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ABSTRACT 

This paper will back-test the popular over-dispersed Poisson (ODP) bootstrap of the paid chain-ladder model, as 

detailed in England and Verrall (2002), using real data from hundreds of U.S. companies, spanning three decades. 

The results show that this model produces distributions that underestimate reserve risk. Therefore, we propose two 

methods to increase the variability of the distribution so that it passes the back-test. In the first method, a set of 

benchmark systemic risk distributions are estimated by line of business that increase the variability of the 

bootstrapped distribution. In the second method, we show how one can apply a Wang Transform to estimate the 

systemic bias of the chain-ladder method over the course of the underwriting cycle.  
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1. INTRODUCTION 

 

Reserve risk is one of the largest risks that non-life insurers face. A study done by A.M. Best 

(2010) identified deficient loss reserves as the most common cause of impairment1 for the U.S. non-

life industry in the last 41 years. It accounted for approximately 40% of impairments in that period. 

This, as well as encouragement from Solvency II regulation in Europe, has resulted in the growing 

popularity of the estimation of reserve distributions. 

 

The over-dispersed Poisson (ODP) bootstrap of the chain-ladder method, as described in 

England and Verrall (2002) is one of the most popular methods used to obtain reserve distributions.2 

In the rest of this paper, we will simply refer to this as the “bootstrap model.”  

 

Before relying on a method to estimate capital adequacy, it is important to know whether the 

method “works.”  That is, is there really a 10% chance of falling above the method’s estimated 90th 

percentile? There have been many papers on different ways to estimate reserve risk, but very few 

papers on testing whether these methods work, and even fewer of these papers test the methods using 

real (as opposed to simulated) data.  

 

In this paper, we test if the model works by back-testing the bootstrap model using real data 

spanning three decades on hundreds of companies. This paper differs from other papers on this topic 

to date because: 

 

 We use real data, rather than simulated data. 

 We test the reserve distribution in total – the sum of all future payments, not just the next 

calendar year’s payments. 

 We test the distribution over many time periods — this is important due to the existence of 

the reserving cycle. 

 We test multiple lines of business. 

 

We suspect that other papers have not attempted this due to a lack of data of sufficient depth 

and breadth. In contrast, we have access to an extensive, cleaned U.S. annual statement database, as 

described in Section 3. 

                                                
1
 A.M. Best defines an impairment to be when the regulator has intervened in an insurer’s business because they are 

concerned about its solvency. 
2
 In 2007 a survey of the members of the Institute of Actuaries (U.K.), it was identified it as the most popular method. 
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2. SUMMARY OF EXISTING PAPERS 

 

There have been a limited number of papers on the back-testing of reserve risk methods. 

Below is a summary of two such papers. 

General Insurance Reserving Oversight Committee (2007) and (2008) 

In 2007 and 2008, the General Insurance Reserving Oversight Committee, under the Institute 

of Actuaries in the U.K., published two papers detailing their testing of the Mack and the ODP 

bootstrap models. They tested these models with simulated data that complied with all the 

assumptions under each model. The ODP bootstrap model tested by the committee is the same as the 

bootstrap of the paid chain-ladder model being tested in this paper, as detailed in England and Verrall 

(2002). The results showed that even under these ideal conditions, the probabilities of extreme results 

could be under-stated using the Mack and the ODP bootstrap models. The simulated data exceeded 

the ODP bootstrap model’s 99th percentile between 1% and 4% of the time. The 1% result was from 

more stable loss triangles.  The simulated data exceeded the Mack model’s 99th percentile between 

2% and 8% of the time. 

 

The Committee also tested a Bayesian model (as detailed in Meyers (2007)) with U.K. motor 

data (not simulated data). The test fitted the model on the data excluding the most recent diagonal, 

and the simulated distributions of the next diagonal are compared to the actual diagonal. The model 

allows for the error in parameter selection that can help overcome some of the underestimation of 

risk seen in the Mack and ODP bootstrap models. However, “it is no guarantee of correctly 

predicting the underlying distribution.” 

Meyers, G., Shi, P. (2011) “The Retrospective Testing of Stochastic Loss Reserve Models”  

This paper back-tests the ODP bootstrap model as well as a hierarchical Bayesian model, 

using commercial auto liability data from U.S. annual statements for reserves as of December 2007. 

Two tests were performed. The first was to test the modeled distribution of each projected 

incremental loss for a single insurer. The second was to test the modeled distribution of the total 

reserve for many insurers, which is very similar to the test in this paper, however limited to only one 

time period (reserves as of December 2007). They conclude: “[T]here might be environmental 

changes that no single model can identify. If this continues to hold, the actuarial profession cannot 

rely solely on stochastic loss reserve models to manage its reserve risk. We need to develop other 

risk management strategies that do deal with unforeseen environmental changes.” 
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3. DATA 

 

The data used for the back-testing are from the research database developed by Risk 

Lighthouse LLC and Guy Carpenter. In the U.S., (re)insurers file annual statements each year as of 

December 31. The research database contains annual statement data from the 21 statement years 

1989 to 2009.3 Within the annual statement is a Schedule P that, net of reinsurance, for each line of 

business, provides the following: 

 

 A paid loss triangle by development year for the last 10 accident years 

 Booked ultimate loss triangle by year of evaluation, for the last 10 accident years, showing 

how the booked ultimate loss has moved over time 

 Earned premium for the last 10 accident years 

Risk Lighthouse has cleaned the research database, by: 

 Re-grouping all historical results to the current company grouping as of December 31, 2009 

to account for the mergers and acquisitions activities over the past 31 years. 

 Restating historical data (e.g., under new regulations a previous transaction does not meet the 

test of risk transfer and must be treated as deposit accounting). 

 Cleaning obvious data errors such as reporting the number not in thousands but in real 

dollars. 

For the purposes of our back-testing study, we refined our data as follows: 

 We used company groups rather than individual companies since a subsidiary company cedes  

business to the parent company or sister companies and receives its percentage share of the 

pooled business. 

