

How long is forever?

Using annual capital re-allocation to calculate a rate of return on capital

Eric Pizarro

Disclaimer

THIS PRESENTATION REFLECTS THE VIEWS OF THE SPEAKER AND NOT NECESSARILY THOSE OF ALLIED WORLD

Contents

I. What are we aiming for?

Defining the return on capital

II. How do we get there?

A practical methodology

III. How will we know when we've arrived?

Validating and interpreting results

IV. What are the limitations of the approach?

Pitfalls & considerations

V. Q&A

and Faculty of Actuaries

I. What are we aiming for?

WORLP

Defining the ROC

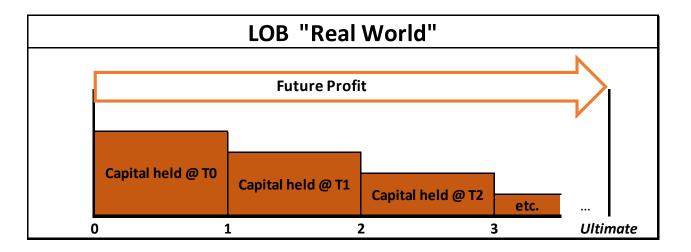
The hindsight view: Return on Equity (ROE)

 $ROE = \frac{\text{Net Profit}}{\text{Shareholder's Equity}}$

- The **ROE** compares the profits generated in the year to the equity held
- · Calculated from the Financials
- A widely used measure of investment performance

Key figures of non-life insurers

(in CHF thousands)

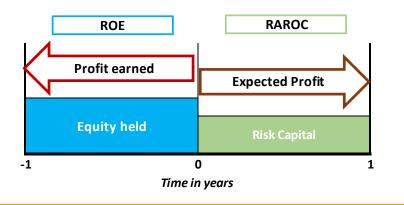

	2017	2016
Gross premiums written	49,241,703	47,967,106
Claims paid out	25,961,281	25,811,840
Cost for the change in technical liabilities	597,371	12,584
Cost for the change in other actuarial liabilities	798,173	645,157
Costs for underwriting	10,097,966	9,548,200
Taxes	739,231	757,187
Gains/losses from investments	6,060,406	6,517,964
Annual profits	5,339,225	7,018,905
Balance sheet total	169,054,218	167,036,747
nvestments	150,572,335	148,589,158
Fechnical liabilities	84,669,696	83,445,422
Equity (before profit allocation)	38,987,401	39,385,332
Return on investments (in %)	4.06%	4.44%
Return on equity (in %)	13.69%	17.82%
.oss ratio (in %)	66.7%	61.6%

The prospective view (I)

- Planning objective: to maximize the *reward* (profit earned) vs. the *risk* to the balance sheet from writing the business
- Return on capital (ROC) is a risk/reward metric
 - Risk is measured using economic capital
 - Reward is the expected (ultimate) profit
- How should we define a ROC for an insurance LOB? Remember that in the real world:
 - The profit may be earned over many years
 - Capital is released as claims are paid
 - Capital must be held as long claims are open

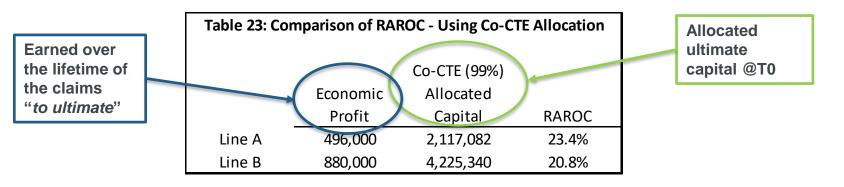
The prospective view (II)

- Let's look at two potential analogs from finance
 - Risk Adjusted Return on Capital (RAROC)
 - A mortgage APR

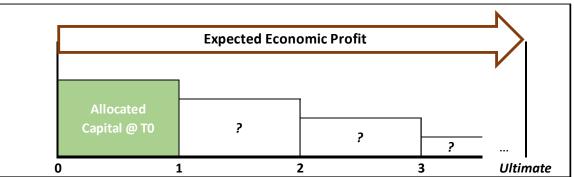


RAROC: From banking...

