarial Profession Fracty throat after Advanced.

Rank Correlation and Arachnitude

- Suppose we have 2 dimensions, N = 480 observations
- In each dimension, replace n^{th} smallest by u = n/(N+1)

Correlation matrix	U _{dk}	U _{uk}	(2 <i>U</i> _{dk} -1) ²	(2U _{uk} -1) ²
U _{dk}	1	Rank correlation	0	
U _{uk}	Rank correlation	1		0
$(2U_{dk}-1)^2$	0		1	Arachnitude
$(2U_{uk}-1)^2$		0	Arachnitude	1

6

Cross Correlations: Denmark & UK

Correlation matrix	U _{dk}	U _{uk}	(2 <i>U</i> _{dk} -1) ²	(2U _{uk} -1) ²
U _{dk}	1	46.2%	0	-12.0%
U_{uk}	46.2%	1	-12.5%	0
$(2U_{dk}-1)^2$	0	-12.5%	1	31.4%
$(2U_{uk}-1)^2$	-12.0%	0	31.4%	1

Empirical estimates for UK/Danish equity returns

Copula Approaches: Strengths and Weaknesses

Strengths

- Invariant under increasing transforms of x and y (for example, taking logs)
- Captures all the information in the dependency structure without reference to marginal distributions
- Allows unconstrained choice of marginal distributions
- Suitable for Monte Carlo

Weaknesses

- May be difficult to find copula functions to capture specific data features
- For example, negative cross terms
- Seldom amenable to analytical calculations

The Actuarial Profession

Multiple Comparisons

The Actuarial Profession

Purpose of Multiple Comparisons

- We have observed specific features of the UK / Danish data set
 - Are these real features of the underlying distribution or sampling artefact?
 - Difficult to analyse mathematically because of the need to start with a hypothesis about the "underlying" copula
- An alternative is to test consistency across multiple economies in the search for "stylised facts".
 - We could also test robustness across different time periods
 - Recognise that the economies are not independent, so feature seen in all economies could still be statistical fluke

The Actuarial Profession

10

Our Chosen Data Set

- MSCI equity indices
- 31/12/1969 31/12/2009
- · Monthly total return indices, coverage for 480 months
- In US Dollars
- 18 series representing different countries

Countries represented: Australia, Austria, Belgium, Canada, Denmark, France, Germany, Hong Kong, Italy, Japan, Netherlands, Norway, Singapore, Spain, Sweden, Switzerland, UK, US

In this presentation we analyse only two-dimensional dependency. There are 153 pairs
of countries for which this can be analysed. In the charts that follow, each country pair
is represented by one point.

Different Ways of thinking about Dependency

- Solvency II IMAP (Use Test) requires Senior Management to:
 - Demonstrate that they understand the internal model and its fit with the business model and risk management framework
 - Demonstrate understanding of the limitations of the internal model and take account of these in their decision-making
- This section describes some simple measures that could be adopted by firms in the communication of dependency:
 Economic Capital Aggregation / Joint Probability Density Function / Scatter Plot / Joint Excess Probability / Tail Concentration Function / Kendall Tau Correlation / Coefficient of Tail Dependence / Implied Gaussian Correlation

The Actuarial Profession

Economic Capital Aggregation

Economic Ca	pital - 25% Co	rrelation				
Percentile	Return	Gaussian	t - 10 df	t - 5 df	t - 2 df	V CV
75.0%	4	1,760	1,685	1,578	1,421	1,658
90%	10	3,688	3,610	3,582	3,418	3,763
95%	20	4,928	4,906	5,004	4,889	5,182
99%	100	7,423	7,916	8,177	9,049	8,212
99.5%	200	8,391	9,087	10,031	11,052	9,455
99.95%	2,000	11,082	13,926	14,929	18,544	13,468

Lognormal distribution: E(X) = 2,000; SD(X) = 500

% cnange cf	Gaussian Cop	uia				
Percentile	Return	Gaussian	t - 10 df	t - 5 df	t - 2 df	V CV
75.0%	4	0.0%	-4.2%	-10.3%	-19.3%	-5.8%
90%	10	0.0%	-2.1%	-2.9%	-7.3%	2.0%
95%	20	0.0%	-0.4%	1.6%	-0.8%	5.2%
99%	100	0.0%	6.6%	10.2%	21.9%	10.6%
99.5%	200	0.0%	8.3%	19.5%	31.7%	12.7%
99.95%	2,000	0.0%	25.7%	34.7%	67.3%	21.5%

