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Merton (2014):
Our approach to saving is all wrong.

I Monthly income, not net worth.

I Do not make employees smarter about
investments. We need smarter
communication.

I Balancing the portfolios.
I Take risk out of the portfolio once the goal is achieved.

Avoid achieving goal only to fall below if markets go
down.

I Minimum guaranteed income.

3/ 85



In this first talk of the project, we only consider
the simple lump sum case.

Hence, we only consider the last two of Merton’s
points.
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We consider four different people:

I Lisa: The risk taker

I John: The moderate risk taker

I Susan: The moderate risk averse

I James: The risk averse

5/ 85



In a power utility world, Lisa, John, Susan,
James would have parameters

ρ = −0.25, −1, −4, −10,

respectively.
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In a non-hedged power utility world without
guarantees and other safety measures the
investment in stocks would be

Lisa John Susan James

Percentage 75% 46% 19% 8%
in stocks
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In this talk we will suggest an approach where a
simple question to Lisa, John, Susan and
James will tell us what kind of risk they want.

8/ 85



We hedge by optimizing the median return given
some guarantee.
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All numbers are in 2017 - values, i.e, adjusted
for inflation.
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In later work to be presented next May 2018, we
will argue how such an inflation-hedged lower
bound is possible in our pension universe.
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I We only consider the simple lump-sum case.
I Lisa, John, Susan and James want to invest
£10, 000.

I ⇒ 30 years of investment
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We now present the simple instructions.
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THE COMMUNICATION

I Your investment has a best-case (BC) and a
worst-case (WC).

I You will never drop below your WC.
I Half-the-time you will get the BC and the

other half-of-the-time you will get an
investment result between WC and BC.

I Use a slider to see which WC suits you best.
For every WC their is a link to a BC. And the BC increases when
the WC decreases.
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Which WC will the risk taker Lisa pick?

I £3, 900 �
I £6, 400 �
I £9, 100 �
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Which WC will the risk taker Lisa pick?

I £3, 900 �X

I £6, 400 �
I £9, 100 �
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What is the corresponding BC?

I £12, 320 �
I £15, 320 �
I £16, 470 �
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What is the corresponding BC?

I £12, 320 �
I £15, 320 �
I £16, 470 �X
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Lisa’s pick:

Goal: £16, 470
Forecast: Half of the times you will achieve this

goal.

More is not possible.

Guarantee:£3, 900.
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Lisa’s median in the un-hedged world, where
she holds 75% in stocks would be

Median = £13, 496

With the new hedging strategy

Lisa’s median = £16, 470

I Lisa has increased her median by £2, 974.
I She also has a guarantee of £3, 900

(Compare to no guarantee before)
I The price is no upside above £16, 470.
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In other words:

Lisa has sold her upside above £16, 470 to
secure a guarantee and a higher median.
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John’s pick:

Goal: £15, 320
Forecast: Half of the times you will achieve this

goal.

More is not possible.

Guarantee:£6, 400.
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Susan’s pick:

Goal: £12, 320
Forecast: Half of the times you will achieve this

goal.

More is not possible.

Guarantee:£9, 100.
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James’ pick:

Goal: £10, 940
Forecast: Half of the times you will achieve this

goal.

More is not possible.

Guarantee:£9, 700.
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Lisa John Susan James

Guarantee £3, 900 £6, 400 £9, 100 £9, 700
(Floor)

Goal/Max value
(Achieved 16, 470 £15, 320 £12, 320 £10, 940

half-of-the-time)
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Note that Lisa, John, Susan and James
self-selected their risk-profile through a simple
exercise.
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Do Lisa, John, Susan and James lose anything
from this simple communication and hedging
strategy?
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Not really!
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Look at this certainty equivalent table in terms of
utility theory.
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Optimal Strategy Hedged Strategy
Investor CE CE Guarantee Goal

Lisa £12, 756 £12, 020 £3, 900 £16, 470
John £11, 643 £11, 263 £6, 400 £15, 320

Susan £10, 627 £10, 415 £9, 100 £12, 320
James £10, 280 £10, 169 £9, 700 £10, 940

Table: Comparison of different optimal strategies. Investors are assumed to
obey a power utility with parameter ρ = −0.25,−1,−4,−10, respectively.

Certainty Equivalents (CE): For which certain amount would you exchange
your uncertain terminal lump sum.
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Now let us go back to the old world of
un-hedged utility optimisation.
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What can financial miss-understanding cost?
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How much would it cost Lisa if the financial
assessment thought she was James?

I Between 5% and 10% �
I Between 10% and 15% �
I Between 15% and 20% �
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How much would it cost Lisa if the financial
assessment thought she was James?

I Between 5% and 10% �
I Between 10% and 15% �
I Between 15% and 20% �X
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How much would it cost James if the financial
assessment thought she was Lisa?

I Between 10% and 20% �
I Between 30% and 40% �
I Between 70% and 80% �
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How much would it cost James if the financial
assessment thought she was Lisa?

