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Abstract 

This paper discusses how to derive a credibility weight between exposure- and 
experience-driven rates for excess of loss reinsurance.  The exposure rate comes from 
a Poisson-Pareto model, each with a prior Gamma distribution. 
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1. Introduction 

Rating excess of loss (XoL) reinsurance can be performed by considering the recent 
claims of the reinsured (“experience-rating”) or by comparing the risk profile against 
a benchmark (“exposure-rating”).  Rarely do the two methods agree on a rate.  
Sometimes there are good reasons why one method does not apply in a given 
circumstance (for example a significant change in the risk profile effectively 
invalidating the experience-rating method).  But in the remaining cases there is no 
valid reason why a method has nil credibility and the other full credibility. 

This paper builds on work published in papers by Buhlmann (1967) and Patrik & 
Mashitz (1990), which use least squares credibility and apply it to numbers of excess 
claims.  The work is extended in this paper to aggregate claims to XoL layers.  
Aggregate loss features, such as inner aggregate deductibles, aggregate limits, 
reinstatement premiums and profit commissions are not considered in this paper. 

The paper assumes readers are familiar with experience-rating and exposure-rating for 
XoL reinsurance. 
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The rest of this paper is in five sections.  First, it formulates the problem, and 
introduces the notation.  Then it summarises the work on least squares credibility and 
excess probability in claim numbers, using a Bayesian Gamma/Poisson credibility 
model.  In Section 4, the paper considers a suitable Bayesian credibility model for 
claim severity.  In Section 5, the paper uses claim numbers and claim severity in a 
combined model of Bayesian credibility.  Finally, practical constraints are considered 
for when experience- and exposure-rating methods have already been used together. 

2. The problem 

Reinsurance rating tries to estimate the risk of a loss to a XoL reinsurance layer, with 
deductible D and upper limit U, i.e. a layer “(U-D) xs D”.  The risk of loss from the 
ground-up (FGU) is governed by a parameter θ (or parameter set Θ).  In setting up the 
problem initially, we shall keep to the uni-parameter case, θ. 

The a priori assumption is that the parameter has a given distribution, giving the 
claim distribution mean µ(θ) and variance σ2(θ), conditional on θ.  There are also 
observed a series of claims Xi, i = 1, …, N, which are used to give a posterior 
estimate, µ(θ)|X1, …, XN.  The Xi’s are assumed to be independent and identically 
distributed.  The classic estimator is the mean E[µ(θ)|X1, …, XN], which corresponds 
to the expected least squares deviation.  The number of observations, N, is itself a 
random variable, which we assume is independent of the claim sizes and to have its 
own prior and posterior distributions. 

The paper considers the credibility best linear estimate under quadratic loss of the 
Bayesian posterior mean, and then extends the problem to the excess layers.  A linear 
estimate is one of the form Xβα + . 

3. Least squares credibility and Bayesian excess layer claim counts. 

The following theorem and proof are taken from Buhlmann (1967): 

Theorem 3.1 The best linear estimator under quadratic loss of the mean of µ(θ) 
within the problem set out above is the credibility estimate: 
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Proof: To estimate the mean of µ(θ) using a linear estimator under quadratic 
loss, the amount that we are trying to minimise is 2)]([ θµβα −+ XE , 
which can be rewritten as 22 ))](([)]()1([ θµβθµβα −+−− XEE . 
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Differentiation with respect to β and setting the derivative equal to 
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The Xi are independent and identically distributed, from which it 
follows that: 
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Putting Z = β gives the credibility estimate in the form as required. 

 

Patrik & Mashitz (1990) apply Buhlmann’s theorem to the number of claims per year 
adjusted for inflation, IBNR and relative exposure as follows. 

It is assumed that N, the number of claims, has a Poisson distribution with parameter 
θ, which has a prior Gamma distribution with parameters (a, b).  It is also assumed 
that the k years of claims have observed number of claims n1,…, nk and m = Σjnj. 

Immediately we can state that 

• the exposure-rating for number of claims is E[N|θ] = E[θ] = a/b, and 

• the experience-rating is N = m/k. 

Lemma 3.2 The Bayesian posterior distribution is also Gamma with parameters 
(a+m, b+k). 

