Intro

References

Inferences for Maximum country life expectancy using Provincial data

Anthony Medford

amedford@health.sdu.dk

IFoA International Mortality and Longevity Symposium September 8, 2016

References

1) Intro

Intro

- Global BPLE
- Breakpoints

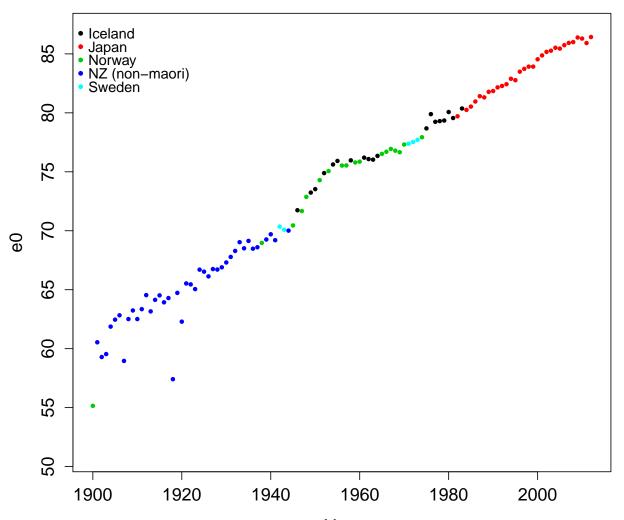
3 Model for BPLE?

- Empirical motivation
- Theoretical motivation
- Inference

4 Regional BPLE

- Data
- The Model

5 Results


- 6 Conclusions
 - Ongoing work
 - Take Aways

Outline	Intro	Global BPLE 000000000	Model for BPLE?	Regional BPLE 00000000	Results 0000	Conclusions	References
Over	rview						

- What is Global Best practice Life expectancy?
- Extreme Value Theory in brief and its relation to Best practice Life expectancy
- Regional Best practice Life expectancy and inference

Year

< 三 →

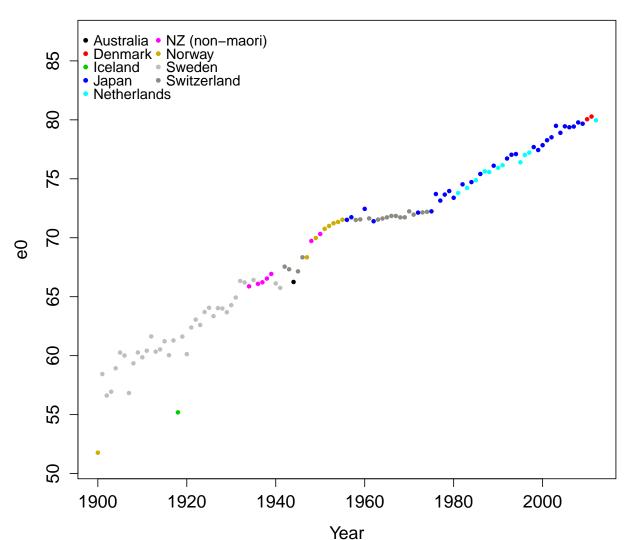
E.

590

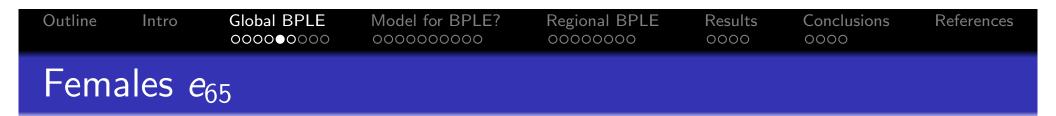
• Global Best Practice Life Expectancy (BPLE) is the maximum life expectancy observed among nations at a given age.