Concept developed at Banker's Trust in the 1970s

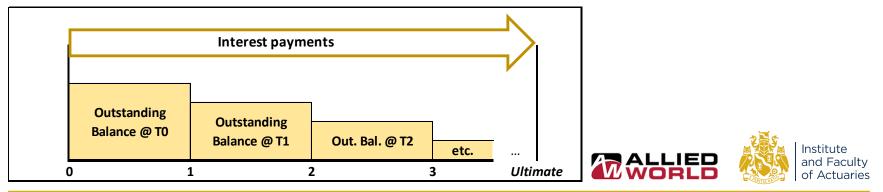

• Like a prospective ROE, using economic capital

...to insurance


 Now widely used in insurance, e.g., *Risk-Adjusted Performance Measurement* for P&C Insurers by Goldfarb (on CAS syllabus)

RAROC assessment

• But does it "work" for insurance?


- In general "No"*
 - The reward is the ultimate profit
 - The *risk* is the capital held in the <u>first year</u> only
 - A mismatch: There can be no cost of capital without the capital

oftal

* Goldfarb (2010) presents alternative approaches that account for this; see p. 41

Mortgage APR

- Now for something more familiar...
- In a typical mortgage, for the bank/lender:
 - The reward is the interest payments received
 - The (debt) capital at *risk* is the outstanding loan amount
 - The principal repaid is capital returned

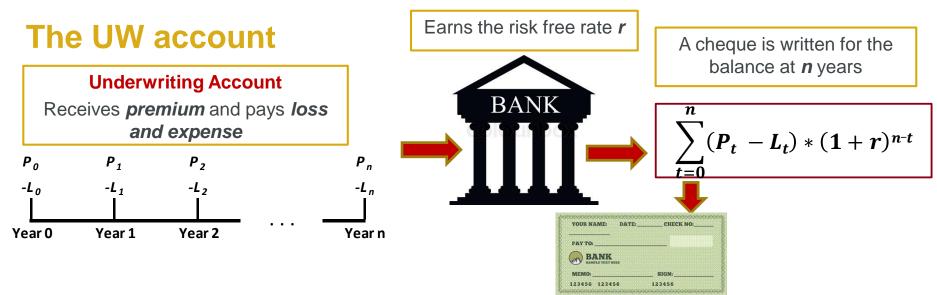
Mortgage APR assessment

• How does it compare to insurance? In general – quite well

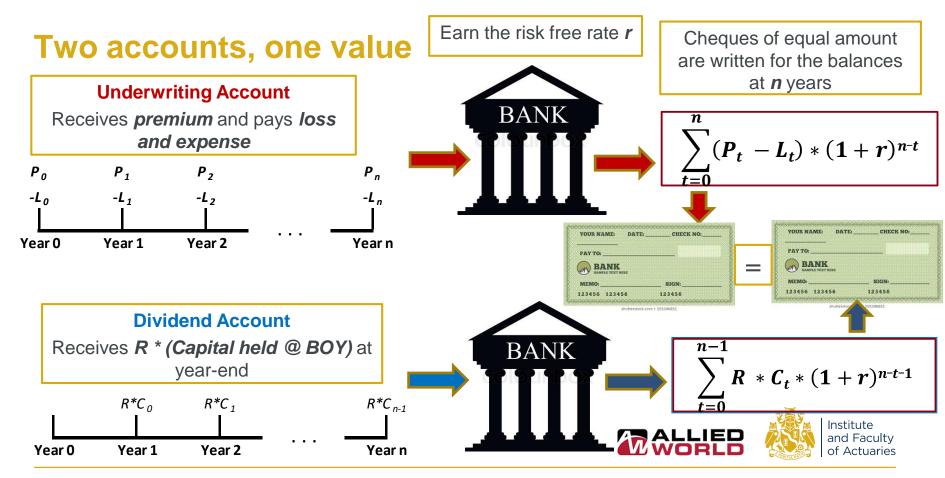
	Mortgage	Insurance		
Capital type	Debt (loan)	Economic, GAAP, etc.		
Capital recipient	Home owner	Underwriter		
Investment	Houses	Insurance contracts		
Profit	Interest on loan	UW profit		
Investment horizon	Term of mortgage	Time claims are open		
Maximum loss	Outstanding balance	Capital held at start of year		
Annual rate of return	APR	Annual rate of ROC		

Institute and Faculty of Actuaries

Mortgage APR


- Mortgage analogy for RAROC:
 - The initial loan amount and total interest are known, but not the repayment schedule
 - (A bad idea)
- We can build on these comparisons to define an annual rate of ROC for an LOB...