Proof: N|θ ~ Poi(θ), so 
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This is the form of a Gamma distribution with parameters (a+m, b+k) 
as required. 

 



The following six results, from Theorem 3.3 to Corollary 3.8 inclusive, are from 
Patrik & Mashitz (1990). 

Theorem 3.3 Under the assumed circumstances described above, the best linear 

estimate of N is the credibility form
b
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and this is also the mean of the Bayesian posterior distribution. 

Proof: The general form of the credibility estimate follows directly from 
Buhlmann’s theorem (Theorem 3.1 above), noting the exposure-rating 
and experience-rating above. 

The form of Z follows from noting that the number of observed data is 
the number of years, k, that for a Poisson distribution with parameter θ 
µ(θ) = θ and σ2(θ) = θ and that the Gamma prior distribution with 
parameters (a, b) has mean a/b and variance a/b2. 

To prove that this is the mean of the Bayesian posterior, denoted 
E[N|θ, m, k, a, b], we note, from Lemma 3.2, that the posterior 
distribution is Gamma with parameters (a+m, b+k) so: 
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which is the form required. 

 

Theorem 3.4 The unconditional distribution of N is a Negative Binomial distribution 
with parameters (a, b/(1+b)). 

Proof: If fN(n) represents the unconditional distribution of N, then 
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which is the form of a Negative Binomial with parameters (a, b/(1+b)) 
as required. 

 

To apply the credibility results to excess layers, denote ND for the number of claims 
that exceed D and qD for the probability that a given FGU claim exceeds D. 

In the special case where qD is a fixed, known ratio in terms of D, the following 
lemma and theorem are applicable. 



Lemma 3.5 ND is also Poisson with parameter qDθ. 
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Within the summation, the first probability inside the summation is 
exactly the definition of the Negative Binomial distribution with 
parameters (j-n, qD).  Hence: 
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which is the form of the Poisson as required. 

 

Define θD = qDθ. 

Lemma 3.6 θD has a Gamma distribution with parameters (a, b/qD). 
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θD = qDθ, so θ = 1/qD.θD and dθ = 1/qD.dθD. 
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as required. 

 

Returning to the observed claim numbers, for the k years of claims denote the number 
of claims that exceed D in each year be nD,1,…, nD,k and mD = ΣjnD,j. 

As before, we have the following estimates for ND: 

• the exposure-rating is E[N|θD] = a/(b/qD), and 

• the experience-rating is N = mD/k. 



Theorem 3.7 Under the preceding conditions, the best linear estimate of ND is the 

credibility form
D
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this is also the mean of the Bayesian posterior distribution. 

Proof: By applying Lemmas 3.5 and 3.6 to Theorem 3.3, replacing the 
variable θ with θD and parameter b with b/qD. 

 

Corollary 3.8 If qD is strictly monotonic decreasing in D, and d1<d2, then Zd1>Zd2. 

Proof: Since
D
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Theorem 3.9 The unconditional distribution of numbers of claims exceeding D is 
Negative Binomial with parameters (a, b/(qD+b)). 

Proof: By applying Lemmas 3.5 and 3.6 to Theorem 3.4, replacing the 
variable θ with θD and parameter b with b/qD. 

 

If we relax the requirement that qD is known and fixed in terms of just D, i.e. we let 
qD become a function of some risk parameter η, then Lemmas 3.5 and 3.6 no longer 
apply. 

Patrik & Meshitz (1990) do investigate this case though, by assuming that θ and η are 
independent (which is reasonable), as follows. 

Lemma 3.10 If θ and η are independent, the conditional expectation of the mean and 
variance of θD are both are equal to b
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Proof: For the conditional expectation of the mean: 
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For the conditional expectation of the variance, E[σ2(θD|η)], we note 
that the conditions of Lemma 3.5 apply, since we are considering θD 
conditional on η and for a given risk parameter the probability of a 
claim exceeding D is known.  Hence, θD|η is Poisson and the variance 
of θD|η is the same as the mean. 

 

The conditional variance, however, is different. 



