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Abstract

This paper describes how statistical methods can be tested on com-
puter generated data. We explore bias and percentile tests in detail,
illustrating these with examples based on insurance claims and finan-
cial time series.

We have prepared this working paper (version 8) for discussion
at the 2016 AFIR Colloquium in Edinburgh. The authors would be
pleased to receive comments and corrections.

1 Introduction

1.1 Testing in Controlled Conditions

Financial crises may expose weaknesses in statistical models on which fi-
nancial reporting or decision-making rely. For example, several banks and
insurers sustained multi-billion dollar losses in the 2007-9 crisis. At the time
of writing, the UK pension protection fund is reporting aggregate scheme
deficits in excess of £300,000,000,000 [32]. Many of these institutions boast
of complex statistical models, asserting that such losses were very unlikely
to occur. The regulation of financial institutions worldwide still often relies
on similar models today.

Why did these models fail? Were they adequately tested? There is
limited detail in the public domain for pension funds, but we can learn from
bank and insurer disclosures. For example, AIG “initiated engagements with
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... external experts to perform independent reviews and certifications of the
economic capital model”, before sustaining a loss five times bigger than
the model’s 99.95%-ile loss [1]. Many banks now shed light on their model
testing, by publishing charts of historic daily profits and losses relative to
their models’ value-at-risk.

In this paper, we argue that testing models on historic data is not enough.
Especially when we are concerned with rare and severe market stress, the
events that invalidate a model are often the same events that generate large
losses. The models are of little use as early warning indicators.

In addition to historic back-testing, we therefore advocate laboratory
testing for statistical models. We feed the models with artificial data, gen-
erated from a variety of processes whose properties (good or bad) are known.
Such testing enables us to map out model strengths and weaknesses safely,
where no money is at stake.

1.2 Lessons from Engineering

Engineering devices, and their components, may be subject to lab testing.
Test environments could include extremes of temperature, stress, vibration,
friction, sand blasting, immersion in corrosive liquids and so on. Such testing
enables engineers to determine tolerance limits and maintenance protocols,
as well as measuring the frequency and impact of any manufacturing defects.

This is safer and cheaper in the long run than assembling untested com-
ponents, for example into a bridge, aeroplane or prosthetic body part, and
measuring the frequency and severity of harm to humans.

A failure in a lab test is not always a bad thing. Most components wear
out eventually; all components have limits of temperature or pressure under
which they will fail. The purpose of lab testing is to determine those limits.

It is always possible that the real world produces conditions, or combina-
tions that were not foreseen in the lab tests. The converse is also possible,
that the lab conditions are more severe than a component encounters in
practical use. While we accept there is some subjectivity in determining
what laboratory conditions best represent the stress of a component in use,
we do not accept this as a reason not to perform lab tests.

1.3 Exponential Losses Example

Our first example concerns an insurance company’s claims experience. We
are given claims data for each of the past ten years, which were (in increas-
ing order) {26, 29, 40, 48, 59, 60, 69, 98, 278, 293}. The task is to estimate a
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distribution for the next year’s losses; in this case we will assume future
losses are drawn from an exponential distribution whose parameter must be
estimated from the past data. This might be useful in assessing expected
profits, how much capital the insurer should hold against adverse experi-
ence, how much business they can safely take on, or how much reinsurance
they should buy.

The distribution which we fit will be used as if it were the true probability
distribution for the future claims. However, we know that no estimated
distribution will ever be completely accurate. We refer to the estimated
distribution as an ersatz model, because it is used as a substitute for the
(unknown) true distribution for making decisions.

We will investigate several methods for constructing ersatz models, five
of which we have computed in Table 1.

Table 1: Ersatz Distribution Percentile Claim Amounts
Probability Plug-in Bayes(0) Bayes(1) Bootstrap Max Mult

0.5% 0.50 0.50 0.46 0.46 0.50
1% 1.01 1.01 0.91 0.91 1.01
5% 5.13 5.14 4.67 4.67 5.15

10% 10.54 10.59 9.62 9.62 10.64
25% 28.77 29.19 26.50 26.53 29.53
50% 69.31 71.77 65.04 65.30 73.70
75% 138.63 148.70 134.31 135.19 156.22
90% 230.26 258.93 232.85 234.02 279.26
95% 299.57 349.28 313.03 313.24 383.31
99% 460.52 584.89 519.91 510.46 663.89

99.5% 529.83 698.65 618.77 600.64 802.78

The plug-in method is simply an exponential distribution with the mean
equal to the sample mean of the data (which is 100). The other methods
involve different ways of capturing parameter uncertainty, resulting in er-
satz models that are mixtures of exponential distributions with a range of
possible parameters.

We will consider how to evaluate these, and other, methods of building
ersatz distributions.

1.4 Autoregressive Growth Example

Much of econometric analysis concerns the prices of investments or com-
modities. An individual share, bond or foodstuff may fall in or out of favour,
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but the general level of a market is typically captured in an index Qt repre-
senting a basket of assets, such as the Retail Prices Index or the Financial
Times Stock Exchange 100 Index.

Index starting values are often set arbitrarily to a round number such
as Q0 = 100; it is only relative changes in index values that have economic
meaning, describing whether asset prices have risen or fallen compared to
previous values.

The simplest approach to modelling such indices is to use a random
walk [33] but this does not cope well with processes such as inflation where
changes are typically positively correlated from one period to the next. One
approach to capture the auto-correlation is to treat the changes in the log
index as a first order autoregressive process. For example, Wilkie [37], [39]
proposed the following model:

ln

(
Qt+1

Qt

)
= QA ln

(
Qt
Qt−1

)
+ (1−QA)QMU +N (0, QSD2) (1)

With a little algebra, we can derive the k-step forecast, which will be the
basis of our Ersatz models:

ln

(
Qt+k
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)
=
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1−QA
QA ln

(
Qt
Qt−1

)
+

[
k − 1−QAk

1−QA
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]
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]
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David Wilkie has published parameter estimates from time to time for UK
inflation, including those in Table 2:

Table 2: Wilkie’s Parameters for UK Inflation
Data Period QA QMU QSD

1919-1982 0.60 0.050 0.0500
1923-1994 0.58 0.047 0.0425
1923-2009 0.58 0.043 0.0400

These parameters were estimated by treating equation 1 as a linear

regression of ln
(
Qt+1

Qt

)
against ln

(
Qt

Qt−1

)
, with slope QA, intercept (1 −

QA)QMU and residual standard deviation QSD, estimated in the usual
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way. The parameter estimates were then rounded. The originally published
model [37] included a subjective upward adjustment to QMU .

Later in this paper, we consider ways of testing such autoregressive mod-
els on generated data.

1.5 The Rest of the Paper

The remainder of this paper proceeds as follows:

• We define key testing concepts: reference models, ersatz models, con-
sistency, robustness, inner and outer scenarios.

• We revisit the classical notion of parameter bias and put it in the
context of ersatz model testing.

• We describe percentile tests in the context of solvency capital require-
ments and back-testing.

• We show a numerical example based on a simple, exponential, model
of insurance claims.

• We investigate a second numerical example using first order auto-
regressive models.

• We draw some conclusions from those examples.

2 Reference Models and Ersatz Models

In this section, we define the concept of an ersatz model. We describe our
approach to testing, and contrast tests on generated data with more con-
ventional tests on historic data.

2.1 Ersatz Models

Many corporate and individual decision tools make reference to probability
laws; for example:

• Investors may value an asset by discounting the future expected cash
flows.

• Investment portfolio selection may involve statistical measures of risk,
such as standard deviation, adverse percentiles or expected utility of
wealth.
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• Financial firms are required to demonstrate capital resources, often
determined by reference to high percentiles of a loss distribution.

• Probability-based capital requirements also appear in assessment of
the future cost of capital, and as a denominator in performance mea-
sures such as return on capital.