Four principles for *R*, the rate of ROC


- **1.** Capital must be held as long as claims are open (*investment horizon*)
- 2. The total capital requirement varies by year according to the downside risk of open claims (*amount of total capital*)
- 3. The amount of capital allocated to a LOB depends on its contribution to the total capital requirement (*amount of allocated capital*)
- 4. *R* is the effective annual rate of return paid to the capital providers over the period that their capital is invested (normalizes for the amount of capital and the investment horizon)

shutterstock.com • 155346851

10 September 2019

Solving for *R*

- *R* is the value that makes the two cheques equal
- Dividing by $(1+r)^n$ to get present values:

$$R * \sum_{t=0}^{n-1} C_t * (1+r)^{-t-1} = NPV(UW \ Profit)$$

- Simple! Looks just like the S2 risk margin formula
 - **R** <-> CoC (6%)
 - NPV (UW Profit) <-> Risk Margin

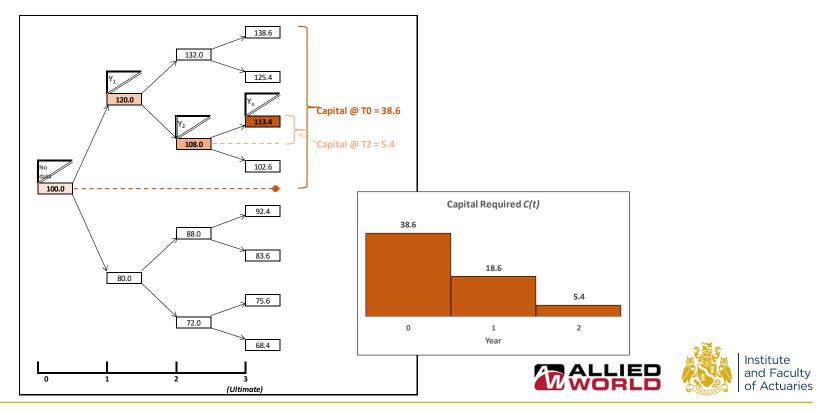
Solving for C_t is the central challenge

- Except now:
 - We are solving for *R*
 - C_t is for a LOB
- How do we solve for **C**_t for each LOB?
- We can't just run-off C_o as we might for the SCR
 - The size of the total portfolio capital pie changes, AND
 - The relative share of each LOB changes

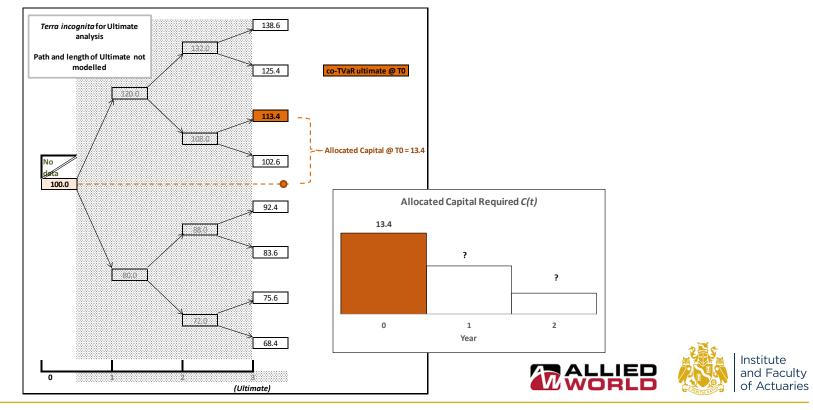
Running off *C*₀ doesn't always work

- A hypothetical two-line portfolio example:
 - Large Property LOB, paid out after 5 years
 - Small Casualty LOB, paid out after 10 years
 - The Casualty LOB could have small/nil/negative allocated capital @ T=0
 - Not so for years 6+
- Allocation applies at a point in time