 To ensure we had a reasonable quantity of data to apply the bootstrap model, we used up to 

100 of the largest company groups for each line of business. For each line we began with the 

largest
4
 100 company groups and removed those with experience that cannot be modeled due 

to size or consistency (some companies are missing random pieces of data). The resulting 

number of companies ranges from a high of 78 companies for Private Passenger Auto, to a 

low of 21 companies for Medical Professional Liability.
5
 

 We used losses net of reinsurance, rather than gross. As a practical issue, the paid loss 

triangles are only reported net of reinsurance, and this also avoids the inter-company pooling 

                                                
3
 The database is updated annually 

4
 Size was determined by average premium from accident years 1989 to 2010 

5
 To clarify, there was an average of 78 companies per accident year for Private Passenger Auto and an average of 21 

companies per accident year for Medical Professional Liability. 
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and possible double counting issue of studying gross data for company groups. Additionally, 

loss triangles gross of reinsurance can be created, but this data covers around half of the time 

span of the data net of reinsurance. 

 We concentrated on the following lines of business: 

1. Homeowners (HO) 

2. Private Passenger Auto (PPA)  

3. Commercial Auto Liability (CAL) 

4. Workers Compensation (WC) 

5. Commercial Multi Peril (CMP) 

6. Medical Professional Liability — Occurrence and Claims Made (MPL) 

7. Other Liability — Occurrence and Claims Made (OL) 

 

The Other Liability and Medical Professional Liability lines have only been split into Occurrence 

and Other Liability subsegments since 1993. Therefore, to maintain consistency pre- and post-1993, 

we have combined the two subsegments for these lines.  

4. THE METHOD BEING TESTED 

 

We are testing the reserve distribution created using the ODP bootstrap of the paid chain-ladder 

method, or simply the “bootstrap model” as described in Appendix 3 of England and Verrall (2002). 

We feel it is the most commonly used version of the model. How it specifically applies in our test is 

outlined below, and the steps with a numerical example are shown in Appendix A.  

1. Take a paid loss and ALAE, 10 accident year by 10 development year triangle. 

 

2. Calculate the all-year volume-weighted average age-to-age factors. 

 

3. Estimate a fitted triangle by first taking the cumulative paid loss and ALAE to date from (1).  

 

4. Estimate the fitted historical cumulative paid loss and ALAE by using (2) to undevelop (3). 

 

5. Calculate the unscaled Pearson residuals,  (from England and Verrall (1999)). 

 

 

 

where  

 = incremental actual loss from step (1) and 

 = incremental fitted loss from step (4). 
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6. Calculate the degrees of freedom and the scale parameter: 

 

 

where 
 = degrees of freedom 

 = number of incremental loss and ALAE data points in the triangle in step 1, 
and 

 = number of parameters in the paid chain-ladder model (in this case, 10 
accident year parameters and 9 development year parameters). 

 

. 

 

7. Adjust the unscaled Pearson residuals ( calculated in step 5: 

. 

 

8. Sample from the adjusted Pearson residuals  in step 7, with replacement. 

 

9. Calculate the triangle of sampled incremental loss . 

 

. 

 

10. Using the sampled triangle created in 9, project the future paid loss and ALAE using the paid 

chain-ladder method. 

 

11. Include process variance by simulating each incremental future loss and ALAE from a Gamma 

distribution with the following: 

 

mean = projected incremental loss in step 10, and 

variance = mean x scale parameter from step 6. 

 

We assume that each future incremental loss is independent from each other. Note that 

theoretically we assume an over-dispersed Poisson distribution; however, we are using the 

Gamma distribution as a close approximation. 

 

12. Estimate the unpaid loss and ALAE by taking a sum of the future incremental losses from step 

(10). 
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13. Repeat steps 8 to 12 (in our case, 10,000 times to produce 10,000 unpaid loss and ALAE 

estimates resulting in a distribution). 

 

It is important to note that we are only testing the distribution of the loss and ALAE that is unpaid in 

the first 10 development years. This is to avoid the complications in modelling a tail factor. 

5. BACK-TESTING 

5.1  Back-testing as of December 2000 
 

The steps in our back-testing are detailed below. First, we detail the steps for one insurer at one 

time period and then expand this to multiple insurers over many time periods. 

1. Create a distribution of the unpaid loss and ALAE by using the bootstrap model as of 

December 2000, as detailed in the prior section 4, using Schedule P paid loss and ALAE data 

for a particular company A’s homeowners book of business.  

 

2. Isolate the distribution of unpaid loss and ALAE for the single accident year 2000, as shown 

in Figure 1. We do this so that we can test as many time periods as possible. 

 

Figure 1 

Company A’s distribution of unpaid loss & ALAE, net of reinsurance as of 12/2000 

Data in $ millions 

 
 

3. The unpaid loss and ALAE is an estimate of the cost of future payments. Eventually, we will 

know how much the actual payments cost. In this case, the actual payments made total $38 

million
6
 (sum of the payments for accident year 2000 from development periods 24 to 120). We 

call this the “actual” unpaid – what the reserve should have been, with perfect hindsight. This 

falls at the 91
st
 percentile of the original distribution. 

                                                
6
 We have scaled all the numbers shown in this example by the same factor, to disguise the company. 
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Figure 2 

Company A’s distribution of unpaid loss & ALAE, net of reinsurance as of 12/2000 

Data in $ millions 

 

 

 

 

 

 

 

  

 

 

4. We can repeat steps 1 to 3 for another 74 companies. Some of the percentiles for these companies 

are listed in Figure 3.  

 

Figure 3 

Percentile where the actual unpaid falls in the distribution created as of 12/2000, by company. 