In all of these applications, the true underlying probability law is un-
known and, arguably, unknowable. Instead, we use ersatz models, estimated
statistically from past experience, as a substitute for the hypothetical true
model. The substitute cannot be perfect (because of irreducible parameter
error) so the question has to be whether an ersatz model is a sufficiently
close substitute for the intended purpose. In the words of Mark Davis [9],
“What is needed here is a shift of perspective. Instead of asking whether
our model is correct, we should ask whether our objective in building the
model has been achieved”.

We might ponder whether we ever encounter models that are not ersatz?
In social sciences we rarely use a “true” model. True models, or at least very
close substitutes do exist in other fields: textbook experiments with unbi-
ased coins, fair dice or urns full of coloured balls; laws of physical motion,
Mendelian inheritance and so on. Many of our great statisticians have a
background in fields where true models exist, which have provided context
for the major statistical controversies of the twentieth century. There is, ar-
guably, a need for clearer philosophical articulation of what statistics means
in the social science context, where ersatz models are almost universal.

2.2 Out-of-Sample Model Tests

Out-of-sample model testing is a well-established statistical discipline. It
involves comparing a model prediction (based on sample of past data) to
the emerging future experience. A good model should predict the future
closely.

Empirical data is, by definition, realistic. However, despite this obvious
point in its favour, out-of-sample testing also has some weaknesses, including
the following:

• Data is limited, so the tests may have low power which means that
incorrect models are not likely to be rejected.

• It is difficult to eliminate cherry picking, where only the best model is
presented out of a large number that were tested. This hindsight can
exaggerate the reported quality of fit.
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• The true process that generated the (past and future) data is unknown,
which makes it difficult to generalise about the circumstances in which
a model approach may work well in future.

The philosophy of hypothesis testing is also troubling, in the context of
out-of-sample testing. A successful out-of-sample test outcome is a failure to
reject the hypothesis that the out-of-sample data could have come from the
fitted model. But we know the fitted model is wrong, for example because
its parameters are subject to estimation error. To pass the test, we are
hoping to force a Type II error, that is, failing to reject an incorrect model.
Test success becomes more difficult as more out-of-sample data becomes
available. For example, if we calibrate a model based on five years’ data
and test it out-of-sample on the next fifty years’ data, we are likely to find
a pattern in the fifty years that was not detectable in the first five, and thus
reject the model. We need a testing philosophy that is more forgiving of
inevitable estimation errors.

In the rest of this paper we consider how model tests on computer-
generated data, instead of historic data, can overcome some of the weak-
nesses of out-of-sample tests.

2.3 Generated Data Tests

We consider a model, in a broad sense, to comprise not only a probability
description of future outcomes, but also the methodology for constructing
that description from past data. To apply generated data tests, we must
be able to determine how a given model would have been different, had the
historic data been different.

By focusing on the way we build models, rather than on the built model,
we can test proposed methodologies on computer generated data. A typical
test is structured as follows:

• Choose a process for generating the test data

• Generate a long test data series, split into a past portion and a future
portion.

• Take the past portion and use it to re-fit an ersatz model, without
reference to the original generating process.

• Run the ersatz model based on the past data portion, to give forecast
future scenarios
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• Compare the future scenario from the fitted model, to the future from
the originally generated data

• Repeat this many times on other generated data series.

The test passes if, in a statistical sense we shall define, the future sce-
narios from the fitted model are sufficiently representative of the future
scenarios from the original generating process.

2.4 Reference Models

In a generated data test, there must be a process for generating the test
data. We call this a reference model.

We should use not one, but many, reference models in generated data
tests. The ersatz model fitting methodology applied to the generated past
data, should see only the generated history and not the details of the refer-
ence model. Using a broad collection of reference models therefore reflects
the difficulty, that when we try to interpret data, we do not know the process
that originally generated it.

2.5 Generated Ersatz Models

The model fitted to the generated past data, is an instance of an ersatz
model.

Ersatz models are widely used based on historic data, but where real
data is used the underlying data generating process is unknown. We cannot
then directly measure the quality of the ersatz approximation.

In a generated data test, the reference model is known, and so we can
quantify the discrepancy between the reference model and the ersatz model.

2.6 Inner and Outer Scenarios

We can visualise the reference and ersatz models in the context of models
for generating economic scenarios, describing quantities such as inflation,
equity, bond or property indices, interest rates, foreign exchange rates and
so on.

On real data we have only one past and we will observe only one future.
Generated data need not respect that constraint. We generate multiple past
outer scenarios. For each outer scenario, it is common to several alterna-
tive future (or inner) scenarios. For any given outer scenario, we use the
reference model to generate inner scenarios from the conditional probability
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law given that specific outer scenario. This is sometimes called a nested
stochastic or Monte Carlo squared structure.

At the same time, we can generate multiple inner scenarios from an ersatz
model, fitted to the outer scenarios. This gives another nested stochastic
structure, with outer scenarios generated from a reference model and inner
scenarios from an ersatz model. We will sometimes talk about hybrid sce-
narios. This refers to the combination of outer reference scenarios and inner
ersatz scenarios.

2.7 Stated Assumptions

Generated data tests apply to a statistical procedure, that is, any algorithm
for producing ersatz models from past data. We are not testing the stated
rationale for the procedure, and indeed we can happily apply generated data
tests to procedures unclothed in justifying rhetoric.

Where there is a formal stated model underlying the ersatz construction
(for example, a probability law estimated from a parametric family by like-
lihood maximisation), that fitted ersatz model may or may not agree with
the reference model.

• Where the fitted model comes from a class that contains all the ref-
erence models, our procedure becomes a consistency test, that is, the
effectiveness of a procedure when the reference model satisfies the er-
satz assumptions.

• In other cases, for example when the reference has many more param-
eters than could reasonably be estimated from the quantity of gener-
ated past data, it is still valuable to know how wrong the ersatz model
might be. This is an example of a robustness test, that explores how
performance degrades when the reference model violates the ersatz
assumptions.

Consistency tests appear periodically in the actuarial literature, includ-
ing [23], [24] who test the consistency of boostrap techniques used in gen-
eral insurance reserving applications. Robustness tests are less common,
although we note Eshun et al [14] who applied generated data tests to the
fitting of generalised Pareto distributions to lognormally distributed data,
to compare different means of parameter estimation (method of moments,
maximum likelihood and probability-weighted moments). Cook and Smith
[7] apply this to models of natural catastrophes. Locke & Smith [29] assess
the robustness of the general insurance bootstrap.
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Newer statistical techniques, including machine-learning tools based on
neural nets or genetic algorithms, may not involve a conventional model with
stated assumptions. The good news is that generated data tests apply just
as well to these newer techniques as they do to classical models of regression
or time series analysis. However, without a formal list of assumptions, we
lose the distinction between consistency tests and robustness tests.

2.8 Generated Data Test Disadvantages

Tests on generated data can address questions that are unanswerable with
real data. The method does, however, have some important limitations too.

There is some arbitrariness in the choice of the set of reference models.
They should be broadly realistic and capable of generating at least the most
important aspects of actual data. However, there will always be different
perspectives on the future risks facing an organisation. The need to choose
one or more reference models is a disadvantage of generated data approaches,
compared to out-of-sample tests on real data.

Generated data tests require an ability to re-create what a fitted model
would have looked like under alternative histories. This limits our ability
to test certain models, when it is not completely clear how the observed
data was converted into forecasts. For example, once a quarter the Bank of
England publishes inflation forecasts for the following eight months, using
methods that incorporate the subjective judgement of the bank’s monetary
policy committee. We can test the out-of-sample forecasts (for example, see
[11]) but we cannot easily determine what the forecasts would be if the input
data had been different.

A generated data test does not test a specific instance of a model. It
tests the way we go about building models. This can result in models be-
ing penalised for their behaviour in entirely hypothetical situations. For
example, suppose we construct an ersatz model by maximum likelihood es-
timation. Such estimation sometimes fails to converge (due to difficulties in
the algorithm or non-existence of a maximum). In a generated data test, we
cannot then describe the model’s statistical properties even if on the actual
historic data the estimation proceeded without any difficulty.