and Faculty of Actuaries

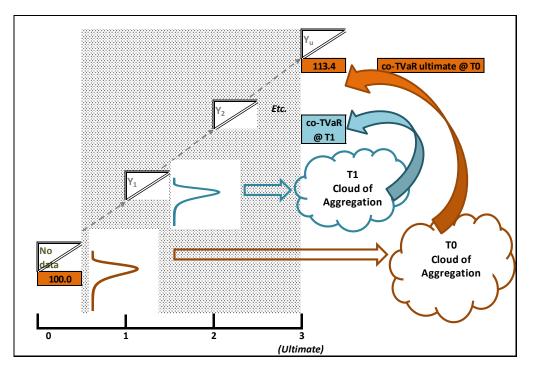

II. How do we get there?

WORI


A practical methodology

Path of the projected ultimate

LOB modelled ultimates @ T=0



The algorithm

- Question: What capital would we expect to allocate at the start of each year if the true final ultimate is the co-TVaR ultimate @ T=0?
- **Answer**: At T = 1,2,..., for each LOB:
 - 1. Recognize a share of the deterioration from best estimate to co-TVaR
 - 2. Parameterize a lognormal using a CoV and the updated best estimate from step 1
 - 3. Simulate an ultimate for each LOB and in total
 - 4. Re-allocate capital to each LOB

Proposal for re-allocating LOB capital

- Claims experience converges to co-TVaR ultimate modelled @ T=0
- At each time step:
 - 1. A distribution is parameterized
 - 2. Claims are simulated by LOB and aggregated
 - 3. Capital is re-allocated

A simplified LOB example								Dependency Matrix						
	ודוומר	lea L	OB	exar	npie		Si	m#	LOB1 LO	B2	LOB n			
	•							1	0.763 0.0)20	0.171			
Model outputs @ TO								2	0.726 0.8	327	0.124]	
Premium	110.0		Risk-free rate	0.0%	The CI	oud of		3	0.969 0.5	50	0.467			
Expected Loss & ALAE	100.0	(A)					λ.	:						
Expected UW Profit	10.0	(B)			Aggre	gation	1	0000	0.128 0.5	579	0.845			
TVaR 99p	180.0					_		_						
Co-TVaR 99p	125.0	(C)		~	(all L	_OB) }	$\langle \rangle$	Tł	ne Thung	der of	Allocati	on		
Co-TVaR 99p Stress	25.0	(D) = (C) - (A)	3		<u> </u>		<u>, </u>					•		
		%		1								C i		
		Recognition		1				<u> </u>	co-TVaR			Allocated		
	Paid as % of	of co-TVaR	Opening	Stress		Closing	CO		(of Opening	RiM @	Fair Value	Ultimate		
Year	Ultimate	Stress	Liability (BE)		Paid in Year	Liability (🕒	(to Ultii	nate)	Liability)	6%	Premium	Capital		
			1	(4)		(6) 🐧					(10)	(11)		
	(1)	(2)	(3) 🖊	= (2)*(D)	(5)	= (3)+(4)-(5)	(7)		(8)	(9)	= (3)+(9)	= (8)-(10)		
1	10%	0%	100.0	0.0	10.0	90.0			125.0	3.1	103.1	21.9		
2	25%	35%	90.0	8.8	28.1	70.7	15%		103.9	1.8	91.8	12.1		
3	30%	30%	70.7	7.5	37.5	40.7	15%		81.6	1.1	71.8	9.8		
4	20%	25%	40.7	6.3 2.5	28.6	18.4	15%		47.0	0.5	41.2	5.8		
5 TOTAL	15% 100%	10% 100%	18.4	2.5 25.0	20.9 125.0	0.0	159	6	21.2	0.2	18.5	2.7		
	100%	100%	1	25.0	125.0		<u>}</u>				Alloc	by Year		
$R * \sum_{t=0}^{n-1}$	$C_t * (2)$	1 + <i>r</i>)	-t-1 =	NPV	(UW I	Profit	t)			21.9			•	
R * (21.9 + 12.1 ++ 2.7) = 10										12.1	9.8	5.8		
		R	= 19.2	.%										2.7
10 September	2019									1	2	3 Year	4	5

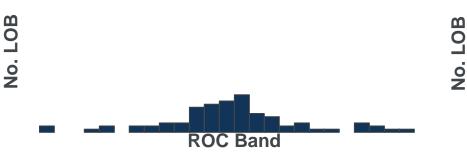
of Actuaries

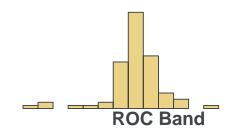
III. How will we know when we've arrived?