 Company Percentile 

Company A 91% 

Company B 55% 

Company C 88% 

Company D 92% 

Company E 39% 

Company F 75% 

Company G 67% 

…  … 

 

Results 

If the bootstrap model gives an accurate indication of the probability of the actual outcome, we 

should find a uniform distribution of these 75 percentiles. For example, the 90th percentile is a 

number that the insurer expects to exceed 10% of the time (that is the definition of the 90th 

percentile). Therefore, we should find 10% of the companies have an actual outcome that falls above 

the 90th percentile. And similarly, there should be a 10% chance that the actual reserves fall in the 

80th to 90th percentile and so on. That is, ideally we should see Figure 4 when we plot these 

percentiles. 
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Figure 4 

Ideal histogram of percentiles 

 

 

When we plot the percentiles in Figure 3, what we actually see is shown in Figure 5: 

Figure 5 

Histogram of percentiles for Homeowners as of 12/2000 

 

 

This shows that 46 out of 75 companies had actual reserves that fell above the 90
th

 percentile of 

the original distributions created in 12/2000. For 46 out of 75 companies, the reserve was much 

higher than they initially expected. 

 

5.2 Back-Testing as of December 1996 
 

The test can be repeated at another time period — instead of December 2000, we can try 
December 1996. That is, we repeat steps 1 to 4, but this time, we are creating reserve distributions 
for 76 companies as of December 1996.  
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Results 

The histogram of the resulting percentiles is shown in Figure 6. 

 

Figure 6 

Histogram of percentiles for Homeowners as of 12/1996 

 
 

In this case, 45 out of 76 companies had actual reserves that fell below the 10th percentile of 

the original distributions created in 12/1996. For 45 out of 76 companies, the reserve was much 

lower than they initially expected. This is the opposite of the result seen in 12/2000.  

 

These results, where most insurers are either under- or over-reserved at each point in time, are 

perhaps not surprising. At any one point in time, the reserve is estimated with what is currently 

known. As the future unfolds and the claims are actually paid, some systemic effect can cause the 

claims environment to move away from the historical experience, causing most insurers to be either 

under- or over-reserved. For example, at the time of writing (2012) inflation has been historically 

low, and actuaries set their current reserves in this environment. If, as the future unfolds, claims 

inflation increases unexpectedly, then the reserves for most insurers will be deficient, similar to what 

is seen in Figure 5. 

 

Therefore, testing one time period at a time may not result in a uniform distribution of 

percentiles. However, if many time periods are tested, and all the percentiles are plotted in one 

histogram, this may result in a uniform distribution. 

5.3 Back-Testing Multiple Periods 
 

For this test, repeat steps 1 to 4 in section 5.1, each time estimating the reserve distribution as 

of 12/1989, 12/1990, 12/1991… to 12/2002. Note that at the time of testing, we only had access to 

data as of 12/2009. The actual unpaid for accident year 2002 should be the sum of the payments for 

that accident year from the 24th to the 120th development period. However, as of 12/2009 we only 
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have payments from the 24th to the 96th development period. The remaining payments had to be 

estimated. A similar issue exists for the test as of 12/2001. We use the average of company’s 

accident year 1998 to 2000, 96th to 120th development factors to estimate the remaining payments. 

Results 

The test for an average of 74 companies for 14 accident years results in 1,038 percentiles, shown in a 

histogram in Figure 7. 

 

Figure 7 

Histogram of percentiles for Homeowners as of 12/1989, 12/1990… and 12/2002 

 

 

 

Figure 7 shows that, around 20% of the time, the actual reserve is above the 90th percentile of 

the bootstrap distribution, and 30% of the time the actual reserve is below the 10th percentile of the 

distribution.  When you tell management the 90th percentile of your reserves, this is a number they 

expect to be above 10% of the time. Instead, when using the bootstrap model, we find that companies 

have exceeded the modeled 90th percentile, 20% of the time. In this test, the bootstrap model appears 

to be underestimating reserve risk. 

5.4 Back-Testing of Other Lines of Business 
 

The test can be repeated for the other lines of business. When this is done, the results are shown in 

Figure 8. 
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Figure 8 

Histogram of percentiles as of 12/1989, 12/1990… and 12/2002 
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The histograms above do not follow a uniform distribution. In this test, for most of these lines of 

business, using the bootstrap model has produced distributions that underestimate reserve risk. 

However, for medical professional liability and private passenger auto in particular, it appears that 

the paid chain-ladder method is producing reserve estimates that are biased high. 

 
6. ANALYSIS OF THE RESULTS 

 

A reserve distribution is a measure of how the actual unpaid loss may deviate from the best 

estimate. By applying the ODP bootstrap to the paid chain-ladder method, we can get such a reserve 

distribution around a paid chain-ladder best estimate. 

 

However, it is rare to rely solely on this method to determine an actuarial central reserve 

estimate. For better or worse, it is common practice for actuaries to estimate a distribution by using a 

similar ODP bootstrap of the chain-ladder method outlined here, and then “shift” this distribution by 

multiplication so that the mean is the same as an actuarial best estimate reserve or booked reserve.  

 

We do not condone this practice, but it is so common that a natural question is whether the 

“shifting” of the distributions produced in our back-testing would result in a more uniform 

distribution. Booked reserve estimates use more sophisticated methods than the paid chain-ladder 

model, and therefore may be more accurate, so the width of the distributions being produced in this 

study may be perfectly suitable. If we used the booked reserve then we may not have seen the under- 

and over-reserving in the December 2000 and December 1996 results, respectively  

 

In reality, the industry does under- and over-reserve, sometimes significantly. In comparison to 

the paid chain-ladder method, the industry is sometimes better or worse at estimating the true unpaid 

loss. In Figure 9, we show the booked ultimate loss at 12, 24, 36… and 120 months of evaluation, 

divided by the booked ultimate loss at the 12-month evaluation, for the U.S. industry, in aggregate 

for the seven lines of business tested in this paper.  

 

The “PCL” line on this graph shows the cumulative paid loss and ALAE at 120 months of 

evaluation divided by the PCL estimate at 12 months of evaluation (using an all year weighted 

average on an industry 10 accident year triangle by line of business and excluding a tail factor). 
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Figure 9 

Booked ultimate loss at t months of evaluation / Booked ultimate loss at 12 months of evaluation, in 

aggregate for the industry for seven lines of business, net of reinsurance 

 

 
 

 

For example, for accident year 2000, the booked ultimate loss estimate as of 12/2009 ended 

up 12% higher than the initial booked ultimate loss as of 12/2000. In contrast, the paid chain-ladder 

estimate of the ultimate loss as of 12/2009 was the same as the estimate as of 12/2000 – that is, the 

paid chain-ladder reserve estimate as of 12/2000 was more accurate than the booked reserve.
7
  

 

Shifting a distribution around another mean is not a sound practice. Even ignoring this, we did 

not feel that shifting the mean to equal the booked reserve at the time would have materially changed 

the broad result of our back-testing. 
6.1Why are we seeing these results? 
 