I Between 10% and 20% �
I Between 30% and 40% �
I Between 70% and 80% �X
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Lisa Plan John Plan Susan Plan James Plan
Lisa CE £12, 756 £12, 326 £11, 124 £10, 536
John CE £11, 023 £11, 643 £11, 023 £10, 516

Susan CE £6, 156 £9, 268 £10, 627 £10, 437
James CE £2, 388 £5, 958 £9, 879 £10, 280

Table: The impact of miss-communication
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The underlying mechanism
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I How does an optimal investment strategy look like?
I We need an objective function which we can maximize.
I Maximizing E[lump sum] might not be the best idea.
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Another perspective.
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Q: What number is halfway between 1 and 9?

James: 3
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People tend to think on a log-scale (Siegler and Booth, 2004,
Dehaene et al., 2008).

The difference between 100 and 110 is the same as the difference
between 10, 000 and 11, 000.

It’s a 10% increase in both cases.
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I So then maximize E[log(lump sum)]?
(Which is the same as maximizing your relative return)

I James might still be risk averse: He is more afraid of losses then
excited about gains.
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Smoothly increase risk aversion + keep scale invariance
⇒ power utility family:

Maximize
E[U(lump sum)]

where
U(W ) =

1

ρ
W ρ, ρ < 0
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Different power utility functions for varying ρ
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Different power utility functions for varying ρ

6000 8000 10000 12000 14000
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James' terminal wealth
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ρ optimal CE CE ρ̂ = −0.25
-0.25 £13, 404 £13, 404
-1.00 £12, 009 £11, 243
-4.00 £10, 760 £5, 582
-10.00 £10, 339 £1, 922

CE= Certainty equivalent: For which certain amount would you
exchange your uncertain terminal lump sum.
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The pension saver might not be in control of his investment strategy.

Risk-appetite misspecification can have a huge effect.
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A new idea.

Let’s start with a specific exponential utility function.
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The exponential utility function
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Now we compare it to a power utility function with parameter
ρ = −0.25.
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Exponential utility function approximating power utility function

8000 10000 12000 14000 16000 18000 20000

James' terminal wealth
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It is a good approximation if the lump sum is in the range from 7, 000
to 20, 000.
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Now we compare it to a power utility function with parameter ρ = −1.
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Exponential utility function approximating power utility function

8500 9000 9500 10000 10500 11000 11500 12000

James' terminal wealth
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power utilityρ=−1
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It is a good approximation if the lump sum is in the range from 8, 500
to 12, 000.
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...and a power utility function with parameter ρ = −10
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Exponential utility function approximating power utility function

9900 9950 10000 10050 10100

James' terminal wealth
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power utilityρ=−10
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It is a good approximation if the lump sum is in the range from 9, 900
to 10, 100
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I We seem to be able to approximate any power utility function with
one exponential utility function if the wealth range is restricted.

I The more risk averse the investor, the more we must restrict the
wealth range.

I But a risk averse investor might prefer to exclude those external
ranges anyway.
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How good is the approximation in our case?
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3-dimensional optimisation

Investor Unconstrained CRRA optimisation
ρ CEopt CEρ=−0.25

Lisa –0.25 £12,756 £12,756
John –1.00 £11,643 £11,023
Susan –4.00 £10,627 £6,156
James –10.00 £10,280 £2,388

Constrained CARA optimisation
CE GL GU C Prob. % loss
£12,556 £4,050 £60,000 £9,100 0 1.56
£11,576 £5,150 £36,300 £5,100 0 0.57
£10,621 £7,000 £19,800 £1,900 0 0.05
£10,278 £8,350 £14,600 £900 0 0.02
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2-dimensional optimisation

Investor Unconstrained CRRA optimisation
ρ CEopt CEρ=−0.25

Lisa –0.25 £12,756 £12,756
John –1.00 £11,643 £11,023
Susan –4.00 £10,627 £6,156
James –10.00 £10,280 £2,388

Constrained CARA optimisation
CE GL GU C Prob. % loss
£12,550 £4,300 £60,000 £10,000 0.00 1.61
£11,324 £6,900 £20,200 £10,000 0.21 2.74
£10,430 £8,850 £11,800 £10,000 0.63 1.85
£10,184 £9,500 £10,700 £10,000 0.69 0.93
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1-dimensional optimisation

Investor Unconstrained CRRA optimisation
ρ CEopt CEρ=−0.25

Lisa –0.25 £12,756 £12,756
John –1.00 £11,643 £11,023
Susan –4.00 £10,627 £6,156
James –10.00 £10,280 £2,388

Constrained CARA optimisation
CE GL GU C Prob. % loss
£12,017 £3,650 £16,500 £10,000 0.5 5.79
£11,264 £6,500 £15,200 £10,000 0.5 3.26
£10,416 £9,100 £12,300 £10,000 0.5 1.99
£10,171 £9,650 £11,000 £10,000 0.5 1.06
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Why the exponential utility function?
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Remember:

8000 10000 12000 14000 16000 18000 20000

James' terminal wealth

U
til

ity

exponential utility

power utilityρ=−0.25

Figure: Exponential utility function approximating power utility function

65/ 85



As a first research output of our project, Donnelly et al., 2016
developed an optimal strategy for the power utility case.