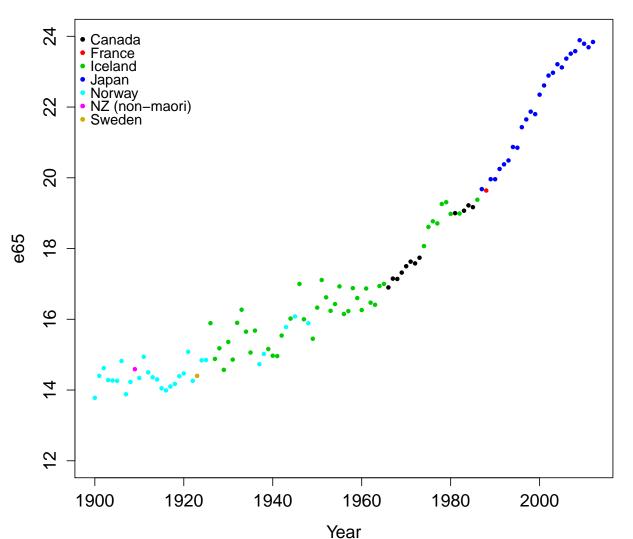
- Global Best Practice Life Expectancy (BPLE) is the maximum life expectancy observed among nations at a given age.
- At birth, has been increasing almost linearly beginning in Scandinavia c. 1840 - at about 3 months per year (Oeppen and Vaupel, 2002).

- Global Best Practice Life Expectancy (BPLE) is the maximum life expectancy observed among nations at a given age.
- At birth, has been increasing almost linearly beginning in Scandinavia c. 1840 - at about 3 months per year (Oeppen and Vaupel, 2002).
- Life expectancy trends may fit better than individual-country trends in age-standardized (log) death rates (White, 2002).

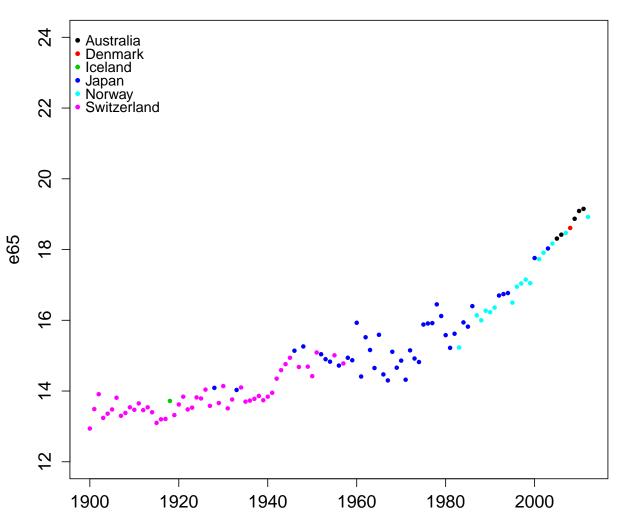


• Nations experience more rapid life expectancy gains when they are farther below BPLE and tend to converge towards BPLE (Torri and Vaupel, 2012).


- Nations experience more rapid life expectancy gains when they are farther below BPLE and tend to converge towards BPLE (Torri and Vaupel, 2012).
- It is sensible to consider national mortality trends in a larger international context rather than individual projections (Lee, 2006; Wilmoth, 1998).



< ≧ ▶ ≧ ∕ ♀ ♀ ♥



▲ ■ ▶ ■ の Q (~)

< 三 →

Ð,

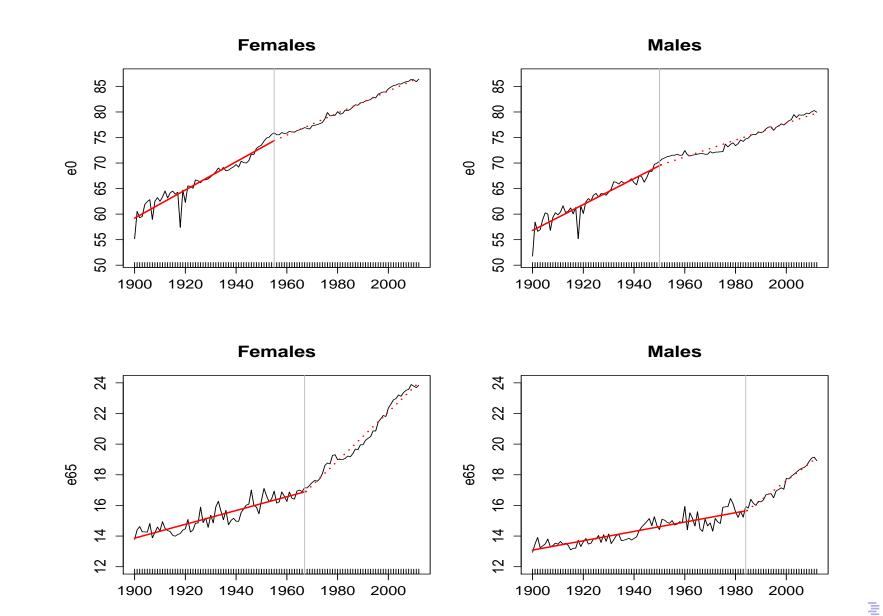
590

Layout

- Breakpoints
- B Model for BPLE?
 - Empirical motivation
 - Theoretical motivation
 - Inference
- 4 Regional BPLE
 - Data
 - The Model
- 5 Results
- 6 Conclusions
 - Ongoing work
 - Take Aways