- (A) It is relatively simple to understand
- (A) It is possible to directly measure the financial impact on a company
- . (D) No information of what is happening at an individual risk category level at each percentile of interest
- (D) The calculations are more computer intensive than those that will be discussed in the following sections

Joint Probability Density Function

The Joint Probability Density function is a 3 dimensional representation of the plot of the values from two risk factor distributions, in this case risks X1 and X2. A greater density of points represented by a larger value of the PDF

- (A) It is relatively simple to understand
- (A) The exhibits are relatively easy to create
- (D) Simulation error may distort the presence or otherwise of 'tail' dependency strength
- (D) There is no numerical measure that reflects the degree of dependency between risks
- (D) One can only use this method for a pair of risks at a time

The Actuarial Profession

18

Scatter Plot

A scatter plot involves a plot of the joint values simulated from two risk distributions. In this example the values (u,v) corresponding to amounts x and y from risk distributions X and Y have been plotted.

Furthermore, u and v are defined by the relationships $F_X(x) = u$ and $F_Y(y) = v$, where u and v are values on the interval [0,1].

The extent of the clustering of points in the region of (1,1) indicates the level of 'tail' dependency between two risks

- (A) It is relatively simple to understand
- (A) The exhibits are very easy to create
- (D) Simulation error may distort the presence or otherwise of 'tail' dependency strength
- (D) There is no numerical measure that reflects the degree of dependency between risks
- (D) It may be difficult to distinguish a pair or risks with higher tail dependence from a pair of risks with higher correlation but lower tail dependence. One can only use this method for a pair of risks at a time

Joint Excess Probability

For a pair of risks, the Joint Excess Probability is the joint probability that 2 risks are either greater or lower than some threshold

$$\begin{split} & \text{RJEP(z)} = \text{P(u>z, v>z)} \\ & \text{LJEP(z)} = \text{P(u<z, v<z)} \\ & \text{where: by } F_X(x) = u \text{ and } F_Y(y) = v \end{split}$$

For independence the values of RJEP(z) and LJEP(z) are $(1-z)^2$ and z^2 respectively

RJEP(0.8) = No. of Points in A / Total No. of Points (in this case 1,000)

- (A) It is relatively simple to understand and practical
- (A) The calculation is relatively easy to perform
- (A) It allows the quantification of the level of dependence at a given percentile in a way which is both
 mathematically tractable, and simple to understand
- (A) It provides a consistent methodology for comparing the relative strength of dependency between two or more risks whether the dependence between them is expressed using copulas or correlations

The Actuarial Profession

20

Joint Excess Probability

RJEP(Z): t Copul	a 5 d.f.		Г	Z	95.0%						
	No.	1	2	3	4	5	6	7	8	9	10
Equity	1		0.87%	1.08%	1.07%	1.04%	0.98%	1.00%	0.89%	0.87%	0.98%
Property	2			1.04%	0.98%	0.97%	0.95%	0.98%	1.00%	0.95%	0.96%
Interest Rate	3				1.12%	1.06%	1.03%	1.10%	1.09%	1.04%	1.10%
Credit Spread	4					1.02%	0.99%	1.19%	1.01%	1.07%	1.17%
Credit Default	5						0.97%	1.05%	1.02%	1.00%	1.00%
UW - Cat	6							0.93%	0.91%	0.96%	1.07%
UW Non-Cat	7								0.97%	0.98%	1.09%
Reserve	8									1.04%	1.05%
Expenses	9										0.98%
Operational	10										
•								1	ndepender	nce	0.25%

- (D) For most of practitioners used to linear correlations this would be a new concept and some confusion between the two numbers is possible. In particular, it could be mistaken to be a 'tail correlation', i.e. the level of correlation in the tail. In fact, the RJEP(z) and LJEP(z) functions are probabilities, i.e. take values between 0 and 1 whereas a correlation coefficient takes values between -1 and 1.
- (D) It is difficult to translate a value of RJEP(z) or LJEP(z) into a number that is commonly understood e.g.
 linear correlation, or its equivalent at the 'tails'.
- (D) Simulation error may distort the presence or otherwise of 'tail' dependency strength

The Actuarial Profession

21

Tail Concentration Function

For a pair of risks, the strength of 'tail' dependence between risk factors can be defined using the Right and Left Tail Concentration Functions R(z) and L(z) respectively as follows:

Right Tail Concentration Function: R(z) = P(v>z / u>z)= P(v>z, u>z) / P(u>z)Left Tail Concentration Function: L(z) = P(v<z / u<z)

= P(v < z, u < z) / P(u < z)