In an Institute of Actuaries of Australia report titled, “A Framework for Assessing Risk 

Margins,”
 8

 the sources of uncertainty in a reserve estimate are grouped into two parts: independent 

risk and systemic risk. 

 

1. Independent risk = “risks arising due to the randomness inherent in the insurance process.” 

                                                
7
 Note that the comparison is not exact – the “PCL” line excludes all payments after 120 months whereas the booked 

reserves include those payments, which must add to the difficulty of estimation. Additionally, the booked reserve is 

estimated at a company level where as the “PCL” line was estimated using a whole industry loss triangle by line of 

business. 
8
 IAAust Risk Margins Task Force (2008). 
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2. Systemic risk = a risk that affects a whole system. “Risks that are potentially common across 

valuation classes or claim groups.”
8
 Even if the model is accurately reflecting the claims 

process today, future trends in claims experience may move systematically away from what 

was experienced in the past. For example, unexpected changes in inflation, unexpected tort 

reform or unexpected changes in legislation. 

 

They state that the traditional quantitative techniques, such as bootstrapping, are better at 

analyzing independent risk but aren’t able to adequately capture systemic risk. This is because, even 

if there are past systemic episodes in the data, “a good stochastic model will fit the past data well 

and, in doing so, fit away most past systemic episodes of risk…leaving behind largely random 

sources of uncertainty.”
 8

 

 

The distributions produced in this paper using the bootstrap model may be underestimating 

reserve risk because they only capture independent risk, not systemic risk. 

 
7. POSSIBLE ADJUSTMENTS TO THE METHOD 

 

If the ODP bootstrap of the paid chain-ladder method is producing distributions that 

underestimate the true reserve risk, then what adjustments can be made so that it more accurately 

captures the risk? 

 

7.1 Commonly used possible adjustments 
 

Bootstrapping the incurred chain-ladder method 
 

Using the method outlined in this paper on incurred loss and ALAE data instead of paid loss and 

ALAE data produces reserve distributions with a smaller variance. This is understandable if you 

assume that the case reserves provide additional information about the true cost of future payments. 

We back-tested the incurred bootstrap model for the Workers Compensation line of business. The 

process was the same as for the paid bootstrap model, but incurred loss and ALAE was substituted 

for the paid loss and ALAE data, resulting in distributions of IBNR. The resulting percentiles are in 

Figure 10. 
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Figure 10 

Histogram of percentiles for Workers Compensation as of 12/1989, 12/1990….. 12/2002 based on 

incurred loss & ALAE 

 
 

From Figure 10, it appears that the incurred bootstrap model is also underestimating the risk of 

falling in these extreme percentiles. 

 

Using more historical years of paid loss and ALAE data 
 

Our back-testing used paid loss and ALAE triangles with 10 historical accident and 

development years. A loss triangle with more historical accident years may result in a wider 

distribution.  

 

We applied the bootstrap model on 20 accident year x 10 development year homeowners paid 

loss and ALAE triangles, but this resulted in distributions that sometimes had more and sometimes 

had less variability than the original distributions from the 10 x 10-year datasets.  

 

Making Other Adjustments 
 

There are other additions to the bootstrap model that we have not considered here, and can be 

areas of further study: 

 

 Parametric bootstrapping. It is possible to simulate the accident year and development year 

parameters from a multivariate normal distribution using a generalized linear model, which 

closely follows the structure of the ODP bootstrap of the paid chain-ladder model. This is 

commonly called parametric bootstrapping. Re-sampling the residuals, as outlined in section 

3, may be limiting, and simulating from a normal distribution may result in wider reserve 

distributions. 

 Hat matrix. The hat matrix can be applied to standardize the Pearson residuals and make them 

identically distributed, as per Pinheiro, Andrade e Silva, and Centeno (2003). 

 Multiple scale parameters to account for heteroskedasticity in residuals. 
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None of these commonly used adjustments are specifically designed to account for systemic risk. 

Also, the method we are testing significantly underestimates the true risk and so requires an 

adjustment that significantly widens the distribution. Therefore, we outline below two methods that 

can be applied to the bootstrap model that account for systemic risk. 

7.2 Two methods to account for systemic risk 
 

We have derived two methods to adjust the ODP bootstrap of the paid chain-ladder model so that 

the resulting distributions of unpaid loss and ALAE describe the true reserve risk – that is, it passes 

our back-testing, so that, for example, 10% of the time the actual reserve falls above the 90
th

 

percentile of our estimated distribution. These two methods are explicitly attempting to model 

systemic risk – the risk that the future claims environment is different from the past. 

 

The two methods are: 

1. The systemic risk distribution method 

2. Wang transform adjustment 

  

The two methods are based on two different assumptions. The systemic risk distribution method 

does not adjust the actuary’s central estimate over the reserving cycle. The Wang transform 

adjustment does not assume that the central estimate reserve is unbiased and tries to estimate the 

systemic bias of the chain-ladder method over the course of reserving cycle.  

 
Both methods are applied and the resulting distribution is back-tested again. 

Systemic Risk Distribution Method 

As outlined in section 6.1, reserve risk can be broken down into two parts: (1) independent 

risk and (2) systemic risk. We believe that the bootstrap model only measures independent risk, not 

systemic risk. Systemic risk affects a whole system, like the market of insurers. It includes risks such 

as unexpected changes in inflation and unexpected changes in tort reform – in short, the risk that the 

future claims environment could be different from the past. 