Finally, we note that ersatz model calibration may be a time-consuming
exercise, which may have to be repeated for thousands of outer reference
scenarios. Run times for generated data tests may be considerable.
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3 Unbiased Parameters

The concept of an unbiased parameter is well-developed in statistics. A
parameter estimate is unbiased if its mean value (over outer reference sce-
narios) is the true value.

In our context, the parameter might be the mean or standard deviation
of one of the scenario output variables. We can regard the mean or standard
deviation of the ersatz scenarios as being estimators for the respective “true”
reference mean or standard deviation.

Although we describe the tests in terms of scenarios, it may be possi-
ble to calculate some or all of the relevant means and standard deviations
analytically, which makes the assessment of bias more straightforward.

We now consider these bias measures in more detail.

3.1 Unbiased Mean

Let us focus on one variable whose values are simulated both in the reference
and ersatz scenarios.

For a given reference model and outer scenario, the estimated mean is
the conditional mean of the ersatz scenarios. The mean of this estimated
mean is the average of these conditional means, which is the same as the un-
conditional mean of the relevant variable under the hybrid model consisting
of reference history and ersatz future.

The estimated mean is an unbiased estimate if the average value, across
outer scenarios, is the mean of the reference scenarios. This test is applied
separately for each reference model, and the test passes if equality holds
uniformly for each reference model.

Evidently, the larger and more diverse the set of reference models, the
more difficult it will be to construct unbiased estimators.

To write the test in symbols, let us use Ft to denote the information in
the history. Then we are testing whether the average of the ersatz mean is
the true mean, that is whether:

Eref×ersatz(Xt+1) = ErefEersatz(Xt+1|Ft)
?
= ErefEref (Xt+1|Ft)
= Eref (Xt+1)

Here, we have used the symbol ‘=’ for expressions that are mathematically

equivalent, and ‘
?
=’ for quantities that are equal if and only if the ersatz

mean is unbiased.
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3.2 Unbiased Variance

We can define bias for other properties of an ersatz distribution, for example
the variance.

To do this, we calculate the variance of the chosen variable, across

• The hybrid scenarios consisting of outer reference scenarios and inner
ersatz scenarios

• The original reference model

The ersatz variance is unbiased if these two quantities are the same,
uniformly across reference models. In symbols, the criterion is:

Varref×ersatz(Xt+1)
?
= Varref (Xt+1)

3.3 Unbiased Conditional Variance

We have defined variance bias in terms of unconditional expectations. We
could alternatively investigate the conditional bias, to test whether the con-
ditional ersatz variance is higher or lower than the conditional reference
variance, given the outer reference scenario.

In each case, to perform the test, we take the average over the outer
reference scenarios, but this time we have taken an average of conditional
variance rather than an unconditional variance. The criterion for unbiased
conditional variance is

ErefVarersatz(Xt+1|Ft)
?
= ErefVarref (Xt+1|Ft)

We might ask why the variance bias test comes in two forms (conditional
and unconditional) while we had only one mean bias test. The answer is
that the mean is a linear functional of the underlying distribution, so we get
the same answer whether we take the unconditional mean or average the
conditional means. The variance, however, is a concave functional, which is
why the variance of the whole population is higher than the average of the
variances for sub-populations.

3.4 Unbiased Variance of the Mean

As well as comparing the average ersatz mean to the reference mean, we can
also compare how much the conditional mean varies between outer reference
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scenarios. We can do this using the variance. In that case, the unbiased
variance of the mean criterion becomes:

VarrefEersatz(Xt+1|Ft)
?
= VarrefEref (Xt+1|Ft)

There is neat mathematical identity, that the unconditional variance of
a random variable is the variance of the conditional mean, plus the mean of
the conditional variance. In symbols, this is

Varref (Xt+1) = VarrefEref (Xt+1|Ft) + ErefVarref (Xt+1|Ft)
Varref×ersatz(Xt+1) = VarrefEersatz(Xt+1|Ft) + ErefVarersatz(Xt+1|Ft)

Thus tests of the bias of conditional and unconditional variance are also
tests of bias in the variance of the mean.

3.5 Unbiased Standard Deviation

We have described the concept of an unbiased variance. We could instead
look at the bias in standard deviation (that is, in the square root of the
variance). Bias in conditional standard deviation is not equivalent to bias in
variance, as the variance is a non-linear function (the square) of the standard
deviation.

There is a further computational complexity in testing the bias of stan-
dard deviations. While there is a well-known unbiased estimate of variance
for conditionally independent scenarios, there is no such general expression
for standard deviations. This implies that tests of conditional variance bi-
ases using nested Monte Carlo scenarios, can be distorted by small-sample
biases in the standard deviation estimate itself rather than in the ersatz
model.

3.6 Unbiased Quantiles

In the same way as for standard deviations, we can assess whether ersatz
quantiles are biased relative to a reference model. As with standard devia-
tions, we have two alternatives:

• We can measure the quantile of the hybrid outer reference and inner
ersatz scenarios, and compare this to the quantile of the reference
model.

• We can compare the conditional quantile of the ersatz model against
the conditional reference quantile, and average this over the outer ref-
erence scenarios.
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As with the standard deviation, these two tests are, in general, different.
However, as quantiles are in general neither convex nor concave functionals
of a probability distribution, there is no general theorem governing whether
unconditional quantiles are higher or lower than mean conditional quantiles.

3.7 Example of Conflicting Tests

We have described a series of bias tests. We might hope to devise ersatz
models that pass them all, by ensuring the ersatz distribution resembles the
reference distribution in many ways at once.

Unfortunately, as we shall see, this is unachievable. The sensible tests
we have described are already in conflict.

To see why, let us consider a series of independent identically distributed
random variables. Under different reference models, different distributions
apply but the observations are always independent and identically distributed.
Under each reference model, the conditional and unconditional distributions
of future observations are the same, and the variance of the conditional mean
is zero. Therefore, the unconditional standard deviation is equal to the ex-
pected conditional standard deviation.

Under the hybrid outer reference and inner ersatz scenarios, the fu-
ture distribution is not independent of the past. If the past observations
have been higher than their true mean, this will be projected into the er-
satz model; the ersatz models are different for each outer reference sce-
nario. Thus, for the ersatz scenarios, the unconditional standard deviation
is strictly higher than the unconditional standard deviation.

It follows that the ersatz standard deviation cannot simultaneously be
unbiased in the conditional and unconditional senses.

3.8 A Note on Terminology

In general parlance, biased is a pejorative term, implying favouritism or
dishonesty. In statistics, bias is a neutral term; it describes a mathematical
inequality that may or may not hold. Unfortunately, the use of loaded
terms such as bias can make it difficulty to justify biased estimators to
non-specialists who may interpret bias in its general rather than technical
sense.

To draw an analogy consider the term prime. In general parlance this has
positive moral overtones; prime cuts of meat represent the highest quality;
prime loans are to borrowers with the best credit histories. Prime also has a
technical mathematical meaning; a integer greater than 1 is prime if it has
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no factors other than 1 and itself. We easily avoid the trap of considering
a number to be inferior if it is not prime. Asked to calculate 2 × 3, we
are happy to calculate the answer as 6. We are not tempted to report the
answer as 7 on the grounds that 7 is prime. Unfortunately, that is precisely
what we do in statistics when we demand the use of unbiased estimators
even when only biased estimators can solve the problem posed.

4 Percentile Tests

We now consider a series of tests based on matching percentiles. The idea
is to test the definition of a percentile; for a continuous distribution, the
α-quantile should exceed the actual observation with probability α. To turn
this into an ersatz model test, we calculate the conditional ersatz α-quantile
and then count the frequency with which this exceeds the reference scenarios.
As with bias tests, we average this frequency over outer reference scenarios
to construct the test.