Outline	Intro	Global BPLE	Model for BPLE?	Regional BPLE	Results	Conclusions	References
		0000000000	0000000000	0000000	0000	0000	

Breakpoints


Outline	Intro	Global BPLE ○○○○○○●○	Model for BPLE?	Regional BPLE 00000000	Results 0000	Conclusions	References
Brea	kpoin	its					

 Vallin and Meslé (2009) expanded on work of Oeppen and Vaupel and argued that BPLE trend may comprise multiple segments

Outline	Intro	Global BPLE ○○○○○○●○	Model for BPLE?	Regional BPLE 00000000	Results 0000	Conclusions	References
Brea	kpoin	its					

- Vallin and Meslé (2009) expanded on work of Oeppen and Vaupel and argued that BPLE trend may comprise multiple segments
- Each segment corresponds to distinct health transition phases

Outline	Intro	Global BPLE ○○○○○○○●	Model for BPLE?	Regional BPLE 00000000	Results 0000	Conclusions	References
Brea	kpoin	its					

Conclusions

References

Layout

- Breakpoints
- 3 Model for BPLE?
 - Empirical motivation
 - Theoretical motivation
 - Inference
- 4 Regional BPLE
 - Data
 - The Model
- 5 Results
- 6 Conclusions
 - Ongoing work
 - Take Aways

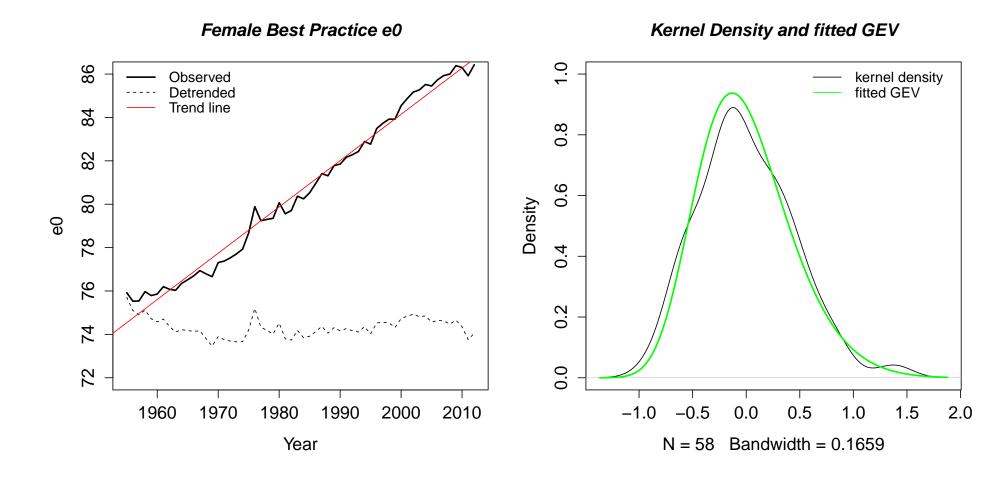


Figure: Left panel: raw and detrended data. Right panel: kernel density and fitted GEV distribution.

Layout

- 2 Global BPLE
 - Breakpoints

3 Model for BPLE?

- Empirical motivation
- Theoretical motivation
- Inference

4 Regional BPLE

- Data
- The Model
- 5 Results
- 6 Conclusions
 - Ongoing work
 - Take Aways

Suppose that X_1, X_2, \ldots, X_n is a sequence of independent, identically distributed random variates all having a common distribution function F(x).

Suppose that X_1, X_2, \ldots, X_n is a sequence of independent, identically distributed random variates all having a common distribution function F(x).

Let $M_n = \max\{X_1, X_2, ..., X_n\}.$

Suppose that X_1, X_2, \ldots, X_n is a sequence of independent, identically distributed random variates all having a common distribution function F(x).

Let $M_n = \max\{X_1, X_2, ..., X_n\}.$

The distribution of the maxima, M_n , converges (for large n) to the Generalized Extreme Value (GEV) Distribution.