 

In this method, we estimate a benchmark systemic risk distribution by line of business, and 

combine this with the independent risk distribution (from the bootstrap model) to obtain the total 

reserve risk distribution. To combine the distributions we assume that they are independent from 

each other, and take one simulation from the systemic risk distribution and multiply this by one 

simulation from the independent risk distribution, and repeat for all 10,000 (or more) iterations.  
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Figure 11  

Example of one iteration of the systemic risk distribution adjustment 

 

 
Each of the outcomes from the systemic risk distribution, such as the 1.13 in Figure 11, can 

be thought of as a systemic risk factor. We can calculate historical systemic risk factors for each year 

and for each company by the following procedure: 

 

1. Take the mean of the bootstrap model’s reserve distribution for each company, as of 12/1989 

for accident year 1989. 

2. Calculate what the reserve should have been for accident year 1989, back in 12/1989 (= the 

ultimate loss and ALAE as of 12/2008 less the paid as of 12/1989). 

3. The systemic risk factor = (2)/(1). 

4. Repeat 1 to 3 as of 12/1990, 12/1991, ….to 12/2002. 

  

The systemic risk benchmark distribution is estimated by fitting a distribution to the historical 

systemic risk factors. Through a curve-fitting exercise, we found that a Gamma distribution was the 

best candidate to model systemic risk, with differing parameters by line of business. This results in 

uniform distributions of percentiles when the method outlined above is back-tested, as shown in 

Figure 12. 

 

Admittedly, the fitted systemic risk distribution may differ depending on the back-testing 

period. However, we took care to span a time period that incorporated one upwards and one 

downwards period of the reserve cycle, in an attempt to not bias the results. 
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Figure 12 

Histogram of Percentiles as of 12/1989, 12/1990… to 12/2002 
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As an example, for Homeowners, the systemic risk distribution is a gamma distribution with 

a mean of 0.98 and a standard deviation of 19%. Note that this is intended to adjust the distribution 

of the reserve for a single accident year at 12 months of evaluation. 

 

Systemic risk has its roots in the reserving cycle and underwriting cycle. Indeed, there are 

documented evidences of the linkage between reserving cycle and underwriting cycle. Archer-Lock 

et al. (2003) discussed reserving cycle in the U.K. The authors conclude that the mechanical 

application of traditional actuarial reserving methods may be one of the causes for reserve cycle. In 

particular, the underwriting cycle may distort claims development patterns and that premium rates 

indices may understate the magnitude of the cycle. The Wang transform adjustment is an alternative 

systemic risk adjustment that explicitly accounts for the reserve cycle. 

Wang-Transform Adjustment 
 

The Wang transform adjustment method does not assume that the unpaid loss and ALAE 

estimate is unbiased and tries to estimate the systemic bias over the course of reserving cycle. The 

reserving cycle shown in Figure 13 is an interesting phenomenon that indicates that reserve risk is 

cyclical, and the Wang transform adjustment method tries to capture this “systemic” bias.  

 

We use the workers compensation line of business for illustration. The data used in back-

testing is the workers compensation aggregated industry data net incurred loss and ALAE. A series 

of back-tests (these back-tests are different from the test in section 4) are done using the chain-ladder 

method for industry loss reserve development.  For accident years after 2001, we use the latest 

reported losses instead of the projected ultimate losses, since reported losses for those accident years 

are not yet fully developed.   

 

In the following figures, which represent the entire non-life industry workers compensation 

line of business, Ultimate Losses (UL) stand for the 120-month incurred loss and ALAE for each 

accident year (AY) from the latest report year (RY), not including IBNR. Initial Losses (IL) 

represent the projected 120-month net incurred loss and ALAE for each AY from first report year, 

using the chain-ladder reserving method. Ultimate Loss Ratio (ULR) represents the ultimate reported 

incurred loss and ALAE ratio for each AY and Initial Loss Ratio (ILR) represents the initial reported 

incurred loss ratio for each AY.  A more detailed explanation of the back-testing method is given in 

Appendix B. 
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Figure 13  
Chain-Ladder Method Back-Testing Error versus (ULR-ILR) for Workers Compensation 

 

 

 

 

 

 

 

 

 

 

For the workers compensation line of business, the chain-ladder reserving method has 

systematic errors that are highly correlated with the reserving cycle.  The contemporary correlation 

between the estimation error and the reserve development (ULR-ILR) is 0.64 for the chain-ladder 

method.  More noticeably, the one-year lag correlation is 0.91.  The estimation error leads the loss 

reserve development by one-year. 

 

In this study, we apply the Wang transform to enhance the loss reserve distribution created 

using the bootstrap of the chain-ladder method. Different from the systemic risk distribution method, 

the Wang transform adjustment method will first adjust the variability of the loss reserve then give 

each company group’s loss reserve distribution a shift, respectively. 

 
The procedures below describe how to apply the Wang-Transform adjustment: 

1. After bootstrapping each paid loss triangle with 10,000 iterations, we apply the ratio of double 

exponential over normal to adjust the chain-ladder reserve distribution to be wider than the 

original distribution. The formula is shown below: 

 

 

      Where: 

1) ϕ is a normal distribution with mean 0 and standard deviation 1. 

2) Exponential stands for a double exponential distribution with density function 

. 

3) q is the quantile of each simulated reserve. 
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4) u is the median of 10,000 simulated reserves. 

5) x is the simulated reserve. 

6) x* is the reserve after adjustment. 

 

2. β is calculated for each company to measure the correlation between the company and industry. 

The method to calculate the β is described below: 

 

For each AY, if the industry systemic risk factor is significantly different from one (greater than 

1.01 or less than 0.99), we use an indicator of +1 if a company’s corresponding AY systemic risk 

ratio is in the same direction as the industry systemic risk factor, otherwise we use an indicator of 

-1. For example, say the industry systemic risk factor for AY 2000 is 1.122, which is greater than 

1. If company A’s AY 2000 systemic risk factor is greater than 1, we assign an indicator of +1 to 

company A AY 2000. If company B’s AY 2000 systemic risk factor is less than 1, we assign an 

indicator of -1 to company B AY 2000.  

 

At last, for a company, 

β = (sum of indicators of all AYs) / (count of indicators of all AYs). 

If β is less than zero, we force it to zero. 

 

3. The Wang transform is finally applied to adjust the mean of the reserve distribution. The formula 

is shown below: 

. 