Lemma 3.11 If Y and Z are independent random variables, then: 

Var[Y.Z] = E[Y]2.Var[Z]+E[Z]2.Var[Y]+Var[Y].Var[Z]. 

Proof:  By definition of Var[Y.Z]: 
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Lemma 3.12 The conditional variance of the expected value of θD can be written as 
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as required. 

 

Theorem 3.13 The best linear estimate of ND is the credibility form 
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Note: for a random variable Y, CV[Y] is the coefficient of variation, 
defined as Var[Y]½/E[Y]. 

Proof: As before, the general form of the credibility estimate follows directly 
from Buhlmann’s theorem (Theorem 3.1).  The experience-rating is as 
before, and the exposure-rating follows from the factorisation of the 
conditional mean in Lemma 3.10. 

Note that b
aqEE DD ⋅= )]([])([ 2 ηηθσ  from Lemma 3.10 and, by 

Lemma 3.12: 
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From Theorem 3.1, the credibility factor can be written 
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as required. 

 

Hence the credibility factor reduces as the expected value of qD(η) increases, i.e. with 
reducing excess.  However, the coefficient of variation is unknown so its square may 
decrease faster with D than the expected value increase divided by (a + 1). 

This represents the limit of what can be stated reasonably using just numbers of 
claims – anything else requires limiting assumptions regarding the form and choice of 
claim severity, i.e. the qD(η) factor.  These are explored further in Patrik & Meshitz 
(1990).  

4. Bayesian claim severity for excess layers. 

Probably the most common severity curve used in reinsurance exposure-rating is the 
Pareto curve.  There are many versions, involving differing number of parameters and 
slightly differing forms of the probability density function.  We shall concentrate on 
one, as set out below. 

Further, there is the question of which parameters, or both, should be the subject of a 
prior distribution, and what form that distribution shall take.  In the case of the Pareto, 
for exposure-rating reinsurance, we are concerned with the proportion of a risk that 
falls into a reinsurance layer.  Hence, the shape parameter is our primary concern. 

We are therefore in a position to state our assumptions concerning the problem 
outlined in Section 2, but for a fixed number of observed claims.  In section 5, we 
shall generalise the situation for reinsurance excess of loss layers with a random 
number of observed claims. 



• There are n claims, X1,…, Xn, which are independent and identically 
distributed with Pareto distribution parameters (ψ, λ). 

• The Pareto has the form given by the distribution function: 
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• ψ has a prior distribution of a Gamma variable with parameters (s, t). 

Let us consider the posterior distribution of ψ and the unconditional distribution of X.  
The following result for FGU claims is also to be found in Hesselager (1993) although 
there it is specific to reinsurance layers only: 

Theorem 4.1 The Bayesian posterior distribution is also Gamma with parameters 
(s+n, t+Σiln(λ+xi)-nlnλ). 

Proof: X|ψ ~ Par(ψ,λ), so 
1

)(
+

⎟
⎠
⎞

⎜
⎝
⎛

+
=

ψ

λ
λ

λ
ψθ

x
xf X , λ > 0, ψ > 0, x > 0. 

ψ ~ Γ(s, t), so 
)(

)(
1

s
etyf

sts

Γ
=

−−

Ψ
ψψ

, s > 0, t > 0, ψ > 0. 

fΨ|X(ψ| x1, …,xn), the Bayesian posterior distribution of ψ, has the 
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This is the form of a Gamma distribution with parameters 
(s+n, t+Σiln(λ+xi)-nlnλ), as required. 

 

The unconditional distribution has a slightly different form from the original form. 



Theorem 4.2 The unconditional distribution of X is λ(eY-1) where Y is a Pareto 
distribution with parameters (s, t). 

Proof: If fX(x) represents the unconditional distribution of X, then 
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Define y =ln[(λ+x)/λ], so x = λ(ey-1) and dx = λeydy.  Hence 
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which is the Pareto form in y as required. 

 

The result for the unconditional distribution is hardly intuitive.  It is however very 
practical: we now have closed forms for the distributions of the number of claims and 
the severity of claims given Gamma prior distributions. 