Extremal Types theorem

If there exists sequences of constants $\{a_n > 0\}$ and $\{b_n\}$, such that as $n \to \infty$,

$$P\left(\frac{M_n - b_n}{a_n} \le z\right) \to G(z) \tag{1}$$

where G(z) is a non-degenerate distribution function, then G **must** be a member of the Generalized Extreme Value (GEV) family of distributions (Fisher and Tippett, 1928; Gnedenko, 1943).

Theoretical motivation

Extremal Types theorem

- This is a remarkable result because regardless of the underlying distribution, the distribution of the maxima (or minima) converges to one of the Generalized Extreme Value family of distributions.
- Can maximum period life expectancies be approximately modeled as a GEV?

Model for BPLE?

0000000000

Global BPLE

00000000

Outline

Intro

$$G(z) = \exp\left\{-\left[1+\xi\left(\frac{z-\mu}{\sigma}\right)\right]_{+}^{\frac{-1}{\xi}}\right\}$$
(2)

Regional BPLE

00000000

Results

0000

Conclusions

0000

References

where $b_+ = max(0, b)$. The situation where $\xi = 0$ is not defined in (2), but taken as the limit as $\xi \to 0$, given by

$$G(z) = \exp\left\{-\exp\left[-\left(\frac{z-\mu}{\sigma}\right)\right]\right\}.$$
 (3)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 少へぐ

• μ is the location parameter

- $\bullet~\mu$ is the location parameter
- σ is the scale parameter

- $\bullet~\mu$ is the location parameter
- $\bullet~\sigma$ is the scale parameter
- ξ is the shape parameter, which determines the tail behaviour

- $\bullet~\mu$ is the location parameter
- $\bullet~\sigma$ is the scale parameter
- ξ is the shape parameter, which determines the tail behaviour ξ > 0: polynomial tail decay and the Fréchet Distribution ξ = 0: exponential tail decay and the Gumbel Distribution ξ < 0: bounded upper finite end point and the Weibull Distribution

Layout

1 Intro

- 2 Global BPLE
 - Breakpoints

3 Model for BPLE?

- Empirical motivation
- Theoretical motivation
- Inference
- 4 Regional BPLE
 - Data
 - The Model
- 5 Results
- 6 Conclusions
 - Ongoing work
 - Take Aways

Outline	Intro	Global BPLE 000000000	Model for BPLE? ○○○○○○○○●	Regional BPLE 00000000	Results 0000	Conclusions 0000	References
Infer	ence						

Quantiles

Inverting the GEV distribution function:

$$z_{p} = \mu - \frac{\sigma}{\xi} \Big[1 - \{-\log(1-p)\}^{-\xi} \Big],$$

where p is the tail probability and $G(z_p) = 1 - p$

Quantiles

Inverting the GEV distribution function:

$$z_p = \mu - \frac{\sigma}{\xi} \Big[1 - \{ -\log(1-p) \}^{-\xi} \Big],$$

where p is the tail probability and $G(z_p) = 1 - p$

Return Levels

- Simply a different way of thinking about the quantiles.
- If data are annual the (1 p)th quantile would be exceeded on average once every 1/p years.

Regional Best Practice Life Expectancy?

THE IDEA

Regional Best Practice Life Expectancy?

THE IDEA

• Can the notion of BPLE be extended to regions smaller that the global whole?

Conclusions References

Regional Best Practice Life Expectancy?

THE IDEA

- Can the notion of BPLE be extended to regions smaller that the global whole?
- If we find BPLE over an arbitrary region itself comprised of smaller subregions would there also be a regular temporal evolution e.g. strong (piecewise) linear trends?

Conclusions

References

Regional Best Practice Life Expectancy?

THE IDEA

- Can the notion of BPLE be extended to regions smaller that the global whole?
- If we find BPLE over an arbitrary region itself comprised of smaller subregions would there also be a regular temporal evolution e.g. strong (piecewise) linear trends?
- What sort of inferences can we perform?