Where: 

1)  is reported reserve’s percentile in the reserve distribution after step 1 

adjustment. 

2) Each company has its own β value. 

3)  is a normal distribution with mean 0 and stdev 1. 

We change λ to result in the most uniformly distributed percentiles as measured by a chi-square 

test, when the adjusted reserve is back-tested. λ here is the fitted shift value of loss reserve 

distribution for each accident year.  

The final λs are shown in the following figures. 
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Figure 14 
Lambda for Each Accident Year 

 
 

Comparing the fitted lambdas and the ultimate loss ratios (ULRs), we find that the loss 

reserve estimation error of the chain-ladder method is highly correlated with the non-life 

insurance market cycle. The correlation between lambda and ultimate loss ratio is -0.87. 

Figure 15 
Lambda vs. ULR 

 
 

For other lines of business, the estimated lambdas and ULRs by year are also negatively 

correlated, but the magnitude of correlation is not as strong as for workers compensation. 

Areas of Future Research 

In this paper we have demonstrated that different lambda values can be estimated at various 

stages of the reserve cycle. However, more research is needed in the future to illustrate the practical 
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application of lambda in the Wang transform to the reserve cycle, and how well lambda along with 

the beta work for individual companies versus the industry as a whole.   

 

We have also focused mostly on the paid loss development method. Another area of future 

research is to investigate the difference between using paid methods in isolation versus paid loss 

development methods in conjunction with case incurred loss development methods, exposure-based 

methods, and judgment. 

Yet another area of future research is to investigate the reserve cycle illustrated in Figure 9. 

8. SUMMARY 

 

The genesis and popularity of a reserve risk method lies in its theoretical beauty. However, as 

more insurers rely on actuarial estimates of reserve risk to manage capital, estimating a reserve 

distribution is no longer a purely theoretical exercise. Methods should be tested against real data9 

before they can be relied upon to support the insurance industry’s solvency.  

 

In this back-test, we see that the popular ODP bootstrap of the paid chain-ladder method is 

underestimating reserve risk. We believe that it is because the bootstrap model does not consider 

systemic risk, or, to put it another way, the risk that future trends in the claims environment —  such 

as inflation, trends in tort reform, legislative changes, etc. — may deviate from what we saw in the 

past. We suggest two simple solutions to incorporate systemic risk into the reserve distribution so 

that the adjusted reserve distribution passes the back-test. 

 

We hope to encourage more testing of models so that the profession has a more defensible 

framework for measuring risks for solvency and profitability. 

  

                                                
9
 We advocate the use of real versus simulated data. In this paper, we have found that the bootstrap model, for most lines, 

materially underestimates the probability of falling above the 90th percentile. In contrast, the same model when tested 

against simulated data in GIRO, found that the same bootstrap model identified a 99th percentile that was exceeded only 

1% to 4% of the time by the simulated data. 
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APPENDIX A: THE ODP BOOTSTRAP OF THE PAID CHAIN-LADDER METHOD THAT WAS 

TESTED 

 

We are testing the reserve distribution created using the bootstrap of the paid chain-ladder 

method. The model we are using is described in Appendix 3 of England and Verrall (2002). We 

detail this, with a numerical example, below: 

 

1. Take a paid loss and ALAE, 10 accident year by 10 development year triangle 

 

Figure A1 

Company A, paid Loss & ALAE, net of reinsurance as of 12/2000 

Data in $ millions 

AY 1  2  3  4  5  6  7  8  9  10  

1991 94  119  124  128  130  132  133  133  133  134  

1992 101  131  135  139  141  143  143  144  145   

1993 82  107  112  116  119  119  120  121    

1994 110  139  146  152  154  155  156     

1995 68  99  105  108  111  114      

1996 119  151  157  158  162       

1997 72  99  99  99        

1998 71  101  106         

1999 71  96          

2000 62           

 

2. Calculate the all-year, volume-weighted age-to-age factors. 

 

Figure A2 

 1 - 2 2 - 3 3 - 4 4 - 5 5 - 6 6 - 7 7 - 8 8 - 9 9 - 10  

 1.32  1.04  1.02  1.02  1.01  1.00  1.00  1.00  1.00   
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3. Estimate a fitted triangle by taking the cumulative paid loss and ALAE to date from (1).  

 

Figure A3 

Company A, paid Loss & ALAE to date, net of reinsurance as of 12/2000 

Data in $ millions 

AY 1  2  3  4  5  6  7  8  9  10  

1991          134  

1992         144   

1993        121    

1994       156     

1995      114      

1996     162       

1997    99        

1998   106         

1999  96          

2000 62           

 

4. Estimate the fitted historical cumulative paid loss and ALAE by using (2) to un-develop (3). 

 

Figure A4 

Company A, paid Loss & ALAE, net of reinsurance as of 12/2000 

Data in $ millions 

AY 1  2  3  4  5  6  7  8  9  10  

1991 90  120  125  128  130  132  132  133  133  134  

1992 98  129  135  138  141  143  143  144  144   

1993 82  108  113  116  118  120  120  121    

1994 107  141  147  150  153  155  156     

1995 78  103  108  110  112  114      

1996 112  149  155  159  162       

1997 70  93  97  99        

1998 77  102  106         

1999 72  96          

2000 62           
 

5. Calculate the unscaled Pearson residuals,  (from England and Verrall 1999). 

 

, 

 

  

= 96 / 1.32 
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where  

 = incremental actual loss from step (1) and 

 = incremental fitted loss from step (4). 