This is the generated data equivalent of the Basel historic back-test re-
quirement [4], [20] which counts the frequency of exceptions, that is events
where (hypothetical) losses exceed an ersatz 99%-ile, with an aim to hit a 1%
target. Given limited data, regulators allow firms a small margin so that the
observed exception frequency may rise some way above the 1% target with-
out sanction. In practice, many firms’ exception frequencies fall well below
the threshold, due to deliberate caution in their ersatz models. The Bank of
England’s test of its inflation forecasts [11] also follows this exception-based
approach. In the world of general insurance, these methods have been used
for testing the over-dispersed Poisson bootstrap technique (England and Ve-
rall [13]), both on historic data (Leong et al, [28]) and on generated data
(General Insurance Reserving Oversight Committee, [23], [24]). This is also
the idea behind Berkowitz’ value-at-risk test [5]. Arguably, this test is also
relevant for insurer capital adequacy, which within Europe is based on a
notional 0.5% failure probability [16].

When dealing with simulation data, there are a few variants of the test,
which we now consider. In each case, we assume that for each outer scenario,
we have generated n inner scenarios, of which r are from the reference model
(conditional on the outer scenario) and n− r are from the ersatz model.

4.1 Ersatz Percentile Exceedance

The percentile exceedance test requires us to choose a rank, 1 ≤ q ≤ n − r
and extract the qth smallest of the ersatz scenarios, which we interpret as
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an estimator of the q
n−r+1 quantile of the ersatz distribution. We then

count the number of the r inner reference scenarios that do not exceed
the extracted ersatz scenario. The test passes if the mean number of non-
exceeding inner reference scenarios, averaged over a large number of outer
reference scenarios, approaches q

n−r+1r.

4.2 Bucket Counts

An alternative percentile exceedance calculation involves taking the r inner
reference scenarios and n − r ersatz scenarios together, sorting them into
increasing order. For some 1 ≤ q ≤ n, we take the q smallest observa-
tions, and count the number of reference scenarios represented therein. The
test passes if the mean number of reference scenarios in the smallest q of
the combined scenario set, averaged over a large number of outer reference
scenarios, approaches q

nr.
There is a special case when there is only r = 1 inner reference scenario

for each outer scenario. The one reference scenario being smaller than the
qth ersatz scenario is equivalent to being in the smallest q of the combined
scenario set so our two tests become equivalent.

4.3 Continuous Percentile Test

We have described two ways to test percentiles based on Monte Carlo gener-
ated scenarios. When the ersatz model has an analytically tractable inverse
distribution function, it may be possible to simplify the calculation by tak-
ing the limit of the exceedance test as the number of inner ersatz scenarios
tends to infinity.

In that case, for each outer scenario, we can calculate a chosen α-quantile
for the ersatz distribution. The test then focus on the probability (calculated
by Monte Carlo, or analytically) that the reference outcome exceeds that
ersatz α-quantile. In symbols, the test is that:

EFref
[
F−1ersatz(α|Ft)

]
= α (3)

This is what Geisser [21] calls a prediction interval. Gerrard and Tsanakas
[22] further consider this concept in the concept of capital adequacy, as do
Frankland et al [19].
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5 Exponential Losses Example

We consider an example of a series of variables X1, X2, . . . , Xt, Xt+1. We will
assume they are positive random variables; they could represent an insurer’s
total claim payments each year. We define Yt = X1 + X2 + . . . + Xt to be
the cumulative losses.

We will consider various processes for generating the Xt. In all our
reference models, the Xt are drawn from a stationary process.

The purpose of the stochastic model is to forecast the losses Xt+1 in year
t+ 1 based on the losses in years 1 to t inclusive.

5.1 Ersatz Models

We compare four different types of Ersatz model constructions for this gen-
erated loss example.

5.1.1 Plug-in Ersatz Model

Our first Ersatz model generates the next loss Xt+1 from an exponential
distribution with a mean equal to the sample average of X1, X2, . . . Xt, that
is, Yt/t.

5.1.2 Bayesian Ersatz Model

For some α0 and λ0 > 0, the Bayesian ersatz model generates Xt+1 from a
Pareto distribution with parameters αt = α0 + t and λt = λ0 + Yt.

If α0 > 0 and λ0 > 0 this is the Bayesian predictive distribution, based
on the hypothesis that all the Xt are independent exponential draws from
an exponential distribution with mean M and prior distribution M−1 ∼
Γ(α0, λ0).

In our tests, we will use λ0 = 0 and α = 0 or 1. In these cases, our Ersatz
model is just a formulaic procedure for generating distribution; the Bayesian
derivation is invalid because the prior density cannot be integrated.

5.1.3 Bootstrap Ersatz Model

The bootstrap Ersatz model [10] starts by randomly sampling the loss data
X1, X2, . . . Xt, repeated t times with replacement. There are tt possible
ways of doing this, which we either weight equally or, for large t where
enumeration is impractical, we re-sample randomly. We then generate Xt+1

from an exponential distribution with mean equal to the average of the

17



random re-sample. To generate a new bootstrap forecast, we re-run both
the random re-sample and also the exponential draw.

5.1.4 Maximum Multiplier Method

Let Mt = max{X1, X2, . . . Xt}. Under the maximum multiplier method, the
reference distribution function is:

F (x) =

t∑
j=1

(−1)j−1
(
t

j

)
x

jMt + x

Table 3 describes the mean and variance of these ersatz models.

Table 3: Properties of Selected Ersatz Models
Ersatz Model E(Xt+1|Ft) Var(Xt+1|Ft)

Plug-in t−1Yt t−2Y 2
t

Bayes Yt
α0+t−1

(α0+t)Y 2
t

(α0+t−1)2(α0+t−2)
Bootstrap t−1Yt

2
t2
∑t

j=1X
2
j + t−2

t3
Y 2
t

MaxMult
∑t

j=1(−1)jj
(
t
j

)
ln j ×Mt

{ ∑t
j=1(−1)j−1

(
t
j

)
j2 ln j ×M2

t

−mean2

5.2 Reference Models

We consider the following reference models:

• The Xt are independent exponential random variates, with mean (and
standard deviation) 100

• The Xt are independent Pareto random variates, with mean 100 and
variance 15000 or 20000, corresponding to shape parameters α = 6 or
α = 4.

• The Xt are drawn from a first order auto-regressive (AR1) process,
with stationary exponential distribution (mean 100) and autocorrela-
tion QA = 0.5, 0.7 or 0.9.

We consider a historic data period of 10 years. We attempt to forecast only
the next year’s loss Xt+1.

We can consider our first, independent exponential, reference model also
to be a first order autoregressive process with QA = 0. In Table 4 we list
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Table 4: Reference Distribution Mean and Variance
Reference Mean Var. Mean Cond. Var Uncond. Var.

§3.1 §3.4 §3.3 §3.3

Exponential 100 0 10000 10000
Pareto (α = 6) 100 0 15000 15000
Pareto (α = 4) 100 0 20000 20000

QA = 0.5 100 2500 7500 10000
QA = 0.7 100 4900 5100 10000
QA = 0.9 100 8100 1900 10000

the mean and variance of the next observation according to these reference
models.

These are the “true” parameters which we seek to reproduce, or at least
approximate, with an ersatz model.

5.3 Mean Bias Results

We now consider the bias in the mean of the ersatz model. Table 5 shows
the average of the ersatz mean, for a range of different reference models and
ersatz model constructions. This should be compared to the first column of
Table 4.

Table 5: Ersatz Distribution Mean for Sample Size t = 10 Data Points
Reference Plug-in Bayes(0) Bayes(1) Bootstrap Max Mult

Exponential 100 111 100 100 119
Pareto (α = 6) 100 111 100 100 135
Pareto (α = 4) 100 111 100 100 146

QA = 0.5 100 111 100 100 107
QA = 0.7 100 111 100 100 94
QA = 0.9 100 111 100 100 67

All of our reference models have constant mean (as they are fragments
of stationary processes), which implies that the mean of the sample past
average is equal to the mean of the next observation. It is then immediate
that both the plug-in method and the bootstrap method produce unbiased
means.