Layout

1 Intro

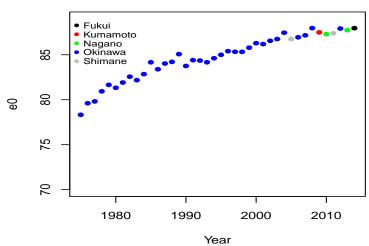
- 2 Global BPLE
 - Breakpoints

3 Model for BPLE?

- Empirical motivation
- Theoretical motivation
- Inference
- 4 Regional BPLE
 - Data
 - The Model
- 5 Results
- 6 Conclusions
 - Ongoing work
 - Take Aways

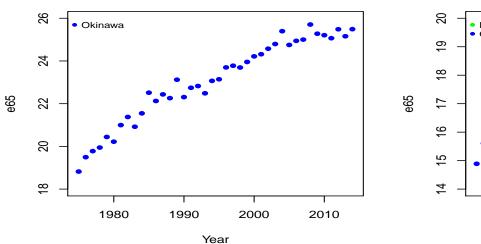
Outline	Intro	Global BPLE 000000000	Model for BPLE?	Regional BPLE 0●000000	Results 0000	Conclusions	References
Data							

Outline	Intro	Global BPLE 000000000	Model for BPLE?	Regional BPLE ○●○○○○○○	Results 0000	Conclusions	References
Data							

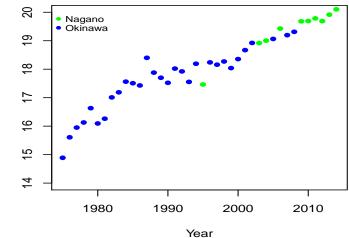

- Canadian Human Mortality Database (CHMD)
 - Life expectancy data broken down by province
 - Covers period from 1921 to 2011 (but Newfoundland from 1949)

Outline	Intro	Global BPLE 000000000	Model for BPLE?	Regional BPLE 0●000000	Results 0000	Conclusions	References
Data							

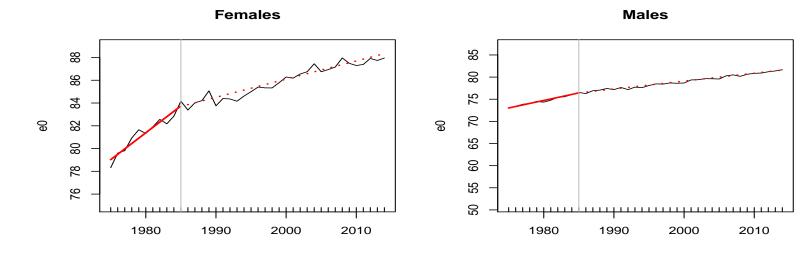
- Canadian Human Mortality Database (CHMD)
 - Life expectancy data broken down by province
 - Covers period from 1921 to 2011 (but Newfoundland from 1949)
- Japanese Mortality Database (JMD)
 - Life expectancy data broken down by prefecture
 - Covers period from 1975 to 2014


