

Agenda

- Introducing the problem: stochastic reserving
- Current solution: chain ladder methods
- Motivating a model for the problem of stochastic reserving
- Addressing the limitations of chain ladder methods
- Defining a model for the problem of stochastic reserving
- Consistency with the chain ladder method

Agenda

- The double chain ladder estimation method
- New insights:
- Estimating the tail
- Separation into RBNS and IBNR
- Introducing prior knowledge
- Simulation methods to obtain statistical distributions
- Conclusions

The individual claims mechanism

- The life of an individual claim in the general claims process:

- Three categories of claim:
- Reported and settled
- Reported but not settled, RBNS
- Incurred but not reported, IBNR

The problem: stochastic reserving

- Outstanding liabilities are impacted by two types of delay during the claims process:
- Reporting delay
- Settlement delay
- Objectives:
- Produce point forecasts for the outstanding reserve and cash flows
- Produce accompanying distributions

Motivating a model for the chain ladder mean

	1	2	3	4	5	6	7
1	2200	1500	1000	650	300	150	10
2	1900	1400	900	550	250	145	
3	2300	1700	1200	750	400	175.9	
4	3000	1800	950	500	369.9	183.4	11
5	2700	1500	1000	641.8	345.8	171.4	109.6
6	3400	2200	1414.0	865.7	466.4	231.2	147
7	2500	1629.0	1042.6	638.3	343.9	170.5	109

What is a method?

- A sequence of steps, specifically designed to produce particular results

- A method can be inflexible
- It is hard to adapt it to deal with unsatisfactory results
- An example is the chain ladder method

The chain ladder method

- Current method for calculating loss reserves: chain ladder method (CLM)
- CLM in its most basic form suffers from three main drawbacks:
- Unstable estimates
- No information about the tail
- Unable to separate RBNS and IBNR claims

What is a model?

- A mathematical framework that completely describes a real-life problem

- Translates a real-life problem into a language which we, as mathematicians, can understand and work with
- To apply to a specific data set, we also require an estimation method based on the model

Introducing the model: addressing limitations of CLM

- We will introduce a mathematical model which underlies the CLM
- Using this model we are able to:
- Reduce the instability of the CLM in a natural way by introducing prior knowledge at a micro level
- Automatically provide the tail
- Separate into RBNS and IBNR claims
- With this model, we are creating a vehicle which can incorporate current actuarial techniques in a more natural manner

Summary

CL predictions for payments

- The problem of stochastic reserving includes many dependencies
- These are implicit within the

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$
$\mathbf{1}$	2200	1500	1000	650	300	150	100
$\mathbf{2}$	1900	1400	900	550	250	145	88.7
$\mathbf{3}$	2300	1700	1200	750	400	175.9	112.5
$\mathbf{4}$	3000	1800	950	500	369.9	183.4	117.3
$\mathbf{5}$	2700	1500	1000	641.8	345.8	171.4	109.6
$\mathbf{6}$	3400	2200	1414.0	865.7	466.4	231.2	147.9
$\mathbf{7}$	$\mathbf{2 5 0 0}$	1629.0	1042.6	638.3	343.9	170.5	109.0

- They will be made explicit in our model

Defining a model for stochastic reserving

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$
$\mathbf{1}$	2200	1500	1000	650	300	150	100
$\mathbf{2}$	1900	1400	900	550	250	145	88.7
$\mathbf{3}$	2300	1700	1200	750	400	175.9	112.5
$\mathbf{4}$	3000	1800	950	500	369.9	183.4	117.3
$\mathbf{5}$	2700	1500	1000	641.8	345.8	171.4	109.6
$\mathbf{6}$	3400	2200	1414.0	865.7	466.4	23	
$\mathbf{7}$	2500	1629.0	1042.6	638.3	343.9	$\mathbf{1 7 0}$	

The modelled data: two run-off triangles

- We model annual data triangles
- Incremental aggregated payment data

- Incremental aggregated counts data, which is assumed to have fully run off

Introducing index notation

- We index the data as follows:
- Accident year, i
- Reporting delay, ${ }^{\prime}$
- Settlement delay, I