For the Bayesian method, the mean of the ersatz distribution is equal to
λt

αt−1 , that is, Yt
α0+t−1 . This is an unbiased estimator of the true distribution

only if α0 = 1. If α0 < 1 then the ersatz mean is biased upwards.
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Finally, we come to the maximum multiplier method. Here, the ersatz
mean is a multiple of Mt. To find the mean of this, we need to know the
expectation of Mt, the maximum value of X1, X2, . . . Xt. We have evaluated
this analytically for the independent exponential and Pareto models, and
have used Monte Carlo simulation for the AR1 processes.

The pattern of the maximum multiplier method deserves some expla-
nation. The method is upwardly biased, even for the exponential reference
method, and indeed shows a worse mean bias than the Bayes(0). Moving
from exponential to Pareto distributions increases the bias. This is because
the difference between the maximum of a set and the mean of the same set
is a measure of variability, and the chosen Pareto distributions have higher
variance than the exponential distribution.

The mean bias in the AR1 case is lower than in the independent case.
That is because positive auto-correlation between observations reduces the
relative dispersion, reducing the expected maximum value compared to in-
dependent observations.

5.4 Variance Bias Results

Tables 6 and 7 show the Ersatz variance, on a conditional and unconditional
basis, for a variety of different reference models and ersatz constructions.
These should be compared to the columns 3 and 4, respectively, in table 4.

In creating these examples, we used the following result for an autoregres-
sive process. From the covariance structure Cov(Xs, Xt) = QA|t−s|Var(X1),
we find that:

Varref (Yt) =
t(1−QA2)− 2QA(1−QAt)

(1−QA)2
Varref (X1)

This expression is different to equation 2, because this equation refers to an
unconditional variance, on contrast to the conditional variance of equation
2

Clearly none of these ersatz models produces unbiased variances, al-
though some show worse bias than others.

For the exponential reference model, the smallest variance bias occurs
for the plug-in method. At first sight, the bias is surprising, because the
mean is unbiased and both ersatz and reference models produce exponential
variates, for which the variance is the square of the mean. The paradox is
explained because the ersatz mean it itself a random variable. The ersatz
expected variance is the mean of the squares ersatz mean, while the reference
variance is square of the mean. The mean of the square is always bigger than

20



Table 6: Ersatz Distribution Conditional Variance for t = 10
Reference Plug-in Bayes(0) Bayes(1) Bootstrap Max Mult

Exponential 11000 16975 13444 12800 23150
Pareto (α = 6) 11500 17747 14056 14200 35042
Pareto (α = 4) 12000 18519 14667 15600 46829

QA = 0.5 12600 19445 15400 14080 20313
QA = 0.7 14155 21844 17301 15324 16977
QA = 0.9 17276 26661 21115 17821 10477

Table 7: Ersatz Distribution Unconditional Variance for t = 10
Reference Plug-in Bayes(0) Bayes(1) Bootstrap Max Mult

Exponential 12000 18210 14444 13800 25696
Pareto (α = 6) 13000 19599 15556 15700 41889
Pareto (α = 4) 14000 20988 16667 17600 59215

QA = 0.5 15201 22655 18001 16681 23359
QA = 0.7 18310 26974 21456 19479 20341
QA = 0.9 24552 35644 28392 25097 13563

the square of the mean, by Jensen’s inequality, hence the upward bias in the
erstatz variance.

For the Pareto reference models, more methods, with the glaring excep-
tion of the maximum multiple, produce downwardly biased expected vari-
ances, both conditional and unconditional. This is because the ersatz models
have been derived from exponential distributions, which (for a given mean)
have lower variance than the Pareto distribution. In other words, the down-
ward bias is a consequence of model mis-specification.

An upward bias in ersatz conditional variance emerges for the autore-
gressive processes. The conditional reference variance is reduced because
some of the variance is explained by the auto-regression term; it is only
the balance which features in the conditional variance. The ersatz models
fail to capture the auto-regression effect, and so overstates the conditional
variance.

The maximum multiple method shows a bigger upward ersatz variance
bias than any of the other methods; indeed the bias is so big that we have
an upward variance bias even for the Pareto reference models. We recall
that the mean of the maximum multiple method also had an upward mean
bias. The bias evidence gives us little reason to commend the maximum
multiple method, nor indeed the Bayes(0) method. These show positive bias
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in both the mean and variance, while the plug-in and Bayes(1) methods have
unbiased mean and smaller variance bias in the exponential reference case.
Overall, the plug-in method would be preferred on the grounds of smallest
bias.

5.5 Percentile Test Results

5.5.1 Consistency

Table 8 shows the exceedance probabilities for different ersatz percentiles, for
the exponential reference model. We have calculated these, with a mixture
of analytical (where possible) and Monte Carlo methods, applying equation
3.

Table 8: Percentile Tests for Sample Size t = 10, Exponential Reference
Percentile Plug-in Bayes(0) Bayes(1) Bootstrap Max Mult

0.5% 0.5% 0.5% 0.5% 0.5% 0.5%
1.0% 1.0% 1.0% 0.9% 0.9% 1.0%
5.0% 5.0% 5.0% 4.6% 4.6% 5.0%

10.0% 10.0% 10.0% 9.1% 9.2% 10.0%
25.0% 24.7% 25.0% 23.0% 23.2% 25.0%
50.0% 48.8% 50.0% 46.7% 47.1% 50.1%
75.0% 72.7% 75.0% 71.6% 72.0% 75.0%
90.0% 87.4% 90.0% 87.7% 87.8% 90.0%
95.0% 92.7% 95.0% 93.4% 93.4% 95.0%
99.0% 97.7% 99.0% 98.5% 98.3% 99.0%
99.5% 98.6% 99.5% 99.2% 99.0% 99.5%

Surprisingly, these results show an exact pass for the Bayes(0) and max-
imum multiple methods. These are the two methods which performed worst
according to the bias criteria. The Bayes(0) method is an example of a
probability matching prior, as considered in [34] and [22].

The next best candidates in the percentile tests are the Bootstrap and
Bayes(1) methods, whose results are very close to each other despite their
contrasting derivations. The worst method for percentile test is the plug-in
method, which produces too many exceptions; for example 2.3% of reference
scenarios exceed the 99%-ile of the plug-in ersatz distribution.

It appears, then, that the ersatz methods that work best from a bias
perspective are worst for percentile tests, and vice versa. This is to be
expected. We now explain why.
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Let us suppose that Q is an ersatz q − quantile, and let us suppose
Q ≥ 0. For a random variable with reference distribution function F (x), we
consider two criteria:

• For Q to be an unbiased estimate of the true q-quantile, we want
E(Q) = F−1(q), or equivalently, F [E(Q)] = q.

• For Q to exceed a proportion q of observations, we want EF (Q) = q

Now for the exponential, Pareto and many other distributions, the distri-
bution function F (x) is a strictly concave function on x ≥ 0. Jensen’s
inequality now implies:

EF (Q) ≤ F (EQ)

Equality holds only if Q is not random. In other words, if Q is an unbiased
estimator for q (as is the plug-in ersatz model) then the ersatz percentile
test is too low. If, on the other hand, the percentile test passes, then then
Q is an upwardly biased estimate of the reference percentile q, as occurs in
the Bayes(0) test. We simply cannot pass all the tests at once.

5.5.2 Robustness: Pareto

Table 9 shows exceedance probabilities for ersatz percentiles, when the ref-
erence model is series of independent Pareto variates, with shape parameter
α = 6, corresponding to a variance of 1.5 if the mean is 1. These are all
based on ten data points, and a one-step-ahead forecast.