 

Figure A5 

Company A, unscaled residuals, net of reinsurance as of 12/2000 

AY 1  2  3  4  5  6  7  8  9  10  

1991 0.35  (0.76) 0.13  0.55  (0.38) 0.14  0.44  (0.37) (0.06)  

1992 0.35  (0.39) (0.39) 0.12  (0.42) 0.32  (0.61) 0.05  0.05   

1993 (0.03) (0.18) 0.07  0.55  0.73  (0.92) 0.07  0.33    

1994 0.32  (0.89) 0.52  1.21  (0.64) (0.43) 0.12     

1995 (1.14) 1.12  1.03  0.24  0.51  0.94      

1996 0.65  (0.79) (0.08) (1.27) 0.31       

1997 0.16  1.00  (1.92) (1.49)       

1998 (0.67) 0.97  0.51         

1999 (0.23) 0.40          

2000           
 

 

6. Calculate the degrees of freedom and the scale parameter: 

 

 

 

 

where 
 = degrees of freedom, 

 = number of incremental loss and ALAE data points in the triangle in step 1, and 
 = number of parameters in the paid chain-ladder model (in this case, 10 accident 

year parameters and 9 development year parameters). 
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7. Adjust the unscaled Pearson residuals ( calculated in step 5: 

 

 

 

 

 

 

 

Figure A6 

Company A, unscaled residuals, net of reinsurance as of 12/2000 

AY 1  2  3  4  5  6  7  8  9  10  

1991 0.43  (0.94) 0.17  0.68  (0.47) 0.17  0.55  (0.45) (0.07)  

1992 0.43  (0.48) (0.48) 0.15  (0.52) 0.39  (0.76) 0.07  0.07   

1993 (0.04) (0.22) 0.09  0.68  0.90  (1.14) 0.09  0.40    

1994 0.40  (1.09) 0.64  1.49  (0.79) (0.53) 0.15     

1995 (1.41) 1.38  1.27  0.30  0.63  1.17      

1996 0.80  (0.98) (0.10) (1.58) 0.39       

1997 0.19  1.23  (2.38) (1.85)       

1998 (0.83) 1.20  0.63         

1999 (0.28) 0.50          

2000           

 

8. Sample from the adjusted Pearson residuals  in step 7, with replacement. 

 

Figure A7 

Company A, Sampled adjusted residuals, net of reinsurance as of 12/2000 

AY 1  2  3  4  5  6  7  8  9  10  

1991 (1.09) (0.28) (0.04) 0.07  0.17  (0.07) 1.20  0.63  1.27  (0.28) 

1992 (0.28) 0.43  0.39  0.80  (0.53) 1.17  0.19  (0.98) (0.48)  

1993 0.09  0.39  (0.94) 1.20  (0.83) (0.53) 0.63  (0.76)   

1994 0.68  (2.38) 1.23  (0.98) 0.30  0.43  (1.14)    

1995 (0.47) (0.94) 0.50  (0.48) 0.15  (0.94)     

1996 0.63  0.15  (1.14) 1.49  1.49       

1997 0.07  0.07  0.17  (2.38)       

1998 0.15  0.63  0.39         

1999 1.20  0.50          

2000 0.50           
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9. Calculate the triangle of sampled incremental loss, . 

 

 

Figure A8 

Company A, sampled incremental paid Loss & ALAE, net of reinsurance as of 12/2000 

Data in $ millions 

AY 1  2  3  4  5  6  7  8  9  10  

1991 80  28  5  3  3  2  1  1  1  0  

1992 95  34  6  5  2  4  1  (0) 0   

1993 83  28  3  5  1  1  1  (0)   

1994 114  20  9  2  3  3  (0)    

1995 74  20  5  2  2  0      

1996 119  37  3  6  6       

1997 71  23  4  (1)       

1998 78  28  5         

1999 83  26          

2000 65           
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10. Project the future paid loss and ALAE, using the paid chain-ladder method. 

 

Figure A9 

Company A, cumulative paid Loss & ALAE, net of reinsurance as of 12/2000 

Data in $ millions 

AY 1  2  3  4  5  6  7  8  9  10  

1991 80  108  113  116  118  120  121  122  124  124  

1992 95  129  136  140  142  146  146  146  146  147  

1993 83  111  114  118  119  120  121  121  122  122  

1994 114  134  143  145  148  151  151  151  152  152  

1995 74  94  100  102  104  104  105  105  106  106  

1996 119  156  160  166  172  175  175  176  177  177  

1997 71  94  98  97  99  101  101  101  102  102  

1998 78  106  112  114  117  118  119  119  120  120  

1999 83  108  113  116  118  120  121  121  122  122  

2000 65  86  89  92  93  95  95  96  96  96  

 
Weighted average age-to-age factors 

 1 - 2 2 - 3 3 - 4 4 – 5 5 - 6 6 - 7 7 - 8 8 - 9 9 - 10  

 1.31 1.04 1.02 1.02 1.02 1.00 1.00 1.01 1.00  

 

11.  Include process variance by simulating each incremental future loss and ALAE from a Gamma 

distribution with: 

 

mean = projected incremental losses in step 10, 

variance = mean x scale parameter from step 6. 

 

We assume that each future incremental loss is independent from each other. Note that 

theoretically we assume an over-dispersed Poisson distribution, however, we are using the Gamma 

distribution as a close approximation. 
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Figure A10 

Company A, incremental paid Loss & ALAE, with process variance, net of reinsurance as of 

12/2000 

Data in $ millions 

AY 1  2  3  4  5  6  7  8  9  10  

1991 82  28  5  3  3  2  1  1  1  0  

1992 96  34  6  4  2  3  1  0  0  0  

1993 83  28  3  4  1  1  1  0  1  0  

1994 112  23  8  2  3  3  (0) 0  2  1  

1995 75  21  5  2  2  1  0  1  1  0  

1996 118  37  4  6  5  4  2  0  0  0  

1997 71  23  4  (1) 2  4  0  1  1  1  

1998 78  27  5  4  2  0  1  0  0  0  

1999 81  25  3  2  1  1  0  0  0  1  

2000 65  18  5  2  1  1  1  0  0  0  

 

 

 

 

12. Estimate the unpaid loss and ALAE by taking a sum of the future incremental losses from step 

11. 

 

Figure 11 

 Unpaid 

Accident Loss 

year and ALAE 

1991 0 

1992 0 

1993 1 

1994 3 

1995 2 

1996 6 

1997 9 

1998 7 

1999 8 

2000 28 

  

Total 64  
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13. Repeat steps 8 to 12. In our case, 10,000 times to produce 10,000 unpaid loss and ALAE 

estimates resulting in an unpaid loss and ALAE distribution when plotted in a histogram. 
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APPENDIX B METHODOLOGY FOR RESERVING BACK-TESTING 

 

The method used in back-testing in the Wang transform adjustment uses 10 accident year by 10 

development year incurred loss and ALAE triangles, net of reinsurance. 