Let us consider now claims to excess layers.  Let XD be the random variable defined 
by the excess of X over D, if any: 
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The following result is well-known and very useful: assuming a Pareto distribution, 
the shape of the distribution of the excess claims is the same shape as the distribution 
of the FGU claims.  Further, once we know the position parameter of the FGU claims, 
the position parameter of the excess claims is the same parameter with the addition of 
the excess point. 



Theorem 4.4 XD has a Pareto distribution with parameters (ψ, λ+D). 

Proof: From the definition of XD: 
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as required. 

 

The result means that whatever credibility estimate we can derive using FGU claim 
severity, we can extend to excess layers. 

However, we cannot, in practice, apply the credibility estimate process in Section 3 
straight to claim severity.  The observed claims are not just random in size but also in 
the number of observations. 

5. Bayesian credibility for excess layer claims 

For limited excess layers, we are likely to have FGU claims above some threshold, or 
censor point, T.  We could aim to model all FGU claims, but there is nothing to gain 
for rating excess of loss or credibility weighting in doing so.  Therefore, where we 
talk about FGU claims, we are talking about only the subset of FGU claims that 
exceed T, with no loss of meaning. 

We are now in a position to state the assumptions for the full problem for aggregate 
claims amounts to excess of loss reinsurance: 

• The number of FGU claims a year, N, is distributed according to a Poisson 
distribution, parameter θ. 

• θ  has a prior Gamma distribution with parameter (a, b). 

• The claim severities are independent, of each other and of N, and identically 
distributed from a Pareto with parameters (ψ, λ). 

• ψ has a prior Gamma distribution with parameters (s, t). 

• There are k years of claims data, with observed number of claims n1,…,nk, 
m = Σjnj and observed claim sizes in year j are x(j)

1,…,x(j)
nj . 



• We are trying to price a limited excess of loss layer of upper limit U and 
deductible D, i.e. “(U-D) xs D”. 

We can state the form of the Bayesian posterior joint distribution of θ and ψ, 
fΘ,Ψ|N,X(θ, ψ| nj, x(j)

1,…,x(j)
nj,, j=1,…,k) as follows, using the independence of N and X: 
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Hence the Bayesian posterior joint distribution is the product of the Bayesian 
posterior distributions of the claim numbers and the claim severities that we saw in 
previous sections. 

For simplicity, we can write yij = ln((λ+x(j)
i)/λ), so that the conjugate pairs of prior and 

posterior parameters are 

Prior Posterior 

a a+m 

b b+k 

s s+m 

t t+Σijyij 

This means we can write down the prior distribution of claim numbers to the excess 
layer from Lemma 3.6 as (a, b/qD) where qD = P(X > D) = [λ/(λ+D)]ψ. 

Let us define XD as the claim severity to the layer, so 

⎪
⎩

⎪
⎨

⎧

≤
≤<−

>−
=

DX
UXDDX

UXDU
X D

 ,          0
 ,  
 ,  

 

In order to create the linear best estimate of the mean of the aggregate layer claims 
amount Z, according to Theorem 3.1 we need to calculate expectations of the first two 
central moments based on the prior information. 



Let Θ denote the parameter pair (θD, ψ), where θD = θ [λ/(λ+D)]ψ, and write the dth 
central moment of the distribution of aggregate claims Z given Θ as ed(Θ).  Then we 
need to find E[ed(Θ)] for d = 1,2. 

The following result is quoted in Hesselager (1993). 

Lemma 5.1 The conditional moments about the origin in this problem can be 
calculated recursively as 
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Dj XE= is the jth central moment of a single claim 

conditional on the value of ψ. 

Proof See Goovaerts et al (1984), p12. 

 

Hence, we can state the first two central moments in terms of ][)( ψψµ j
Dj XE= . 

Lemma 5.2 e1(Θ) = θDµ1(ψ) and e2(Θ) = θDµ2(ψ). 

Proof e1(Θ) = E[Z|Θ] = E[ND|θ,ψ]E[XD|ψ] = θD µ1(ψ), as ND and XD are 
independent. 

e2(Θ) = E[(Z - e1(Θ))2|Θ] = E[Z2|Θ]- e1(Θ)2 

From Lemma 5.1 
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Therefore e2(Θ) = θDµ2(ψ) as required. 