The strategy, however, turned out to be quite complicated. While
solvable, the solution spans over several lines and is arguably a
black-box.
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Theorem. Power utility constraint strategy

Donnelly et al. (2016):

Assume no inflation, if Guarantee < 10, 000 < Top, then the optimal
strategy π∗∗, i.e., the amount to put into the risky fund, is

π∗∗(t) = A[1−Φ(d+(t, P (t),Top))−Φ(−d+(t, P (t),Guarantee))]P (t),
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where

cp(t, y,GU ) = yΦ(d+(t, y,GU ))−GUe−r(T−t)Φ(d−(t, y,GU ))

pp(t, y,GL) = GLe
−r(T−t)Φ(−d−(t, y,GL))− yΦ(−d+(t, y,GL))

d±(t, y,G) =
1

σA
√
T − t

{
log(

y

G
)± 1

2
σ2A2(T − t)

}
,

A =
θ

σ(1− ρ)
,

where θ is the market price of risk, σ the standard deviation of the
risky asset and P (t) is defined as

P (t) = P (0) exp

{(
θσA− 1

2
σ2A2

)
t+ σAW (t)

}
,

and with P (0) defined as solution of

10, 000 = P (0)− cp(0, P (0), GU ) + pp(0, P (0), GL)
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The strategy for the constraint exponential utility case is quite simple:

I Every year1, put your initial amount (here: £10, 000) scaled by
the probability that you do not hit the boundaries (guaranteed
and top amount) into a risky fund.

I Put the rest into a risk-free fund.

1Technically, the strategy requires continuous trading.

69/ 85



Theorem. Exponential constraint strategy

Assume no inflation, if Guarantee < 10, 000 < Top, then the optimal
strategy π∗, i.e., the amount to put into the risky fund, is

π∗(t) = 10, 000× Pr(Guarantee < X(T ) < Top|X(t)).
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The underlying model
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In the period [0, T ], T > 0, there are two assets one can invest in.

dS0(t) = rS0(t), dS1(t) = µS1(t)dt+ σS1(t)dWt,

where µ, σ, r > 0, and S0(0) = S1(0) = 1 and W is a Brownian motion.
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Let
I Xt be the amount of capital invested in the fund at time t.
I πt be the amount invested in a risky asset, the remainder in

risk-free assets.
Hence, we have

dX(t) = r
(
X(t)− π(t)

)
dt+

(
µdt+ σ dW (t)

)
π(t)

= rX(t) dt+
(
θ dt+ dW (t)

)
σπ(t),

where θ = (µ− r)/σ is the market price of risk.
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How to find the optimal strategy
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The unconstrained case
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The unconstrained case

Optimal control theory:

Define the optimal value function,

V (t, y) = supπE [U{Y (T )}|Y (t) = y, strategy π is used ] ,

at time t given that Y (t) = y, where Y (t) = er(T−t)X(t)

The dynamics of V can be described via the
Hamilton-Jacobi-Bellman equation

sup
π

{
Vt + θσer(T−t)π(t)Vy +

1

2
σ2π(t)2e2r(T−t)Vyy

}
= 0,
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The unconstrained case

and conclude that the optimal unconstrained strategy is given by

π∗∗∗(t, y) = − θ
σ
e−r(T−t) · Vy

Vyy
,

Vt −
θ2

2
·
V 2
y

Vyy
= 0.
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The unconstrained case

Add the boundary condition

V (T, y) = − 1

γ
exp [−γy] ,

to find the unique solution

V (t, y) = − 1

γ
exp

[
−θ

2

2
(T − t)− γy

]
,

leading to the optimal unconstrained strategy

π∗∗∗(t, y) = Ce−r(T−t),

where C = θ/(γσ).
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The constraint case with top GU and floor GL
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The constraint case with top GU and floor GL

Idea: The optimal constraint strategy should be an optimal
unconstrained strategy minus a call option plus a put option with
strike price GU and GL respectively.
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The constraint case with top GU and floor GL

Define the process

P (t) = P (0) +R
(
θt+W (t)

)
,

R = Cσ = θ/γ,
i.e., the optimal unconstrained portfolio at time t but starting with
different starting wealth P (0).
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The constraint case with top GU and floor GL

Step 1
Show that the terminal wealth

Y ∗(T ) =


GL if P (T ) < GL

P (T ) if GL ≤ P (T ) ≤ GU

GU if P (T ) > GU

is feasible and optimal (cf. Grossman and Zhou (1996)).

Note that Y ∗(T ) equals P (T ) minus a terminal call option
plus a terminal put option.
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The constraint case with top GU and floor GL

Step 2
Determine the dynamics (i.e.

∫ t
0
Y ∗(s)ds) of the optimal

portfolio

Y ∗(t) = EQ(max{GL,min{GU , Pe(0)

+R
(
WQ(t) +

√
T − t · Z

)
}}|FQ

t ),

where Q is the martingale measure making
WQ(t) = W (t) + θt a martingale.

This will lead to the optimal strategy π∗
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Research outlook

84/ 85



Research outlook

Accumulation Phase
I Market timing
I A risk-free inflation fund

Decumulation Phase
I Monthly income, not net worth

In both cases
I Risk sharing principal
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