

GIRO conference and exhibition 2010 Pietro Parodi (Structured Risk Solutions, Willis Ltd)

Regularisation

An efficient and simple method for rating factor selection

12-15 October 2010

Agenda

- I. Rating factors selections is best understood in the framework of statistical learning theory
- II. The industry standard approach to rating factors selection is GLM
- III. The machine learning community would solve the same problem quite differently... (A look at regularisation)
- IV. A comparison between GLM and regularisation
- V. Questions?

I. Rating factor selection is best understood in the context of statistical learning theory

The appropriate framework for rating factor selection is *statistical learning theory*

Rating factor selection

Find the combination of rating factors X_1, \dots, X_n which best predicts future losses Y

Supervised learning

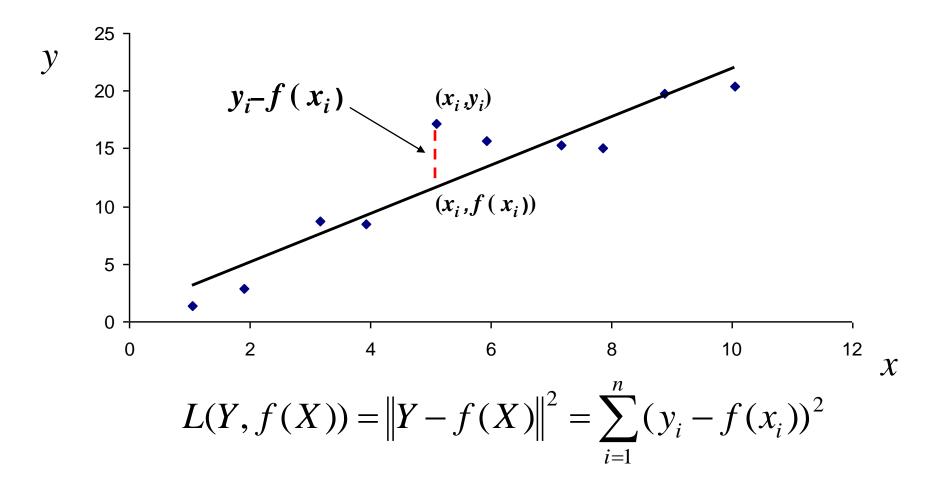
Given X (inputs), Y (outputs) with joint unknown distribution Pr(X,Y), find the model f(X) of Y that minimises the expected prediction error

$$\mathsf{EPE}(f) = \mathcal{E}(L(f(X), Y))$$

The loss function L(f(X),Y) is the distance between the model and the data, e.g.

$$L(Y, f(X)) = ||Y - f(X)||^2$$

The basic idea is the same as that of least squares regression...



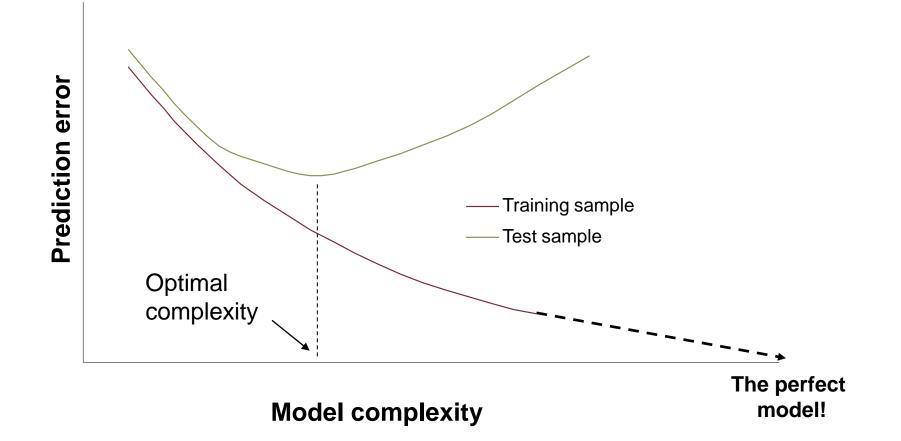
... but with some complications

- We don't know what the right model is
- We don't even know how many variable it has
- We need a way to validate any model we produce

We speak of "learning" because there is **always** a training stage and a testing stage

We say "supervised" because there is a "teacher" – in the training stage we can see both the inputs *and* the outputs!