 

Lemma 5.3 E[e1(Θ)] = (a/b)E[[λ/(λ+D)]ψ µ1(ψ)], and 
E[e2(Θ)] = (a/b)E[[λ/(λ+D)]ψ µ2(ψ)]. 

Proof Follows from the expressions for e1(Θ) and e2(Θ) in Lemma 5.2, using 
the independence of θ and [λ/(λ+D)]ψ µd(ψ) for d = 1,2. 

 

Lemma 5.3 implies we need to concentrate on the central moments of the individual 
claims given the assumed prior distribution.  The following results, Lemma 5.4, 
Lemma 5.5 and Theorem 5.6, are from Hesselager (1993).  Note that the special cases 



of ψ taking an integer value are ignored (here and by Hesselager) because, under its 
prior distribution, P(ψ = j) is infinitesimal for any real value j so the special cases may 
be safely ignored when considering moments of expectations of ψ. 

 Lemma 5.4 µd(ψ) may be expressed as 
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Proof If we condition on the ranges X ≤ D, D < X ≤ U and X > U, then 
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Bringing together terms in the summations gives: 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛

+
+

−
−

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛

+
+

−
−

++−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

+
+

+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛

+
+

−
−

+−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

−

=

−

=

−

−

=

−

−−

=

−

∑∑

∑

∑

jd

j

jdd
d

j

jdd

jd

j

djd

jjd

j

djd
d

U
D

j
j

j
d

D
j
d

D

U
D

j
jD

j
d

U
D

U
D

j
D

j
d

ψ

ψ

ψψ

λ
λ

ψ
λλ

λ
λ

ψ
λ

λ
λ

λ
λ

ψ
ψλψµ

1)1()()1()(

11)()1(

1)()1()(

00

0

0

 



The first summation is the expansion of (1 – 1)d and hence equals zero, 
as required. 

 

Lemma 5.5 µd(ψ) may be further rewritten as 
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Proof We can expand [(λ+D)/(λ+U)]ψ-j as an exponential: 
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Substituting this into the form of µd(ψ) in Lemma 5.4 gives: 
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The last summation, for j = 1,…, d, in the expression is the form of 
gd(n-r) as defined. 

Note that for integer m < d, gd(m) = 0.  Therefore we can change the 
ranges of summation as n = d, d+1,…, ∞ and r = 0,1,…, n-d, as 
required. 

 

Theorem 5.6 E[ed(Θ)] for d = 1,2 is given by: 
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Proof From Lemma 5.4: 
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Substituting this into the expression for E[ed(Θ)] for d = 1,2 from 
Lemma 5.3 gives: 



⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

+
−−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

+
+

+=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

+
+

+⎟
⎠
⎞

⎜
⎝
⎛

+
=Θ

∑∑

∑∑

−

=

∞

=

−

=

∞

=

r
dn

r
d

r

dn

n
d

dn

r
d

rr

dn

n
d

d

D
Erng

r
n

nD
UD

b
a

rng
r

n
nD

UD
D

E
b
aeE

ψ
λ

λ
λ
λλ

ψ
λ
λλ

λ
λ

ψ

ψ

0

0

)()1(
1

!
1ln)(

)()1(
1

!
1ln)()]([

 
ψ is Gamma distributed with parameters (s, t), so: 
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as required. 

 

In order to get the final expectation we need, E[e1(Θ)2], we need new versions of 
Lemmas 5.3 and 5.4. 

Lemma 5.7 e1(Θ)2 can be written as: 
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Proof From Lemma 5.3, e1(Θ) = (a/b)[λ/(λ+D)]ψ µ1(ψ) 

Substituting in the result from Lemma 5.4: 
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which when squared gives the required result for e1(Θ)2. 

 

For a given function f: 
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If s + u > 0 and t + v > 0, the following holds true for any j > 0: 
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So, we can build an expression for E(ψ-j|ψ > x; s, t), with integer j > 0, iteratively as 
follows: 

),;(1
)(

1),;(
1

0 tsxd
s

ettsxE
x

sts

Γ−=
Γ

=> ∫
∞ −−

ψψψψ
ψ

 

where Γ(x; s, t) denotes the gamma cumulative distribution function: 
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The above collapses if s is an integer less than or equal to j, when the iteration will 
involve the integral: 
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In this case, substituting z = tlnψ results in the pdf of a Gumbel distribution, which 
can be evaluated, and therefore the iteration should start at j = s rather than j = 0. 