R(0.8) = No. of Points in A / (Total Points (A + B))

- (A) It is practical and the concept is relatively easy to understand
- (A) The calculation is relatively easy to perform
- (A) It allows the quantification of dependence at a given percentile which is mathematically tractable
- (A) It is closely linked to another important copula parameter: "Coefficient of Tail Dependence" which is a limiting case of the tail concentration function
- (A) It provides a consistent methodology for comparing the relative strength of dependency

The Actuarial Profession

22

Tail Concentration Function

	No.	1	2	3	4	5	6	7	8	9	10
F 14	140.		47.500/	_	-	-	-	00.400/	-	-	
Equity	1		17.58%	21.85%	21.61%	20.89%	19.68%	20.16%	17.98%	17.58%	19.68%
Property	2			21.18%	20.03%	19.87%	19.38%	20.03%	20.36%	19.38%	19.71%
Interest Rate	3				21.20%	19.98%	19.45%	20.82%	20.67%	19.68%	20.89%
Credit Spread	4					19.06%	18.46%	22.20%	18.91%	19.96%	21.82%
Credit Default	5						19.13%	20.71%	20.16%	19.61%	19.76%
UW - Cat	6							18.87%	18.46%	19.35%	21.62%
UW Non-Cat	7								19.27%	19.51%	21.74%
Reserve	8									21.06%	21.38%
Expenses	9										19.48%
Operational	10										
									Independe	nco	5.0%

- (D) For most of practitioners used to linear correlations this would be a new concept and some confusion between the two numbers is possible. In particular, it could be misunderstood to be a 'tail correlation', i.e. the level of correlation in the tail. In fact, the tail concentration functions are different mathematical objects: they are probabilities, i.e. take values between 0 and 1 whereas correlation takes values between -1 and 1
- (D) It is difficult to translate R(z) or L(z) into a number that is commonly understood i.e. linear correlation
- (D) Simulation error may distort the presence or otherwise of 'tail' dependency strength

Kendall Tau Correlation

•			•	•		-	•	-	_	•	40
	No.	1	2	3	4	5	6	/	8	9	10
Equity	1		17.62%	16.72%	17.74%	18.31%	16.29%	17.73%	16.72%	16.49%	17.50%
Property	2			15.38%	15.92%	16.39%	15.72%	17.20%	16.43%	16.29%	17.25%
Interest Rate	3				16.02%	16.67%	17.29%	17.66%	16.68%	16.71%	17.02%
Credit Spread	4					16.27%	17.17%	16.70%	15.94%	15.96%	16.02%
Credit Default	5						16.35%	17.22%	15.75%	15.68%	17.25%
UW - Cat	6							15.61%	15.16%	16.71%	17.90%
UW Non-Cat	7								15.56%	15.86%	17.63%
Reserve	8									16.73%	17.26%
Expenses	9										16.19%
Operational	10										

- The Kendall Tau correlation measures dependency as the tendency of two variables, X and Y, to move in the same (opposite) direction. Let (X_j, Y_j) and (X_j, Y_j) be a pair of observations of X and Y
- If (X_j X_j) and (Y_j Y_j) have the same sign, then we say that the pair is concordant, if they have opposite signs, then we say that the pair is discordant
- Let C (number of concordant pairs) and D (number of discordant pairs). A simple intuitive way to measure the strength of a relationship is to compute S=C-D, a quantity known as Kendall S.
- The normalised value of S is known as the Kendall Tau correlation coefficient, or Kendall Tau. $\tau = \frac{S}{\frac{1}{2}n(n-1)}$

The Actuarial Profession

24

Coefficient of Tail Dependence

T d.f.	λ
10	2.6%
5	10.7%
2	27.2%

- The Coefficient of Tail Dependence between two risks is an asymptotic measure of the dependence in the tails
 of the bivariate distribution (X.Y).
- For a multivariate distribution with a Gaussian copula, the tail dependence between any pair of risks is always zero. This is one of the important deficiencies of the Gaussian copula for modelling dependence.
- For continuously distributed random variables with the t Copula the Coefficient of Tail Dependence is:

$$\lambda = 2 t_{n+1} (-(n+1)^{0.5} (1-\rho)^{0.5} / (1+\rho)^{0.5})$$

- where ρ is the pairwise correlation coefficient between two risks
- Note: In this example ρ = 25%

The Actuarial Profession making financial sense of the future

Calibration and Communication of Dependencies with a Case Study based on Market Returns

November 2010

Richard Shaw, Andrew Smith & Grigory Spivak