How do we choose f (X)? The crucial problem: goodness of fit vs complexity



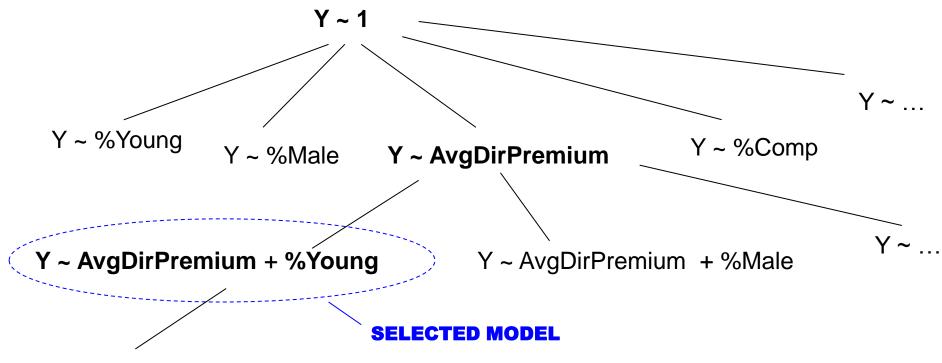
II. The industry standard approach to rating factors selection is GLM

The industry standard for rating factors selection is GLM

	Linear model	Generalised linear model
The model	$Y = \Sigma a_{j} X_{j}$	$Y = g^{-1}(\Sigma \ a_{j}\psi_{j}(X_{1}, X_{2}, \dots X_{n})) =$
		$(eg) = \exp(a_1X_1 + a_2X_2 + a_3X_1X_2)$
The loss function	$L(Y, f(X)) = Y - f(X) ^2$	$L(Y, f(X)) = -2 \log \Pr_{f(X)}(Y)$
The noise	Gaussian	Exponential family
		(Gaussian, Poisson, Gamma…)
Model selection and	Greedy approach with penalty:	Greedy approach with penalty:
validation	$AIC = -2 \log lik + 2 d$	$AIC = -2 \log lik + 2 d$

The greedy approach for GLM *A practical example*

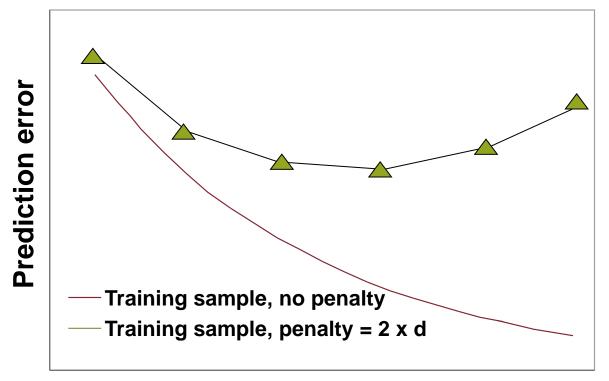
Consider the problem of predicting the reinsurance premium for a motor policy, based on the characteristics of the insurer's portfolio



Y ~ AvgDirPremium + %Young + %Male

An interpretation of the GLM selection scheme in terms of the error v complexity graph

The test sample error is (roughly) approximated by the AIC criterion



Number of degrees of freedom d

Shortcomings *of the textbook approach* to GLM

The GLM "core"

The usual limitations of GLM (linearity, exponential family, etc.)