- Development delay, j
- Note that $\mathrm{j}=\mathrm{j}+\mathrm{I}$

The parameters involved in the model

- Accident year: α_{i}
- Represents ultimate claim numbers

- Reporting delay: β_{j}.
- Represents the proportion of ultimate claims reported with j period delay
- Settlement delay: π_{l}
- Represents the proportion of claims settled / years after being reported

The inflation parameters involved in the model

- Inflation parameters
- $\widetilde{\mu}_{j^{\prime}, l}$ dependency on reporting delay and settlement delay
- γ_{i} dependency on accident year
- Individual claim payment mean $=\widetilde{\mu}_{j^{\prime}, l} \times \gamma_{i}$

The generality of the inflation parameters

- The inflation parameters can account for many dependencies, according to the choice of the practitioner
- Dependence on the reporting delay: $\widetilde{\mu}_{j^{\prime}, l}=\widetilde{\mu}_{j^{\prime}}$
- Dependence on the settlement delay: $\widetilde{\mu}_{j^{\prime}, l}=\widetilde{\mu}_{l}$
- Dependence on the development delay: $\widetilde{\mu}_{j^{\prime}, l}=\widetilde{\mu}_{j^{\prime}+l}$

Deriving an expression for the mean

- Under our model the mean of the total of the incremental payments, for accident year i and development delay j, is given by:

$$
\mathrm{E}\left[X_{i j}\right]=\alpha_{i} \gamma_{i} \sum_{l=0}^{j} \beta_{j-l} \widetilde{\mu}_{j-l, l} \widetilde{\pi}_{l}
$$

- Is this consistent with the chain ladder method?

The chain ladder mean

- The chain ladder mean of the total of the incremental payments, for accident year i and development delay j, can be formulated as:

$$
\mathrm{E}\left[X_{i j}\right]=\widetilde{\alpha}_{i} \widetilde{\beta}_{j}
$$

- $\widetilde{\alpha}_{i}$ represents ultimate payment numbers
- $\widetilde{\beta}_{j}$ represents the development delay
- For derivation of this result, see Mack (1991)

Rediscovering the chain ladder mean

- We impose the following relationships:

$$
\begin{aligned}
\alpha_{i} \gamma_{i} & =\widetilde{\alpha}_{i} \\
\sum_{l=0}^{j} \beta_{j-l} \widetilde{\mu}_{j-l, l} \widetilde{\pi}_{l} & =\widetilde{\beta}_{j}
\end{aligned}
$$

- This ensures that our model has the same component structure as the one implicitly assumed by CLM

The double chain ladder estimation method

Introducing the double chain ladder method

- DCL is a method like CLM to produce estimations for the total of the incremental payments
- The classical chain ladder algorithm is applied twice to obtain estimates for all of the parameters in the model
- They can give the same value for the point estimates but DCL gives us more information

Over-parameterisation of the chain ladder mean model

- We aim to solve the problem using only two run-off triangles
- Therefore, we have to restrict ourselves to: $\tilde{\mu}_{j^{\prime}, l}=\tilde{\mu}_{l}$
- Given more data, this restriction may not be necessary
- We rescale to obtain a constant mean: $\mu=\sum_{l=0}^{m-1} \widetilde{\pi}_{l} \tilde{\mu}_{l}$
- μ represents the mean of individual claim payments in the first accident year
- We can now completely solve the problem

The parameters to estimate by DCL

The DCL method: estimating the parameters

- Apply CLM to count data from a toy example to get the estimates $\widehat{\alpha}_{i}, \widehat{\beta}_{j}$

The DCL method: estimating the parameters

- Apply CLM to count data from a toy example to get the estimates $\widehat{\alpha}_{i}, \widehat{\beta}_{j}$

- Reminder:
- $\widehat{\alpha}_{i}$ represents ultimate claim numbers in the $i^{\text {th }}$ accident period
- $\widehat{\beta}_{j^{\prime}}$ represents the proportion of ultimate claims reported with j period delay

The DCL method: estimating the parameters

- Apply CLM to the payment data to obtain the estimates $\widehat{\widetilde{\alpha}}_{i}, \widehat{\widetilde{\beta}}_{j}$
Payment data