MAD

Validating and interpreting results

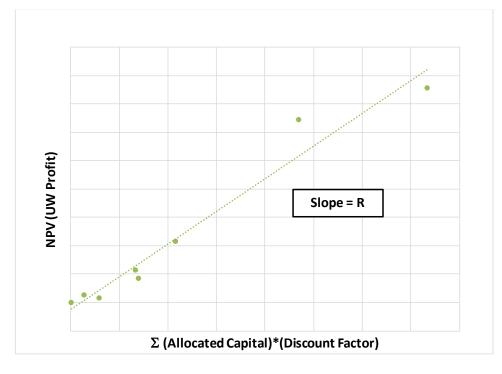
"Validation" of R

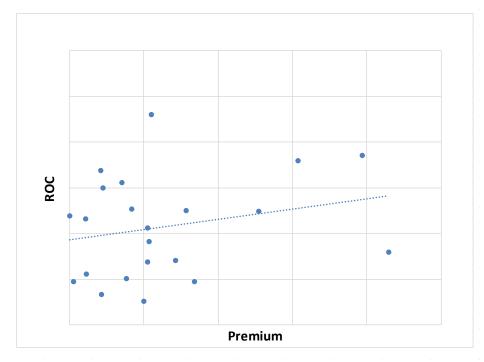

- R for individual LOB can't be validated
 - R depends on the portfolio as a whole and the methodology
- But we can have expectations for the portfolio:
 - Extreme outliers (high or low) not realistic
 - Reason: Competition/UW discipline place upper/lower bounds
 - Similar LOB should have a similar ROC
 - Reason: Comparable risk vs. reward
 - No trend in ROC vs. premium
 - But more variability expected for smaller LOB
- A good methodology will satisfy these criteria



Test 1: Fewer extreme outliers

ROC Distribution No Re-allocation


ROC Distribution *With Re-allocation*


Test 2: Efficient frontier

- A fitted line should start at the origin (no risk, no reward)
- Result depends on portfolio and ROC methodology

Test 3: No trend in R vs. premium

- Small (or large) LOB shouldn't have inherently higher/lower ROC
- But it is reasonable to expect more volatility for smaller LOB

.

and Faculty of Actuaries

IV. What are the limitations of the approach? Hazards, pitfalls and considerations

WMD

10 September 2019

ROC pitfalls & considerations

- ...of which there are many
- General
 - Capital is not legally divisible and the allocation method is a choice
 - Many assumptions are arbitrary and can yield very different ROCs
- Specific to this method (to name a few)
 - How to align reserve risk volatilities (low granularity) with UW LOB (high granularity)
 - The capital release pattern requires many simulations
 - Explaining to key stakeholders

Take away

- The first step is always the most important: choose the right metric
 - The ROC should be a *rate* of return
- Not all methodologies are equal develop *a validation toolkit* for separating the good, the bad, and the ugly

 Communication to stakeholders is key – buy-in to the results depends on buy-in to the method

The views expressed in this [publication/presentation] are those of invited contributors and not necessarily those of the IFoA. The IFoA do not endorse any of the views stated, nor any claims or representations made in this [publication/presentation] and accept no responsibility or liability to any person for loss or damage suffered as a consequence of their placing reliance upon any view, claim or representation made in this [publication/presentation].

The information and expressions of opinion contained in this publication are not intended to be a comprehensive study, nor to provide actuarial advice or advice of any nature and should not be treated as a substitute for specific advice concerning individual situations. On no account may any part of this [publication/presentation] be reproduced without the written permission of the IFoA [*or authors, in the case of non-IFoA research*].

