LLOYD'S

Capital Allocation: Challenges and Options

James Orr and Andreas Tsanakas

James

Contents of Talk

- Introduction
- Lloyd's RBC
- Coherent Risk Measures
 Andreas
- Cooperative Games
- Capital Efficiency "
- Dependency Structures
- Systemic Risk James
- Summary

LLOYD'S

Lloyd's Market Risk Unit with Imperial College, London

- MRU is a centre of expertise for the Market, with 3 actuaries, 3 actuarial students, 5 technical experts and 2 general analysts
- The Capital Modelling and Systemic Risk teams generate opportunities and requirements for research
- Imperial College, through the Centre for Quantitative Finance, provides tuition on financial mathematics and has seconded a PhD student, Andreas Tsanakas, to work in the MRU for three years
- Although it is expected that the resulting thesis will relate to the MRU's activities, there have also been opportunities to incorporate research within current development plans for RBC

Properties of RBC

- Risk Based ⇒ differential capital requirements that reflect the risk posed by each member
- Equity ⇒ each member poses the same ELC to Central Fund for each £1 of net premium or net reserve
- Diversification ⇒ recognises benefits from business mix, spread across managing agents and years of account
- Capital Efficiency ⇒ sub-optimal as diversification within the Central Fund is not reflected in the risk measure

LLOYD'S

Rule-based Allocation

- 80:20 solution would suggest that a risk-based approach should focus on larger and more complex entities
- For the remainder, we should seek to achieve a broad reflection of comparative risk, based on some general rules
- Criteria for fixed capital may include:
 - > no concentration >20%
 - > limited exposure to high risk syndicates

LLOYD'S

Coherent Risk Measures

- Risk is defined as the amount of capital required to cover for future liabilities
- A risk measure is a real valued function, defined on the set, G, of all random variables representing risks (losses)
- Coherent risk measures satisfy the four properties:

> Monotonicity: $X, Y \in G, X(\omega) \le Y(\omega) \Rightarrow \rho(X) \le \rho(Y)$ > Positive Homogeneity: $\lambda \ge 0, X \in G \Rightarrow \rho(\lambda X) = \lambda \cdot \rho(X)$ > Subadditivity: $X, Y \in G \Rightarrow \rho(X + Y) \le \rho(X) + \rho(Y)$ > Translation invariance: $X \in G, a \in R \Rightarrow \rho(X + a) = \rho(X) - a$

Expected Shortfall

• Expected shortfall:

$E[X | X > VaR_a(X)]$

- A generalisation of Value at Risk
- "How bad is bad?"
- It is a coherent risk measure and satisfies the properties listed previously
- It is additive under comonotonicity

LLOYD'S

Cooperative Games

- Economies of scale: allocating savings from cooperation
- Stability of the grand coalition:
 - > individual rationality
 - > collective rationality
- In our case costs correspond to risk capital
 - \rightarrow The cost function corresponds to a risk measure
- The Shapley value:

$$\varphi_{i} = \sum_{S = \left\{i\right\}} \frac{\mid S\mid !! (n-\mid S\mid -1)!}{n!} \left(\rho \left(N-S\right) - \rho \left(S\right)\right)$$

LLOYD'S

Non-atomic Cooperative games

- Players are (divisible) portfolios: non-atomic games
- The Aumann-Shapley value:

$$\varphi_i = \int_0^1 \frac{\partial \rho(A\gamma)}{\partial a_i} d\gamma = \frac{\partial \rho(A)}{\partial a_i}$$

- $\bullet \quad \text{Coherent risk measure \& AS} \Rightarrow \text{Coherent allocation} \\$
- For expected shortfall AS is:

$$\mathbf{E}\left[\mathbf{X}_{i} \mid \sum_{i} \mathbf{X}_{i} > \mathbf{VaR}_{a}\left(\sum_{i} \mathbf{X}_{i}\right)\right]$$

A measure of systemic risk

Application to Lloyd's

- Lloyd's both accepts excess risk from members and regulates the market
- The two distinct roles suggest different approaches to capital allocation:
 - "Reinsurer": Determine aggregate risk to Central Fund and allocate excess risk to members according to AS -Risk capital is determined indirectly, as a retention.
 - "Regulator": Determine aggregate risk capital and allocate capital directly according to AS

LLOYD'S

Equations

• "Reinsurer":

$$\mathbf{R}_{m} = \mathbf{E} \left[(\mathbf{X}_{m} - \mathbf{K}_{m})_{+} | \sum_{j} (\mathbf{X}_{j} - \mathbf{K}_{j})_{+} > VaR_{a} \left(\sum_{j} (\mathbf{X}_{j} - \mathbf{K}_{j})_{+} \right) \right]$$

• "Regulator":

$$\mathbf{K}_{\mathbf{m}} = \mathbf{E} \left| \mathbf{X}_{\mathbf{m}} \left| \sum_{i} \mathbf{X}_{i} > \mathbf{VaR}_{\alpha} \left(\sum_{i} \mathbf{X}_{i} \right) \right| \right|$$

 X_m : Claims for member's m portfolio K_m : Total capital for member m R_m : Risk contribution for member m (proportional to capacity)

LLOYD'S

Capital efficiency

- The capital at Lloyd's is only partially mutualised
- There are several possible allocation methodologies
- Each methodology might result in a different amount of required risk capital
 - → Aggregate capital is not fixed!
- We need to investigate which the most capital efficient methodology is

Dependence Structures

- · Modelling dependent risks
- Copulas de-couple marginal behaviour from the dependence structure:

 $P(X \le x, Y \le y) = C(P(X \le x), P(Y \le y)) \Leftrightarrow$ $F_{X,Y}(x,y) = C(F_x(x), F_Y(y))$

- Can model both asymptotically dependent and independent risks
- How does capital efficiency of different methodologies relate to the dependence structure between risks?

LLOYD'S

Key References

- Artzner, P., F. Delbaen, J. Eber, & D. Heath (1999), 'Coherent Measures of Risk', Mathematical Finance, 9 (3), 203-228.
- Billera, L. J. and D. C. Heath (1982), 'Allocation of shared costs: a set of axioms yielding a unique procedure', Mathematics of Operations Research, 7 (1), 32-39.
- Denault, M. (2001), Coherent allocation of risk capital, ETH Preprint, Zurich, http://www.risklab.ch/Papers.html.
- Frees, E. W. and E. A. Valdez (1998), 'Understanding Relationships Using Copulas', North American Actuarial Journal, 2 (1), 1-25.
- Wirch, J. L. and M. R. Hardy (1999), 'A synthesis of risk measures for capital adequacy', *Insurance: Mathematics and Economics*, 25, 337-347

LLOYD'S

Specific RDS - Florida Windstorm Soffir-Simpson Category - CAT1 (74 mph) - CAT1 (74-95 mph) - CAT2 (86-109 mph) - CAT3 (10-129 mph) - CAT4 (130-155mph) LLOYDS

Summary • Lloyd's RBC • Coherent Risk Measures • Cooperative Games • Capital Efficiency • Dependence Structures • Systemic Risk