eO

Female Best Practice e0

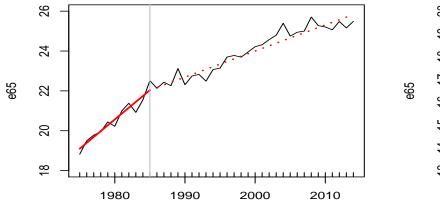

82 Fukui Kanagawa Nagano 8 Okinawa Shiga
Tokyo 78 76 4 72 1980 2010 1990 2000 Year

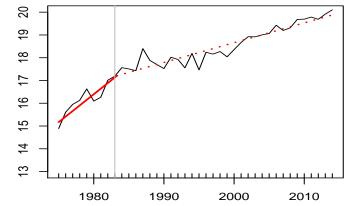
Male Best Practice e0



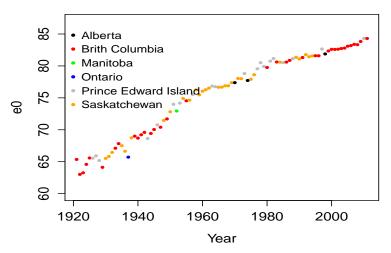
Female Best Practice e65

Male Best Practice e65



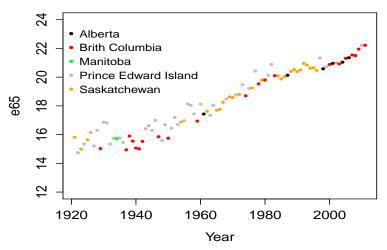


Females

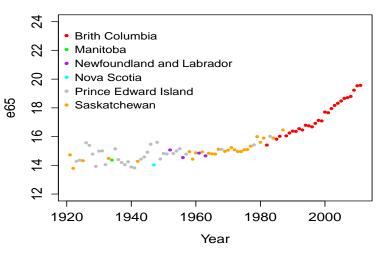


<ロ> <団> <目> <目> <目> <目> <目> <目> <同</p>

eo

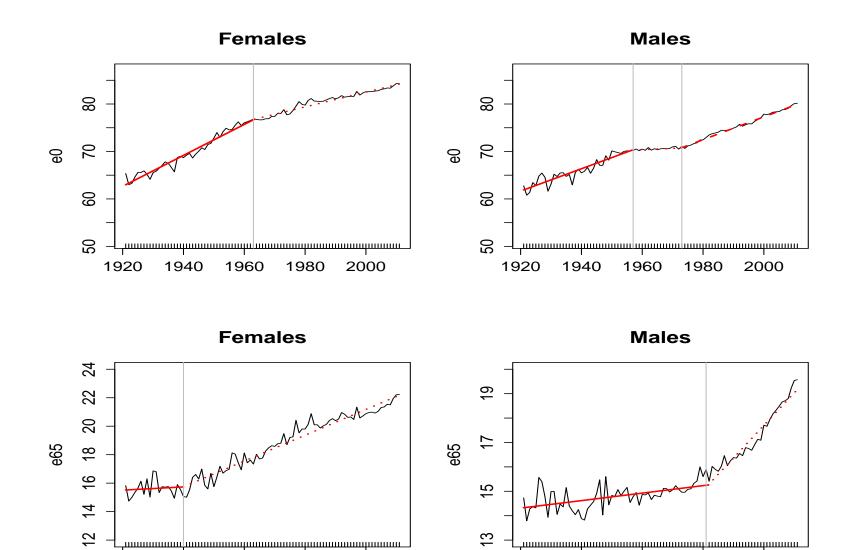

Canada - Maximum e_x by Province

Female Best Practice e0


85 Alberta British Columbia 8 Newfoundland and Labrador Prince Edward Island 75 Saskatchewan 2 65 00 1960 1920 1940 1980 2000

Male Best Practice e65

Year



Male Best Practice e0

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□▶ ▲□▶ ▲□

Breakpoints in Canadian e_x

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□▶ ▲□

Layout

1 Intro

- 2 Global BPLE
 - Breakpoints

3 Model for BPLE?

- Empirical motivation
- Theoretical motivation
- Inference

4 Regional BPLE

- Data
- The Model
- 5 Results
- 6 Conclusions
 - Ongoing work
 - Take Aways

Time-dependent GEV model to annual maximum provincial e_x :

 $GEV(\mu_t, \sigma_t, \xi_t)$ with $\mu_t = \beta_0 + \beta_1 t$; $\sigma_t = \sigma$; $\xi_t = \xi$

Time-dependent GEV model to annual maximum provincial e_x :

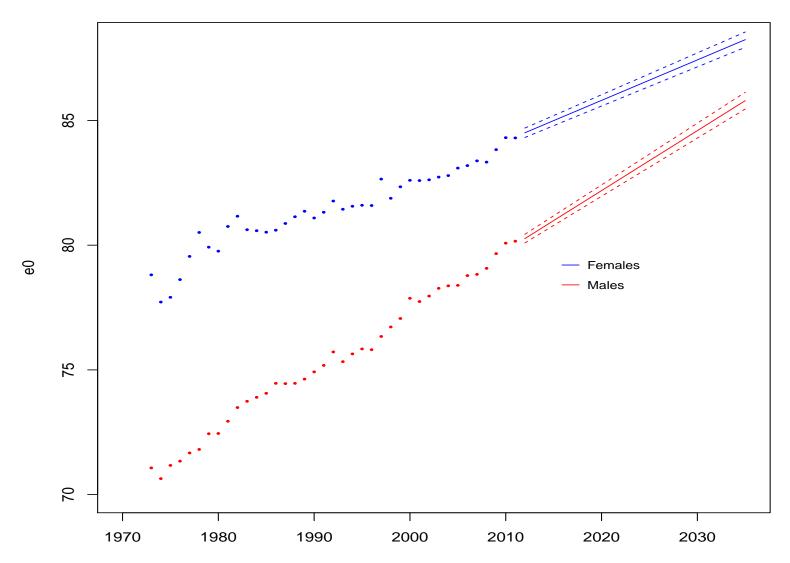
$$GEV(\mu_t, \sigma_t, \xi_t)$$
 with $\mu_t = \beta_0 + \beta_1 t$; $\sigma_t = \sigma$; $\xi_t = \xi$

$$G(z_t) = \exp\left\{-\left[1+\xi\left(\frac{z-(\beta_0+\beta_1 t)}{\sigma}\right)\right]^{\frac{-1}{\xi}}\right\}$$