	1	2	3	4	5	6	7
1	2200	1500	1000	650	300	150	100
2	1900	1400	900	550	250	145	
3	2300	1700	1200	750	400		
4	3000	1800	950	500			
5	2700	1500	1000				
6	3400	2200					
7	2500						

The DCL method: estimating the parameters

- Apply CLM to the payment data to obtain the estimates $\widehat{\widetilde{\alpha}}_{i}, \widehat{\widetilde{\beta}}_{j}$

- Reminder:
- $\widehat{\widetilde{\alpha}}_{i}$ represents ultimate payment numbers in the $i^{\text {ith }}$ accident period
- $\widehat{\widetilde{\beta}}_{j}$ represents the proportion of ultimate claims that develop in period j

The DCL method: estimating the parameters

- Use the following relationships between the CLM estimates and the parameters to estimate the remaining parameters:

$$
\begin{aligned}
\alpha_{i} \mu \gamma_{i} & =\widetilde{\alpha}_{i} \\
\sum_{l=0}^{j} \beta_{j-l} \pi_{l} & =\widetilde{\beta}_{j}
\end{aligned}
$$

- Reminder:
- π_{l} represents the proportion of claims settled / years after reporting
- γ_{i} represents the claims inflation in the $i^{\text {th }}$ accident period
- μ represents the mean of individual payments in the first accident year

The DCL method: estimating the parameters

- Solving the linear system gives the following values:

- We've now estimated all the parameters, and can apply the formula derived from the model

Estimating the RBNS claims

- RBNS claims contribute to cells to the right of the paid data

Estimating the RBNS claims

- RBNS claims contribute to cells to the right of the paid data
- We predict RBNS reserve using estimated parameters and estimated count data from the upper triangle
- RBNS point prediction for cell (i,j): $\widehat{X}_{i j}^{r b n s}=\sum_{I=i-m+j}^{\min (j, d)} \widehat{N}_{i, j-l} \widehat{\pi}_{l} \widehat{\mu} \widehat{\gamma}_{i}$

Worked example

- For illustration, we focus on payments in cell $(1,11)$

- RBNS estimation for $(1,11)$ comes from reported counts in the previous six years:
- We have chosen a maximum delay of six years
\qquad

Worked example

Estimated Counts

$2.523 \times \widehat{\pi}_{6}+1.565 \times \widehat{\pi}_{5}+1 \times \widehat{\pi}_{4}=0.046$

- Proceed in the same way to find estimates for the number of claims reported four and five years ago that contributes to our cell $(1,11)$
- Sum to get the total estimate of the number of claims that contribute to $(1,11)$

Worked example

- We've estimated the total number of claims that contribute to $(1,11)$ as 0.046
- Now we multiply by $\widehat{\mu} \times \widehat{\gamma}_{1}$, which represents the mean of claim payments which occurred in the first accident period
- This gives us our RBNS estimation for cell $(1,11)$:

$$
0.046 \times \widehat{\mu} \times \widehat{\gamma}_{1}=0.710
$$

Estimating the IBNR claims

- Since the accidents are not reported yet, the IBNR reserves are derived from the lower triangle
- This fills in the paid triangle in the purple highlighted section:

	1	2	3	4	5	6	7	8	9	10	11	12	13
1													
2							8.9	1.7	1.4	0.9	0.4	0.1	0.0
3						17.8	14.8	5.0	3.6	1.9	0.7	0.2	0.0
4					29.8	24.2	20.1	8.3	5.1	2.5	1.1	0.2	0.0
5				115.9	50.1	41.1	30.8	12.7	6.4	2.7	0.8	0.2	0.0
6			576.3	266.8	159.2	115.1	662	25.5	10.7	3.6	1.1	0.3	0.1
7	$1,149.8$	645.3	379.4	236.4	134.3	65.5	22.9	7.9	2.7	0.8	0.2	0.0	

- IBNR point prediction for cell (i,j) : $\widehat{x}_{i j}^{\text {ibr }}=\sum_{l=0} \widehat{N}_{i, j-l} \widehat{\pi}_{l} \widehat{\mu} \widehat{\gamma}_{i}$