Table 9: Percentile Tests: Robustness to Mis-Specified Distribution: Pareto
(α = 6)

Percentile Plug-in Bayes(0) Bayes(1) Bootstrap Max Mult

0.5% 0.6% 0.6% 0.5% 0.5% 0.7%
1.0% 1.2% 1.2% 1.1% 1.1% 1.4%
5.0% 5.9% 5.9% 5.4% 5.3% 6.7%

10.0% 11.6% 11.7% 10.7% 10.5% 13.0%
25.0% 27.8% 28.2% 26.0% 25.7% 30.6%
50.0% 52.1% 53.2% 50.1% 50.0% 55.9%
75.0% 73.9% 75.9% 72.9% 73.1% 77.8%
90.0% 86.7% 89.0% 86.9% 87.1% 90.1%
95.0% 91.5% 93.7% 92.2% 92.2% 94.4%

99% 96.5% 98.0% 97.4% 97.2% 98.3%
99.5% 97.5% 98.8% 98.3% 98.1% 99.0%
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As we might expect, ersatz models derived from exponential distributions
do not perform brilliantly on a diet of Pareto distributed data. The Pareto
has fatter tails than the explanation, so exponential ersatz models should
under-predict the upper tails, which is exactly what we see. It remains the
case that the Bayes(1) and bootstrap method are similar to each other.

It is not surprising that the Bayes(0) method performs better than
Bayes(1) in the extreme tail, because with ten data points, Bayes(0) pro-
duces a fatter tailed Pareto ersatz distribution (αt = 10) than the Bayes(1)
ersatz distribution (αt = 11).

The least bad method at high percentiles, from a robustness point of
view, appears to be the maximum multiple method. While the plug-in and
Bayes methods focus on the historic average, the maximum multiple method
focuses on the largest observation. As we have seen, this produces a higher
variance, but, as the maximum focuses on the upper tail, we are able better
to hedge our bets against mis-specification of tail fatness.

5.5.3 Robustness: Autoregressive Model

Table 10 shows shows exceedance probabilities for ersatz percentiles, when
the underlying data is autocorrelated, having been generated from an AR1
process. These are all based on ten data points, and a one-step-ahead fore-
cast.

Table 10: Percentile Tests: Robustness to Autocorrelation (QA = 0.5)
Percentile Plug-in Bayes(0) Bayes(1) Bootstrap Max Mult

0.5% 0.1% 0.1% 0.0% 0.0% 0.2%
1.0% 0.4% 0.4% 0.3% 0.3% 0.5%
5.0% 3.3% 3.3% 2.9% 3.0% 3.4%

10.0% 7.9% 8.0% 7.1% 7.3% 7.7%
25.0% 23.0% 23.3% 21.1% 21.8% 20.6%
50.0% 48.8% 50.0% 46.4% 47.4% 47.3%
75.0% 73.0% 75.1% 72.0% 72.4% 76.1%
90.0% 86.7% 89.0% 86.9% 87.1% 89.6%
95.0% 91.5% 93.7% 92.2% 92.3% 94.2%
99.0% 96.4% 97.8% 97.2% 97.1% 98.3%
99.5% 97.3% 98.5% 98.1% 98.0% 98.9%

The striking feature of table 10 is the poor fit at low percentiles. The
reason for this is that, under the AR1 process, Xt+1 ≥ QA × Xt with
probability 1, so the conditional reference distribution has a strictly positive
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lower bound. This contrasts with the Ersatz models all of which have a
lower bound of zero (and no higher).

At the upper end, the pattern of extreme reference percentile under-
prediction persists, with the maximum multiple method once again the most
robust.

5.6 Conflicting Objectives

Our examples have shown how difficult it is to satisfy multiple tests at once.
We can summarise the results so far.

• From a parameter bias perspective, the best ersatz model is the plug-
in, followed by Bayes(1).

• For percentile consistency tests, the best performers are Bayes(0) and
maximum multiple.

• For robustness to model mis-specification at the upper percentiles,
the maximum multiple method performs best, with Bayes(0) coming
second.

We can ask for parameters to be unbiased, or for accurate percentile tests
but, apparently, not both at once.

These conflicts have been noted in special cases before. For example,
GIROC [23], [24], applied percentile tests to the over-dispersed Possion boot-
strap method described by Brickman et al [8] and England & Verall [13],
with mixed results. Cairns and England [6] reproduced the GIROC results
but disputed the conclusions on the grounds that the tests were inappropri-
ate.

5.7 Alternative Paths

In this section, we have tested formulaic methods of constructing ersatz
models from limited data. It is common in practice to follow a more complex
decision tree, where model fit and parameter significance are subjected to
testing, with different model classes eventually used according to the results
of these tests.

Taking the example in section 1.3, before using a model based on the
exponential model, we might estimate a distribution property, for example
the standard deviation or the L-scale, and compare it to the theoretical
value. For our ten observations, the sample mean is 100, the standard
deviation is also 100 and the L-scale is 50. These are exactly what we
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would expect for an exponential distribution. But if we had rejected the
exponential distribution we would then possibly have fitted very different
ersatz models.

The use of intermediate tests in the ersatz model construction does not
invalidate the idea of generated data tests, but it does complicate them.

6 Autoregressive Growth Example

6.1 Reference Models

For our autoregressive growth example, we construct reference models based
on equation 1. We use the following combinations:

• Autoregression parameters QA = 0, 0.5, 0.7 or 0.9.

• Historic periods of 10, 20 or 50 years.

• Forecast horizons of 1, 10 or 20 years.

We use QMU = 0.05 and QSD = 0.05, which were Wilkie’s [37] choices for
a UK inflation model. These choices affect only relative outputs, and so is
effectively without loss of generality.

In each case, we start the reference model from the stationary distribu-
tion:

ln

(
Q1

Q0

)
∼ N

(
QMU,

QSD2

1−QA2

)
6.2 What exactly are we Testing?

This section is not a test of the Wilkie model, which describes many time
series besides inflation. Wilkie’s model has been exposed to extensive review
elsewhere [25], [27].

This section is also not a test of Wilkie’s inflation model; since his original
model he has described several alternative approaches to inflation modelling.
Our generated data tests do not even use any real inflation data. Readers
interested in learning more about specfics of inflation may wish to consult
Engle [12], Wilkie [39], Speed [35], Whitten & Thomas [36].

We are testing an abstract method (ordinary least squares) of calibrat-
ing univariate first-order autoregressive models. Although Wilkie used this
method, it is a general statistical approach in widespread use [26]. Our me-
chanical testing approach contravenes Wilkie’s instruction that model users
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“should form their own opinions about the choice of appropriate mean val-
ues” [39]. We have used Wilkie’s notation as this may be already familiar
to actuaries.

Previous published work in this area is scant. Exley, Smith and Wright
[15] provide some tests of the autoregressive models on simulated data.

6.3 Ersatz Models

Our ersatz are models are also first-order autoregressive models, but with
estimated parameters Q̂A, Q̂MU and Q̂SD. We estimate these by linear
regression of consecutive changes in the reference log inflation index histo-
ries.

While our reference models are all stationary (because the reference pa-
rameter |QA| < 1), this does not automatically apply to parameter estimates

Q̂A. In particular, in a certain proportion of outer scenarios, we will find
Q̂A > 1. These imply exponentially exploding scenarios. For longer horizon
forecasting, this small number of exploding ersatz models comes to dominate
any attempts to measure parameter bias.

Some experts, faced with an estimate Q̂A > 1, will reject that value, on
the grounds that the implied exploding process is an implausible model for
inflation. They might constrain Q̂A to lie in what is judged to be a plausible
range. In our calculations, for any outer reference scenario producing Q̂A >
1, we replace the ersatz model with Q̂A = 1. We then recompute the
other parameter estimates Q̂MU and Q̂SD from the history, but with the
regression gradient forced to 1. We apply a similar transformation in the
(less frequent) cases where Q̂A < −1. In other words, we impose a plausible

range of −1 ≤ Q̂A ≤ 1, with estimates outside that range mapped onto the
nearest boundary.

6.4 Mean Bias

We now argue that the ersatz mean of future scenarios is an unbiased esti-
mate of the reference mean.

We demonstrate this by a symmetry argument. Let us fix the parameters
QA and QSD, and also fix the random normal error terms. Let us consider
the impact of adding some constant, c, to QMU . Under this shift, we see:

• The historic reference rates of inflation all increase by c.

• Future reference rates of inflation all increase by c.
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• Ersatz Q̂S and Q̂SD are unchanged, but Q̂MU increases by c, so
future ersatz scenarios increase by c.