 

 

 

 

 

 

 

 

The UL is the 120-month, case-incurred loss for each AY. For example, for AY 2001, the UL is 

yellow highlighted cell below. 

 

 

 

 

IL stands for the projected 120-month, case-incurred loss for each AY from first RY. For example, 

for AY 2001, the IL is projected from the triangle below. 

 

 

  

AY NetCaseIncurred

2001 10,597,343        15,121,875        17,148,317        18,030,720        18,315,025        18,663,494        18,963,470        19,274,423        19,492,073        19,691,532        

2002 9,880,312          14,375,596        16,125,066        16,778,143        17,329,085        17,651,826        17,996,103        18,251,653        18,518,021        

2003 10,369,458        14,334,644        15,837,509        16,594,323        17,191,600        17,714,263        17,992,600        18,339,834        

2004 10,616,734        14,461,802        15,894,418        16,644,316        17,253,999        17,678,604        18,059,807        

2005 11,234,028        14,723,765        16,219,677        17,166,414        17,739,780        18,273,742        

2006 11,762,138        15,866,737        17,804,050        18,942,686        19,777,903        

2007 12,189,806        16,932,637        19,062,769        20,387,578        

2008 12,394,686        17,351,056        19,656,367        

2009 11,230,304        15,726,363        

2010 11,564,142        

2000 10,300,006        15,323,250        17,359,275        18,504,064        19,310,172        19,727,612        20,024,743        20,349,723        20,416,586        20,626,383        

2001 10,597,343        15,121,875        17,148,317        18,030,720        18,315,025        18,663,494        18,963,470        19,274,423        19,492,073        

2002 9,880,312          14,375,596        16,125,066        16,778,143        17,329,085        17,651,826        17,996,103        18,251,653        

2003 10,369,458        14,334,644        15,837,509        16,594,323        17,191,600        17,714,263        17,992,600        

2004 10,616,734        14,461,802        15,894,418        16,644,316        17,253,999        17,678,604        

2005 11,234,028        14,723,765        16,219,677        17,166,414        17,739,780        

2006 11,762,138        15,866,737        17,804,050        18,942,686        

2007 12,189,806        16,932,637        19,062,769        

2008 12,394,686        17,351,056        

2009 11,230,304        

2001 10,597,343        15,121,875        17,148,317        18,030,720        18,315,025        18,663,494        18,963,470        19,274,423        19,492,073        19,691,532        

2002 9,880,312          14,375,596        16,125,066        16,778,143        17,329,085        17,651,826        17,996,103        18,251,653        18,518,021        

2003 10,369,458        14,334,644        15,837,509        16,594,323        17,191,600        17,714,263        17,992,600        18,339,834        

2004 10,616,734        14,461,802        15,894,418        16,644,316        17,253,999        17,678,604        18,059,807        

2005 11,234,028        14,723,765        16,219,677        17,166,414        17,739,780        18,273,742        

2006 11,762,138        15,866,737        17,804,050        18,942,686        19,777,903        

2007 12,189,806        16,932,637        19,062,769        20,387,578        

2008 12,394,686        17,351,056        19,656,367        

2009 11,230,304        15,726,363        

2010 11,564,142        

1992 13,577,454        18,324,228        19,318,317        19,887,417        20,329,004        20,578,733        20,829,649        21,093,165        21,251,010        21,445,507        

1993 11,629,774        15,072,352        16,240,909        17,019,006        17,377,062        17,817,291        17,991,759        18,151,739        18,369,115        

1994 10,064,429        13,048,331        14,255,204        14,761,320        15,191,420        15,488,568        15,640,632        15,907,265        

1995 9,091,097          12,075,438        13,156,052        13,952,635        14,395,087        14,703,283        14,936,659        

1996 9,272,956          12,274,028        13,702,650        14,407,800        14,920,371        15,315,039        

1997 9,322,137          13,169,560        14,673,981        15,446,460        16,059,155        

1998 10,192,450        14,078,543        15,775,394        16,820,701        

1999 9,840,268          13,948,976        15,911,651        

2000 10,300,006        15,323,250        

2001 10,597,343        
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The red bold cells below are projected by chain-ladder method and the yellow highlighted cell is the 
IL. 

 

 

 

 

  

1992 13,577,454        18,324,228        19,318,317        19,887,417        20,329,004        20,578,733        20,829,649        21,093,165        21,251,010        21,445,507        

1993 11,629,774        15,072,352        16,240,909        17,019,006        17,377,062        17,817,291        17,991,759        18,151,739        18,369,115        18,537,236        

1994 10,064,429        13,048,331        14,255,204        14,761,320        15,191,420        15,488,568        15,640,632        15,907,265        16,059,355        16,206,336        

1995 9,091,097          12,075,438        13,156,052        13,952,635        14,395,087        14,703,283        14,936,659        15,125,933        15,270,552        15,410,313        

1996 9,272,956          12,274,028        13,702,650        14,407,800        14,920,371        15,315,039        15,493,651        15,689,983        15,839,995        15,984,968        

1997 9,322,137          13,169,560        14,673,981        15,446,460        16,059,155        16,419,983        16,611,482        16,821,978        16,982,814        17,138,246        

1998 10,192,450        14,078,543        15,775,394        16,820,701        17,422,664        17,814,128        18,021,886        18,250,255        18,424,746        18,593,376        

1999 9,840,268          13,948,976        15,911,651        16,820,875        17,422,844        17,814,313        18,022,073        18,250,444        18,424,936        18,593,568        

2000 10,300,006        15,323,250        17,243,980        18,229,336        18,881,709        19,305,957        19,531,113        19,778,606        19,967,710        20,150,461        

2001 10,597,343        15,145,457        17,043,901        18,017,824        18,662,628        19,081,953        19,304,497        19,549,118        19,736,028        19,916,659        
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