Time-dependent GEV model to annual maximum provincial e_x :

$$GEV(\mu_t, \sigma_t, \xi_t)$$
 with $\mu_t = \beta_0 + \beta_1 t$; $\sigma_t = \sigma$; $\xi_t = \xi$

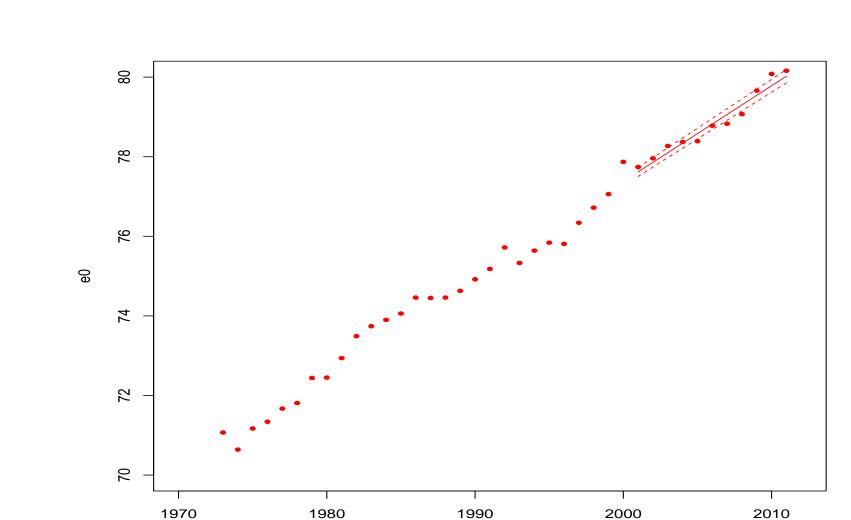
$$G(z_t) = \exp\left\{-\left[1+\xi\left(\frac{z-(\beta_0+\beta_1 t)}{\sigma}\right)\right]^{\frac{-1}{\xi}}\right\}$$


- Other forms of time dependence possible but linearity in μ reasonable and parsemonious choice.
- Parameters estimated jointly using maximum likelihood

Parameter estimates - Canada

	Neg. Likelihood	$\hat{eta_0}$	$\hat{eta_1}$	$\hat{\sigma}$	ξ
Female <i>e</i> 0	30.8	76.4(0.11)	0.16 (0.003)	0.37 (0.030)	0.10
Male <i>e</i> 0	3.9	70.6 (0.10)	0.24 (0.004)	0.27 (0.03)	-0.34 (0.15)
Female <i>e</i> 65	45.2	15.4 (0.11)	0.09 (0.002)	0.42 (0.040)	-0.15 (0.08)
Male <i>e</i> 65	-3.60	15.1 (0.11)	0.13 (0.006)	0.27 (0.04)	-0.29 (0.14)

Table: Maximized negative log-likelihoods, parameter estimates and standard errors (in parentheses) of the Block Maxima Model



Outline	Intro	Global BPLE	Model for BPLE?	Regional BPLE	Results	Conclusions	References
		000000000	0000000000	0000000	0000	0000	

Probability statements - Canada

Year	$P(e_{0,f}^{max} > 87.5)$	$P(e_{0,f}^{max} > 89)$
2030	0.44	0.02
2035	0.99	0.11

Year

▲□▶▲□▶▲□▶▲□▶ ▲□▶ ● □ ● ●

00000000 00000000 000000 0000 0000	Outline	Intro	Global BPLE	Model for BPLE?	Regional BPLE	Results	Conclusions	References
			000000000	0000000000	0000000	0000	0000	

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 少々ぐ

Comments

Outline	Intro	Global BPLE 000000000	Model for BPLE?	Regional BPLE 00000000	Results 0000	Conclusions	References
Com	ment	S					

• Classical theory assumes that life expectancies between subregions are independent but there are dependencies

Outline	Intro	Global BPLE 000000000	Model for BPLE?	Regional BPLE 00000000	Results 0000	Conclusions	References
Com	mont	c					

- Classical theory assumes that life expectancies between subregions are independent but there are dependencies
- Should have "large enough" number of subregions

Outline	Intro	Global BPLE 000000000	Model for BPLE?	Regional BPLE 00000000	Results 0000	Conclusions	References	
Comments								

- Classical theory assumes that life expectancies between subregions are independent but there are dependencies
- Should have "large enough" number of subregions
- Data wastage?