Let us denote Ωj(x; s, t) for E(ψ-j|ψ > x; s, t) defined iteratively as above for integer 
j > 0.  So we can state: 
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Theorem 5.8 E[e1(Θ)2] can be written as: 
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where λD = (λ + D)/λ and λU = (λ + U)/λ. 

Proof From Lemma 5.7: 
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Conditioning on the value of ψ: 

⎪⎭

⎪
⎬
⎫

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
>⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛

+
+

−
−

⎟
⎠
⎞

⎜
⎝
⎛

+
+

⎟
⎠
⎞

⎜
⎝
⎛

+
−

⎪⎩

⎪
⎨
⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
>⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛

+
+

−
−

⎟
⎠
⎞

⎜
⎝
⎛

+
Γ−⎟

⎠
⎞

⎜
⎝
⎛ +

+

⎪⎭

⎪
⎬
⎫

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
<⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛

+
+

−
−

⎟
⎠
⎞

⎜
⎝
⎛

+
+

⎟
⎠
⎞

⎜
⎝
⎛

+
+

⎪⎩

⎪
⎨
⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
<⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛

+
+

−
−

⎟
⎠
⎞

⎜
⎝
⎛

+
−Γ⎟

⎠
⎞

⎜
⎝
⎛ +

=

Θ

−
−

−

∞

=

−
−

−−

∞

=

−

∑

∑

11
1

1

11
1

1)],;1(1[)(

11
1

1

11
1

1),;1()(

])([

112

1

122

112

0

122

2
1

ψ
λ
λ

ψ
ψ

λ
λ

λ
λ

ψ
λ
λ

ψ
ψ

λ
λλ

ψ
λ
λ

ψ
ψ

λ
λ

λ
λ

ψ
λ
λ

ψ
ψ

λ
λλ

ψψψ

ψψ

ψψψ

ψψ

U
D

U
D

D
E

U
D

D
Ets

b
Da

U
D

U
D

D
E

U
D

D
Ets

b
Da

eE

j

j

j

j

j

j

 

We can expand [(λ+D)/(λ+U)](ψ-1) as an exponential: 
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Substituting in this expansion gives: 
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Expanding out (1 – ψ)n-1: 
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ψ is Gamma distributed with parameters (s, t), so: 
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So, using Ωj(x; s, t) defined as before and with λD = (λ + D)/λ and 
λU = (λ + U)/λ: 
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which can be rearranged as required. 

 

Now we have all the elements to a credibility weighted rate.  Recall from 
Theorem 3.1 that the best linear estimate under quadratic loss is the Bayesian 
credibility estimate )]([)1( θµEZXZ −+ , where 
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E[e1(Θ)] and E[e2(Θ)] are set out in Theorem 5.6 and E[e1(Θ)2] is set out in 
Theorem 5.8. 

6. Practical considerations 

We have an exact formulation to calculate the Bayesian credibility estimate from 
exposure and experience rates for an excess of loss layer.  It is not simple or elegant 
and, with five separate infinite series summations for E[e1(Θ)2] alone, it can never be 
computed exactly.  However, it does allow significant precision using a macro, 
calculating to as many terms as needed.  In practice, the macro can be stopped after 
about 10 terms for each summation with no significant loss of precision. 

However, in the real world there are many instances when exposure and experience 
methods do interact already, blurring the credibility weighting, including: 

• The exposure curve has been calibrated from revalued historic claims, which 
may include claims data from the contract being rated. 



• One way of rating higher layers is by applying ILF factors from a lower layer 
that has been rated using experience methods, so involving a combination of 
experience and exposure methods. 

• The experience methods may use an initial estimate of the loss ratio from an 
exposure method. 

• The exposure method may adjust the rate to allow for an estimate of the 
insurer’s profitability based on a reserving exercise. 

Anyone using the credibility weighting factors set out here will need to keep these 
practical considerations in mind. 
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