Model selection

There is no guarantee that the solution found by the greedy approach (forward/backward selection) is optimal

Model validation

The model validation process is not rigorous

II. The machine learning community would solve the same problem quite differently...

A look at regularisation

Rating factors selection can be addressed by regularised regression

The main idea: to minimise the distance between the data and the model on a test set:

$$\mathsf{EPE}(f) = \left\| Y - f_{\beta}(X) \right\|_{l_{2}}^{2}, \text{ where } f_{\beta}(X) = \sum_{j=1}^{\infty} \beta_{j} \psi_{j}(X_{1}, \dots, X_{n})$$

minimise a regularised functional, such as (Tychonov regul.):

$$\mathsf{EPE}(f) = \left\| Y - f_{\beta}(X) \right\|_{l_{2}}^{2} + \lambda \left\| \beta \right\|_{l_{2}}^{2}$$

on the training set. Why does Tychonov regularisation work?

Some regularisation schemes also do variable selection!

The lasso (Tibshirani, 1996):

$$\mathsf{EPE}(\beta) = \left\| Y - f_{\beta}(X) \right\|_{l_{2}}^{2} + \lambda \left\| \beta \right\|_{l_{1}}$$
$$\left(\left\| \beta \right\|_{l_{1}} = \left\| \beta_{1} \right\| + \left\| \beta_{2} \right\| + \dots + \left\| \beta_{n} \right\| \right)$$

- Performs automatic variable selection
- Can be solved as fast as least square regression

but

- Breaks down when no of factors > no of data points
- Is over-zealous in eliminating correlated features

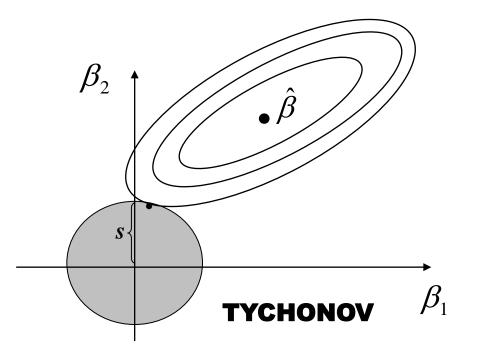
How does the lasso achieve variable selection?