We can conclude that the mean bias, that is the difference between mean
ersatz and reference scenarios, is invariant under changes in QMU . But in
the case QMU = 0 both the reference and ersatz distributions are symmetric
about zero, so the bias is zero.

Sadly, these symmetry arguments get us nowhere when it comes to bias
in variance. We can proceed only by Monte Carlo.

6.5 Variance Bias

Table 11 shows the average variance of the ersatz scenarios, that is, the
conditional variance for log of the index lnQt+h for various histories t ∈
{10, 20, 50}. In the limit as t ↑ ∞, the ersatz parameters converge to the
reference parameters.

The figures in Table 11 should be read as follows. Let us focus on the
horizon H = 10 years. Under the reference model, if we want to forecast the
log inflation index ten years ahead, we can do so with a variance of 42.2%2,
or equivalently, a standard deviation of 42.2%.

If we calibrate an ersatz model by least squares, we obtain on average
a smaller conditional variance, for example of 36.4%2 with twenty years’
calibration data. The absolute variances are of course dependent on our
choice of reference QSD, but the ratio of ersatz to reference variance is not.
The expected ersatz variance is systematically underestimated at around
three quarters of the reference value (with the standard deviation factor the
square root of this). This bias is in the opposite direction to the upward
ersatz variance biases which we noticed in our exponential example.

The downward variance bias must be related to the small sample size.
Theory tells us that the effect disappears as the data sample size tends to
infinity, in the reference limit. However, we needed Monte Carlo simulations
to quantify the effect for small samples. As we have seen, for history lengths
and forecast periods which actuaries often encounter, these small sample
biases are quite problematic.

At first sight, the biases are surprising, as linear regression is known to
produce unbiased parameter estimates [2]. However, these results assume
that the X variates are fixed, while Y are independent random variables.
Time series estimates are different, as both X and Y are random variables,
observed consecutively from (what we suppose to be) a common AR1 pro-
cess. Furthermore, multi-period forecasts are non-linear functions of the
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parameters, with higher powers for longer periods. This might explain why
the bias is modest with a one-year horizon but deteriorates for ten-year
projections.

Table 11: Mean of Conditional Variance for Various Horizons; QA = 0.7
History H = 1 year H = 10 years H = 20 years

10 years data 4.9%2 33.9%2 62.9%2

20 years data 5.0%2 36.4%2 60.0%2

50 years data 5.0%2 39.5%2 63.5%2

Reference model 5.0%2 42.2%2 67.3%2

Table 12 shows the impact of the the QA parameter on variance bias.
This shows that higher values of QA, that is, weaker mean reversion, lead
to greater downward variance bias. The shape of variance by horizon is
determined by QA; the higher the value of QA (orther things being equal)
the higher the multi-period variance. One possible reason for the downward
bias in ersatz variance is our cap that Q̂A ≤ 1. If the reference QA is close
to 1, then estimated parameters may cluster around the true value, but by
pushing down those that exceed 1, we depress the average Q̂A and hence
the average ersatz variance.

Table 12: Mean of Conditional Variance for 10 Year Horizon
History QA = 0 QA = 0.5 QA = 0.7 QA = 0.9

10 years data 16.6%2 26.9%2 33.9%2 42.1%2

20 years data 16.1%2 27.3%2 36.4%2 50.2%2

50 years data 15.9%2 28.2%2 39.5%2 60.0%2

Reference model 15.8%2 28.9%2 42.2%2 71.1%2

6.6 Percentile Tests

Table 13 shows the result of percentile tests, with a ten-year horizon and
with QA = 0.7. We can see that the ersatz median passes the test, exceeding
the reference scenarios 50% of the time.

Other percentiles are captured less accurately. In each case, the extreme
reference events happen more frequently than would be implied by the ersatz
distribution. For example, taking twenty years of data and a ten year fore-
cast horizon, we see that the reference scenarios lie below the erstaz 1%-ile
with a probability of 9.5%. In other words, if we were counting exceptions
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in a value-at-risk calculation, we are seeing nearly ten times more extreme
events than the ersatz model predicts.

Table 14 shows that this percentile bias is smaller if the time horizon is
shorter, or if the data sample is larger.

Table 13: Percentile Exceedances; QA = 0.7 and H = 10 years
10 years data 20 years data 50 years data Reference

16.3% 7.8% 2.9% 0.5%
18.4% 9.5% 4.1% 1.0%
25.5% 16.5% 9.9% 5.0%
30.2% 21.9% 15.4% 10.0%
39.1% 33.8% 29.2% 25.0%
50.0% 50.0% 50.0% 50.0%
60.9% 66.2% 70.8% 75.0%
69.8% 78.1% 84.6% 90.0%
74.5% 83.5% 90.1% 95.0%
81.6% 90.5% 95.9% 99.0%
83.7% 92.2% 97.1% 99.5%

Table 14: First Percentile Exceedance for Various Horizons; QA = 0.7
History H = 1 year H = 10 years H = 20 years

10 years data 4.4% 18.4% 23.5%
20 years data 2.2% 9.5% 13.0%
50 years data 1.4% 4.1% 5.6%

Reference model 1.0% 1.0% 1.0%

6.7 Convexity Effects

We should not be surprised that ersatz AR1 models produce too many excep-
tions, given that we have already noted a downward bias in ersatz variance
in Table 12.

However, the percentile tests fail by a much larger margin. Table 15
compares three distributions for log inflation over a ten year horizon. All
three have the same mean, which is equivalent to ten years’ inflation at
QMU = 5%.

• The reference distribution has the conditional variance of the reference
model in Table 11.
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• The first ersatz distribution has the conditional variance equal to the
average ersatz model calibrated to 20 years’ data, also in Table 11.

• The second ersatz distribution shows how small the ersatz standard
deviation would have to be, in order to produce the 1%-ile test failure
in Table 13.

The third column, for context, shows the corresponding fall in prices
over a ten-year period (without logarithms).

Table 12 shows that the variance bias alone is insufficient to explain the
percentile test failure. To understand the effect, we must recognise that er-
satz variances are not only too low on average, but may be far smaller than
the average variance for particular outer reference scenarios. If we focus on
cases where reference scenarios exceed extreme ersatz percentiles, we will see
a disproportionate number of calibration errors where the ersatz model un-
derstates deflationary scenarios. The ersatz model may have overestimated
mean inflation, ie Q̂MU > QMU , underestimated the standard deviation
Q̂SD < QSD or overstated mean-reversion Q̂A < QA.

Such calibration errors are of course more severe when data is limited.
Furthermore, the impact of a parameter error compounds over future time
horizons; the further ahead we look, the greater the impact of uncertainty,
especially in QMU and QA. We should not be surprised, therefore, that the
percentile bias is smaller if the time horizon is shorter, or if the data sample
is larger, as we saw in table Table 14. This pattern is consistent with the
Jensen effect we saw in the exponential example §5.5.1.

Table 15: AR1 Standard Deviations and Extreme Stresses
Model Mean Stdev Inflation Reference Prob

Reference 50.0% 42.2% - 38.3% 1.0%
Ersatz 1 50.0% 36.4% -29.4% 2.2%
Ersatz 2 50.0% 23.8% -5.2% 9.5%

6.8 Allowing for Parameter Uncertainty

In our calculations for the AR1 model, we have used the simplest ersatz con-
struction: another AR1 model, with parameters estimated by least squares
and plugged in. We could consider Bayesian or bootstrap methods for cap-
turing parameter uncertainty. Wilkie [38] describes some investigations of
mixture investment models where the underlying parameters are stochastic,
reporting no material change in mean investment returns but an increase in
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standard deviations. Percentile tests are not provided, but it is to be hoped
that these would show an improvement relative to the plug-in approach.

7 Conclusions

7.1 All Models are Wrong

All models are deliberate simplifications of the real world. Attempts to
demonstrate a model’s correctness can be expected to fail, or apparently to
succeed because of test limitations, such as insufficient data.