Worked example

- For illustration, we focus on payments in cell $(3,11)$

- IBNR estimation for $(3,11)$ comes from incurred but not reported counts in the previous six years:
- We have chosen a maximum delay of six years

Worked example

Estimated Counts

	1	2	3	4	5	6	7
1							
2							0.9
3						1.3	0.9
4					3.1	1.9	1.2
5				10.9	2.6	1.6	1.0
6			48.9	13.3	3.2	2.0	1.3
7		110.4	40.8	11.1	2.7	1.7	1.1

$3.1 \times \widehat{\pi}_{6}$
$=3.1 \times 0.0011$
$=0.0034$

- Consider the counts from six years ago - cell $(3,5)$
- Multiply by $\widehat{\pi}_{6}$ which represents the proportion of claims for which a payment is made after six years
- Gives an estimate for the number of claims reported six years ago that contributes to our cell $(3,11)$

Worked example

- Proceed in the same way to find estimates for the number of claims reported four and five years ago that contributes to our cell $(3,11)$
- Sum to get the total estimate of the number of claims that contribute to $(3,11)$

Worked example

- We've estimated the total number of claims that contribute to $(3,11)$ as 0.056
- Now we multiply by $\widehat{\mu} \times \widehat{\gamma}_{3}$, which represents the mean of claim payments which occurred in the third accident period
- This gives us our IBNR estimation for cell $(1,11)$:

$$
0.056 \times \widehat{\mu} \times \widehat{\gamma}_{3}=1.122
$$

The predicted reserve: the chain ladder mean

| Total Estimates | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1}$ $\mathbf{2}$ $\mathbf{3}$ $\mathbf{4}$ $\mathbf{5}$ $\mathbf{6}$
 $\mathbf{7}$
 $\mathbf{7}$
 $\mathbf{3}$ 175.9
 $\mathbf{4}$ 369.6
 $\mathbf{5}$ 641.8 345.8 183.4
 $\mathbf{6}$ $1,414.0$ 865.7 466.4 231.2
 $\mathbf{7}$ $1,629.0$ $1,042.6$ 638.3 343.9 170.5 | | | | | | |

The estimated reserve: the chain ladder mean

\qquad 42

Using the available information

- Currently, when calculating the RBNS, we use the formula:

$$
\widehat{X}_{i j}^{r b n s \mid}=\sum_{l=i-m+j}^{j} \widehat{N}_{i, j-l} \widehat{\pi}_{l}{\widehat{\mu} \widehat{\gamma}_{i}}
$$

which involves the estimated counts

- This produces a result consistent with the CLM
- We could instead use the count data directly in this formula:

$$
\widehat{X}_{i j}^{r b n s}=\sum_{l=i-m+j}^{j} N_{i, j-l} \widehat{\pi}_{l}{\widehat{\mu} \widehat{\gamma}_{i}}
$$

- This leads to greater accuracy, since we are using actual count data rather than estimated counts

Predicting the tail through DCL

- With CLM, when a triangle has not run-off one needs to fit a tail
- DCL provides the tail prediction as an intrinsic part of the model

DCL and introducing prior knowledge

- CLM (and therefore DCL) provides a prediction for the reserve which is heavily dependent on the figures in the bottom left of the triangle

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	
$\mathbf{1}$	227.3	104.5	38.63	10.48	2.523	1.565	$\mathbf{1}$	
$\mathbf{2}$	208.4	95.84	35.42	9.606	2.313	1.435		
$\mathbf{3}$	195	89.69	33.14	8.99	2.164			
$\mathbf{4}$	280.4	129	47.66	12.93				
	236.2	108.6	40.15					
	287.7	132.3						
	$\mathbf{7 4 0}$							

- The estimators from CLM seem to be unstable
- Methods such as the Bornhuetter-Ferguson method propose to improve the estimates for recent accident periods by incorporating prior knowledge

Locating the source of the instability

- The model breaks down the chain ladder estimates into their individual components

$$
\widetilde{\alpha}_{i}=\alpha_{i} \gamma_{i}
$$

- The instability comes from the estimation of the severity inflation

Looking for information in the incurred data

- The proposed solution:

Take a more realistic estimation of the inflation from the incurred triangle using BDCL (Bayesian Double Chain Ladder)

[^0]
An example with real data

- We consider a liability dataset consisting of three triangles: payment, counts and incurred data
- Apply DCL estimation method to obtain point forecasts for future calendar years
- Total reserve estimated at approximately £14 million

	DCL		
Future	RBNS	IBNR	Total
1	$11,302,982$	975,297	$12,278,280$
2	781,910	712,483	$1,494,393$
3	329,991	81,801	411,792
4	171,565	31,225	202,790
5	0	18,199	18,199
6	0	3,002	3,002
7	0	1,123	1,123
8	0	359	359
9	0	42	42
10	0	11	11
11	0	4	4
12	0	0	0
13	0	0	0
Total	$12,586,449$	$1,823,540$	$14,409,995$

Comparison of inflation estimates

- The instability within the paid data can be seen in the estimates for the inflation in the last 2 accident years
- The estimates from the incurred data are more stable in the final accident periods

Using BDCL to obtain a more realistic reserve

- DCL reserve using estimates for inflation from the paid data
- BDCL reserve using estimates for inflation from the incurred data
- The total reserve is 13% lower using the incurred data to estimate the inflation

	BDCL			DCL		
	Future	RBNS	IBNR	Total	RBNS	IBNR

The full statistical model

Obtaining a distribution

- So far we have only discussed point estimates of the individual payments
- We have at no point mentioned anything about the variance or the distribution of the reserve estimations
- Now we will discuss how the introduction of a model allows us to obtain full distributions based on our model assumptions

Parameters and distributions

- We will only introduce a single new parameter: the variance of the individual payments
- The following statistical distributions are assumed for each of the components in the model:

Component	Distribution
Count data	Poisson
Settlement delay	Multinomial
Individual payments	Gamma

Estimates for simulation

- We already have estimates for many of the parameters
- Only need to estimate $\widehat{\sigma}^{2}$ via the method of least squares
- Now we have all the information we need to simulate the data
- We derive empirical distributions of:
- The cash flows
- The total reserve

Empirical illustration

- Consider the following results produced from a motor dataset

	Simulated predictive distribution from BDCL		
	RBNS ('000s)	IBNR ('000s)	Total ('000s)
$\mathbf{M e a n}$	97,508	9,127	106,635
$\mathbf{S D}$	18,776	5,429	21,804
$\mathbf{0 . 5 0 \%}$	61,165	1,221	65,882
$\mathbf{1 \%}$	62,110	1,943	69,645
$\mathbf{5 \%}$	70,856	2,908	76,602
$\mathbf{1 0 \%}$	76,141	3,700	81,728
$\mathbf{2 5 \%}$	85,040	5,401	91,913
$\mathbf{5 0 \%}$	95,383	7,886	103,781
$\mathbf{7 5 \%}$	107,979	11,661	119,122
$\mathbf{9 0 \%}$	120,950	15,603	134,064
$\mathbf{9 5 \%}$	130,938	19,248	146,686
$\mathbf{9 9 \%}$	152,070	26,404	171,998
$\mathbf{9 9 . 5 0 \%}$	165,542	32,460	183,404

Distribution histogram

Conclusions

- The chain ladder model is a solid framework for loss reserving
- Provides a natural method for introducing prior knowledge
- Intrinsic tail estimation
- Separates RBNS and IBNR reserves
- Gives distribution forecasts as required by Solvency II
- Does not rely on proprietary software

References

- Martinez-Miranda, M.D., Nielsen, J.P. and Verrall, R. (2011) Double Chain Ladder. Revised and resubmitted to ASTIN Bulletin
- Martinez-Miranda, M.D., Nielsen, J.P. and Verrall, R. (2011) Double Chain Ladder and Bornhuetter-Ferguson. Submitted to North American Actuarial Journal
- Mack, T. (1991) A simple parametric model for rating automobile insurance or estimating IBNR claims reserves. ASTIN Bulletin, vol. 39, 35-60

[^0]: Q2010 The Actuarial Protession • www. actuaries.org.uk