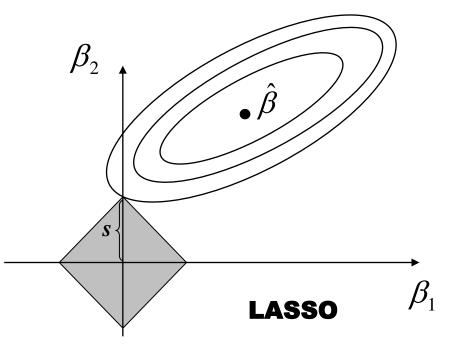
Tychonov regularisation

Minimise $|| Y - f(X) ||_{l_2}$ subject to $||\beta||_{l_2} < s$

Lasso regularisation

Minimise $|| Y - f(X) ||_{l_2}$ subject to $||\beta||_{l_1} < s$

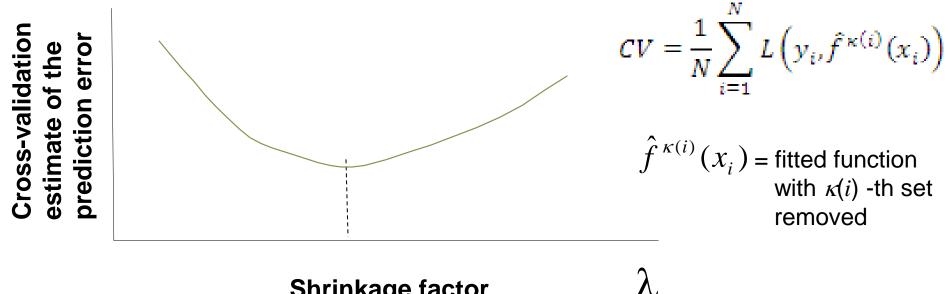




Estimating the expected prediction error for regularisation - Cross validation

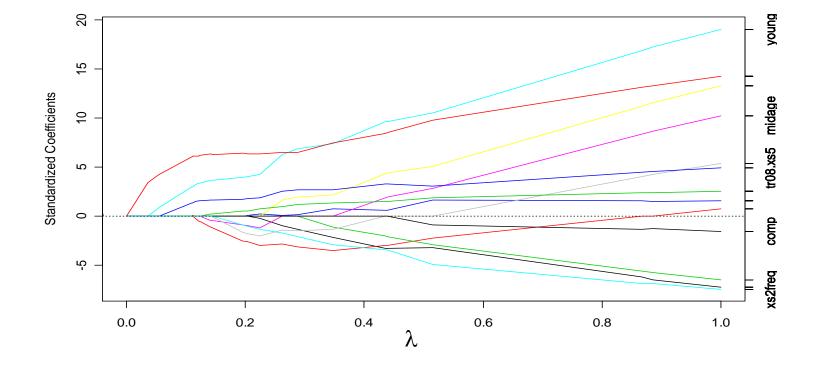
Data set is split into K segments

1 - Training 2 - Training 3 - Training 4 - Testing 5 - Training

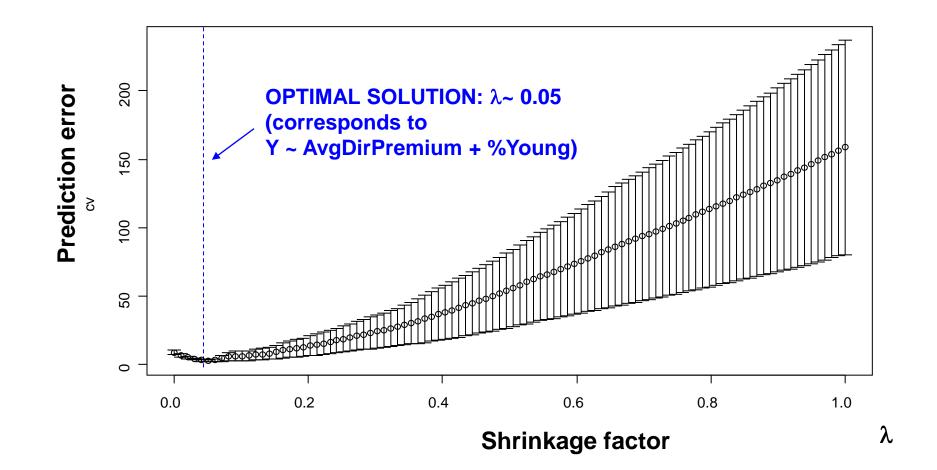


Shrinkage factor

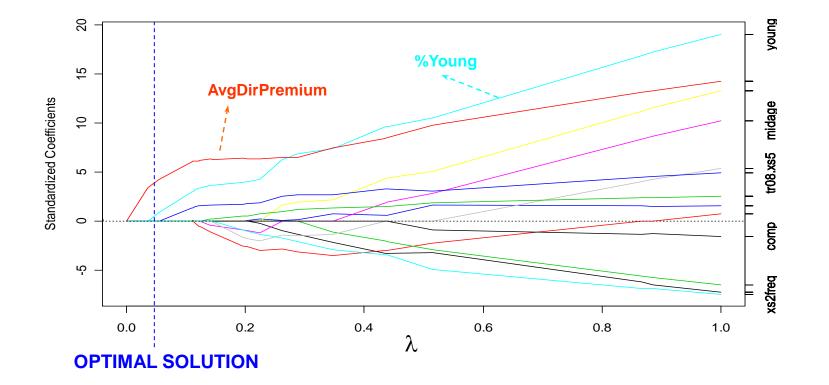
Lasso – Reinsurance example Variables selected for different values of λ