We can explain this using an analogy involving milk. Cows’ milk is a
staple part of European diets. For various reasons some people avoid it,
preferring substitutes, or ersatz milk, for example made from soya. In a
chemical laboratory, cows’ milk and soya milk are easily distinguished.

Despite chemical differences, soya milk physically resembles cows’ milk
in many ways - colour, density, viscosity for example. For some purposes,
soya milk is a good substitute, but other recipes will produce acceptable
results only with cows’ milk. The acceptance criteria for soya milk should
depend on how the milk is to be used.

In the same way, with sufficient testing, we can always distinguish an
ersatz model from whatever theoretical process drives reality. We should
be concerned with a more modest aim: whether the ersatz model is good
enough in the aspects that matter, that is, whether the modelling objective
has been achieved.

7.2 Testing on Empirical Data vs Generated Data

In this paper we have considered methods for testing models using generated
data.

Conventional model testing on historic data suffers from low power. This
limits test sensitivity to detect model errors. An array of green lights in a
validation report can easily be misinterpreted as proof that the models are
correct. The actual achievement is more modest: a failure to demonstrate
that the models are wrong. Limited data may mean we cannot decide if a
model is good or not, or we might not have tried very hard to find model
weaknesses.

Testing on generated data has the reverse problem, that even tiny dis-
crepancies are detectable, given sufficiently many simulations. Generated
data tests reveal a multitude of weaknesses for any model. This is a good
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thing if the validation objective includes a better understanding of model
limitations. It is a bad thing if the objective is a sea of green lights.

Generated data tests are not new, and there have been several applica-
tions to disparate areas of actuarial work described in the last ten years.
Some of these are parts of larger documents, or presentation discussions,
without a detailed methodology description. This paper attempts to draw
together themes from several strands of research, clarifying the methodol-
ogy, adding further examples and arranging the various concepts and tests
in a systematic fashion.

7.3 Have we Solved the Problem?

We started this paper with stories of models gone bad. Can our proposed
generated data tests prevent a recurrence?

The Model Risk Working party [30] has explained how model risks arise
not only from quantitative model features but also social and cultural aspects
relating to how a model is used. When a model fails, a variety of narratives
may be offered to describe what went wrong. There may be disagreements
between experts about the causes of any crisis, depending on who knew, or
could have known, about model limitations. Possible elements include:

• A new risk emerged from nowhere and there is nothing anyone could
have done to anticipate it - sometimes called a “black swan”.

• The models had unknown weaknesses, which could have been revealed
by more thorough testing.

• Model users were well acquainted with model weaknesses, but these
were not communicated to senior management accountable for the
business

• Everyone knew about the model weaknesses but they continued to
take excessive risks regardless.

Ersatz testing can address some of these, as events too rare to feature
in actual data may still occur in generated data. Testing on generated data
can also help to improve corporate culture towards model risk, as:

• Hunches about what might go wrong are substantiated by objective
analysis. While a hunch can be dismissed, it is difficult to suppress
objective evidence or persuade analysts that the findings are irrelevant.
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• Ersatz tests highlight many model weaknesses, of greater or lesser
importance. Experience with generated data testing can de-stigmatise
test failure and so reduce the cultural pressure for cover-ups.

We recognise that there is no mathematical solution to determine how
extreme the reference models should be. This is essentially a social decision.
Corporate cultures may still arise where too narrow a selection of reference
models is tested, and so model weaknesses remain hidden.

7.4 Limitations of Generated Data Tests

Generated tests can tell us a great deal about a modelling approach. How-
ever, they have some limitations.

Generated data methods do not test a particular ersatz model; they test
a way of building ersatz models. This requires us to specify how a model
would have been constructed based on alternative input data. In some cases,
for example, the Bank of England’s fan charts, we can examine historic ersatz
models, but the parameter choice depends on the subjective judgement of
the Bank’s Monetary Policy Committee so we cannot readily recreate the
model under generated inputs. This is an obstacle to applying generated
tests, and indeed prevents us from testing whether the model forecasts are
statistically biased or not.

For models such as Wilkie’s model [37], we have a precise derivation of
the parameters from historic data, so we can test how the fitted parameters
would be different had the historic data been different. However, difficult
cases arise, for example in specifying alternative courses of action when a
statistical test fails or when näıve parameter estimates imply geometrically
exploding future scenarios.

7.5 Consistency and Robustness

Proposed models often come with stated lists of assumptions. Actuarial
reports in the UK are required to document assumptions used in a model’s
specification, its implementation and realisations [3].

One thing we know about assumptions is that they will turn out to be
wrong. For model builders, client acceptance of a set of assumptions gives
a degree of legal risk protection, as subsequent model malfunction may be
blamed on inevitable assumption violations. However, this does little to
satisfy the regulator’s objective that “users for whom a piece of actuarial
information was created should be able to place a high degree of reliance on
the informations relevance” [3].
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We can do better than this with ersatz model tests. Consistency means
that the model works well on data generated consistently with the stated
assumptions. Robustness means that the model may work within an accept-
able tolerance even if the reference process violates the stated assumptions.

7.6 Parameter and Model Uncertainty

All stochastic investigations involve choices of models and parameters.
Many actuarial investigations involve a single model, whose chosen pa-

rameters are described as best estimates. While such models may be accom-
panied with statistical tests, or statements of parameter standard errors,
there is not always an explicit allowance for the possibility that the model
or parameters may be incorrect.

On the other hand, some modelling approaches, including some Bayesian
and bootstrap methods, include explicit steps which are meant to capture
parameter uncertainty. The Solvency II regulations [17] require that “Wher-
ever possible, the probability distribution forecast shall be adjusted to ac-
count for model and estimation errors.”.

There is no universally agreed criterion determining whether an ersatz
model does, or does not, take account of model and estimation error. It is
clearly not sufficient to scan the documentation searching for a step labelled
“Model error adjustment” because, for example, a step entitled “Model Error
adjustment: Add zero to all parameters” should not count.

We therefore look for an output-based criterion for capturing model er-
ror. Our results have shown that:

• Ersatz methods which ignore parameter error, typically fare well in
tests for parameter bias, but perform poorly in percentile tests.

• Methods described as incorporating parameter error, tend to perform
better, if not perfectly, in percentile tests. However, the allowance for
parameter uncertainty will tend to increase projected outcome vari-
ance, and thus fail bias tests.

We are not suggesting that “passes percentile tests” is equivalent to
“takes account of model and parameter error”. Rather, we are saying that
the manner in which parameter error is taken into account should depend on
the model purpose. If we have a true model then it is true for all purposes,
but an ersatz model may be more limited in scope.
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7.7 Test Conflicts

In this paper we have outlined a large number of model tests that could be
performed using generated data. These tests all have plausible rationales,
and several have been used in practice for many years, even if not in a
structured way.

All of these tests should pass, if a procedure for generating ersatz sce-
narios correctly identifies the conditional distribution from an underlying
reference model. However, when more than one reference model is con-
sidered, and given the unlimited power of generated data to detect model
weaknesses, it may no longer be possible to satisfy all the tests at once.
Choices and trade-offs must be made.

Conflict between different tests is a consequence of model and parameter
uncertainty, and of the need to pick a single ersatz model. The conflicts are
most acute when data is scant and so the uncertainty is most pronounced.
For example, actuaries may debate whether it is possible to estimate a 99%-
ile loss based on ten data points. We have seen that is it possible to create
unbiased estimates of this percentile, and to create estimates that pass a per-
centile test, but not both at once. Solutions to either problem are vulnerable
to model mis-specification. Claims to have calculated extreme percentiles,
especially when based on small data sets, should be substantiated with de-
tails of any tests which those estimators have satisfied.

The relative importance of different tests may depend on a model’s ap-
plication. Unbiased parameters may be important in portfolio construction.
Percentile tests may be more important for value-at-risk. Other tests may
be important for product pricing, financial reporting or risk control. We
reject the näıve idea that a single model will be “best” for all purposes.
Instead, users should test each model in a way that is appropriate to its
application.
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