Layout

1 Intro

- 2 Global BPLE
 - Breakpoints

3 Model for BPLE?

- Empirical motivation
- Theoretical motivation
- Inference

4 Regional BPLE

- Data
- The Model
- 5 Results
- 6 Conclusions
 - Ongoing work
 - Take Aways

Ongoing work: added sophistication

• Relax linearity assumption for time dependence to allow any time-varying shape for GEV parameters

Ongoing work: added sophistication

- Relax linearity assumption for time dependence to allow any time-varying shape for GEV parameters
- More flexible Dynamic Linear Model for time-varying parameters for forecasting

Ongoing work: added sophistication

- Relax linearity assumption for time dependence to allow any time-varying shape for GEV parameters
- More flexible Dynamic Linear Model for time-varying parameters for forecasting
- Flexible GLM type framework for modelling
 - Vector Generalized Linear Models (Yee & Hastie, 2003), or
 - Generalized Additive Models for Location, Scale and Shape (Rigby & Stasinopoulos, 2001, 2005)

Layout

1 Intro

- 2 Global BPLE
 - Breakpoints

3 Model for BPLE?

- Empirical motivation
- Theoretical motivation
- Inference

4 Regional BPLE

- Data
- The Model
- 5 Results

6 Conclusions

- Ongoing work
- Take Aways

Outline	Intro	Global BPLE 000000000	Model for BPLE?	Regional BPLE 00000000	Results 0000	Conclusions ○○○●	References
Take	Awa	ys					

▲□▶ ▲□▶ ▲ □▶ ▲ □ ▼ ● ▲ □ ◆ ○ ◆ ○ ◆

 Method can be used to make inferences about future maximum life expectancy for a region e.g a country using sub-regional information only e.g. states/ provinces/ prefectures

- Method can be used to make inferences about future maximum life expectancy for a region e.g a country using sub-regional information only e.g. states/ provinces/ prefectures
- Since a probability distribution is fitted, it is straightforward to obtain probabilities

- Method can be used to make inferences about future maximum life expectancy for a region e.g a country using sub-regional information only e.g. states/ provinces/ prefectures
- Since a probability distribution is fitted, it is straightforward to obtain probabilities
- Ancillary benefit: if provinces with maxima also have high proportion of population then projecting median gives a workable estimate of overall country e_x

- Method can be used to make inferences about future maximum life expectancy for a region e.g a country using sub-regional information only e.g. states/ provinces/ prefectures
- Since a probability distribution is fitted, it is straightforward to obtain probabilities
- Ancillary benefit: if provinces with maxima also have high proportion of population then projecting median gives a workable estimate of overall country e_x
- Underlying theoretical model assumptions may be hard to achieve in practice but acid test is usually good assessment of empirical fit

References

- Fisher, R. A. and L. H. C. Tippett (1928). Limiting forms of the frequency distribution of the largest or smallest member of a sample. In *Mathematical Proceedings of the Cambridge Philosophical Society*, Volume 24, pp. 180–190. Cambridge Univ Press.
- Gnedenko, B. (1943). Sur la distribution limite du terme maximum d'une série aléatoire. *Annals of Mathematics 44*, 423–453.
- Lee, R. (2006). Perspectives on Mortality Forecasting. III. The Linear Rise in Life Expectancy: History and Prospects, Volume III of Social Insurance Studies. Swedish Social Insurance Agency, Stockholm.
- Oeppen, J. and J. W. Vaupel (2002). Broken limits to life expectancy. *Science 296*(5570), 1029–1031.
- Torri, T. and J. W. Vaupel (2012). Forecasting life expectancy in an international context. *International Journal of Forecasting* 28(2), 519–531.
- Vallin, J. and F. Meslé (2009). The segmented trend line of highest life expectancies. *Population and Development Review 35*(1), 159–187.
- White, K. M. (2002). Longevity advances in high-income countries, 1955–96. *Population and Development Review 28*(1), 59–76.
- Wilmoth, J. R. (1998). Is the pace of Japanese mortality decline converging toward international trends? *Population and Development Review*, 593-600.