Lasso – Reinsurance example *Model selection*



Lasso – Reinsurance example *Results*



Where the lasso breaks down Example: microarray data analysis

Microarray technology

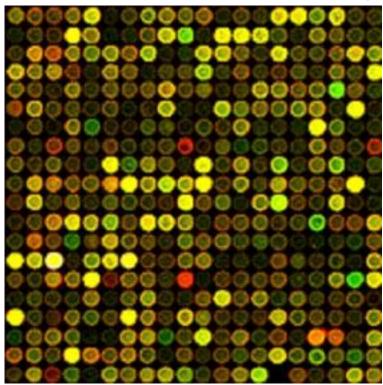
A tool to monitor genome-wide expression levels of genes in a given organism, as measured by the fluorescence level of spots on a glass slide (microarray)

The problem

Select the features (genes) that are responsible for a given disease, given DNA samples from a number of patients

The issues with the lasso

No of data points: ~ 100 (patients), no of genes ~ 10,000 Groups of highly correlated genes, need to capture them all A microarray



Beyond the lasso: Elastic net regularisation (Zou and Hastie, 2005)

$$\mathbf{E}_{n}^{\lambda}(\beta) = \left\| Y - f_{\beta}(X) \right\|_{l_{2}}^{2} + \lambda \left\| \beta \right\|_{l_{1}}^{2} + \mu \left\| \beta \right\|_{l_{2}}^{2}$$

Improvements over the lasso

- Allows variable selection but avoids the excesses of lasso
- Deals successfully with data sparsity
- Deals with groups of correlated features

How is this relevant to insurance?

- Data sparsity is ubiquitous, especially in reinsurance and commercial insurance
- Many rating factors are strongly correlated (e.g. choice of comprehensive motor policies and driver's age)

III. A comparison between GLM and regularisation

Comparison of GLM and regularisation

GLM

- "log P" loss function more general than squared loss
- Greedy algorithms may get stuck in local minima
- Limited by linearity (but a large dictionary of functions is possible)

Regularised regression

- Guaranteed minimum and very efficient
- Can address cases where there # variables » # data points
- Use of quadratic loss function is a limit when data are sparse and the process is non-Gaussian: the Poisson example

Comparison of GLM and regularisation, using artificial Poisson data

 $\mathbf{E}[Y] = c \cdot \exp(0.2 \cdot \text{Sex} - 0.3 \cdot \text{Age} + 0.15 \cdot \text{Region} - 0.4 \cdot \text{NCB} + 0.1 \cdot \text{Profession})$

 $(Y = \text{number of motor losses}; Y \sim \text{Poi})$

GLM performs well when the average Poisson rate decreases. What about the lasso?

Lasso performance as a function of overall exposure/frequency

	Sex	Age	Region	Colour	NCB	P rofession	Garden	Dumb1	Dumb2	Dumb3	
True model	0.20	-0.30	0.15	0.00	-0.40	0.10	0.00	0.00	0.00	0.00	
Lasso											
Exp = 10m	0.21	-0.30	0.15	0.00	-0.41	0.10	0.00	0.01	-0.01	0.00	
Exp = 1m	0.20	-0.28	0.16	0.04	-0.40	0.09	0.00	0.00	-0.01	0.00	
Exp = 100k	0.09	-0.18	0.14	0.09	-0.18	0.07	0.04	0.00	-0.01	-0.06	

The best of both worlds?

We have compared the textbook approach of GLM to a textbook approach to regularisation. However, hybrid approaches are possible:

- **Rigorous model selection/validation methods** of machine learning can be used in GLM without modifications
- The limitations of the quadratic loss function can be overcome by, e.g., using a regularised version of GLM:
 Park and Hastie, 2006: "L1-regularized path algorithm for generalized linear models"

Questions or comments?

Expressions of individual views by members of The Actuarial Profession and its staff are encouraged.

The views expressed in this presentation are those of the presenter.