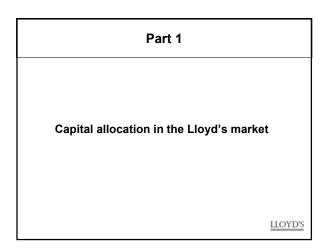
Capital Allocation in the Lloyd's Insurance Market

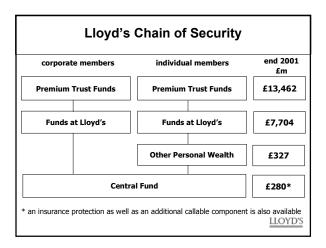
Andreas Tsanakas and Peter Tavner Market Risk and Reserving Unit

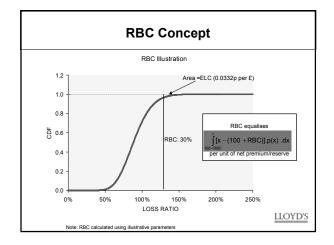
Contents		
5.4		
Part 1	Deter	
 Lloyd's RBC Overview 	Peter	
 Syndicate Specific Adjustments 		
 Operational Risk 	" "	
 Catastrophe Risk 	Andreas	
<u>Part 2</u>		
 Distortion Principles 	"	
 Capital Allocation and Cooperative Games 	"	
Dynamic Extension	""	
	LLOYD'S	



Risk based capital - Overview

- RBC system applied to corporate members from 1994 and all members from January 1998
- RBC equalises expected loss to the Central Fund per unit of net premium/reserve
- Inputs include:
 - Business mix diversification
 - Profile of reinsurance protection including security
 - Credit for diversification across managing agents
 - Credit for diversification across underwriting years
 - Syndicate specific adjustments





Syndicate-Specific Parameters

Previously

- RBC has previously used a market average model
- Average means and variances, imputed reserve exposure
- Differences from different portfolios
- Loadings for catastrophe and management risk
- Discounts for syndicate performance
- 2003
- 2003 YOA model has syndicate-level adjustments for mean and potentially for variance
- Some Cat loadings in model

LLOYD'S

Define OR as "Measurable features of a syndicate that can be shown to be associated with better or worse than average performance"

 Add requirement that these pass the reasonableness test

LLOYD'S

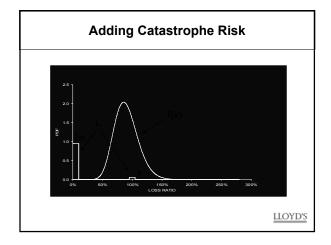
How to set SSPs : Operating Risk

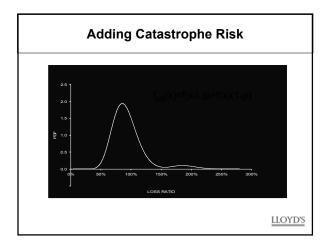
- Syndicates' actual results not suitable
- Looked instead for Explanatory Variables (EVs)
- 1993 2000 years, 50 Risk Groups, all syndicates = 11,000 data points
- 40 potential EVs
- Seven were statistically significant
- Reasonableness checks

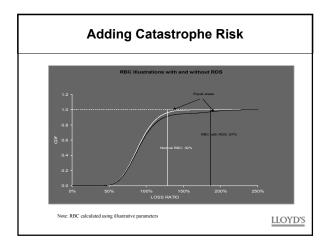
Table of EVs		
EV	RBC increases with	
Size	Smaller syndicates	
U/W Experience	Less Experience	
U/W Qualification	No ACII/FCII	
Syndicate growth	Faster growth	
Writing 100% lines	More 100% lines	
Relying on one broker	More from largest broker	
Reinsurance gearing	More reinsurance spend	
		LLOYD'S

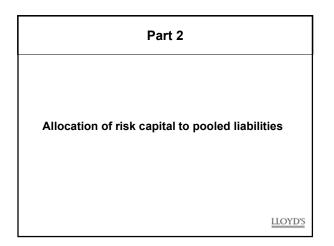
Catastrophes

- Previously potential for loading if certain criteria tripped - based on RDS returns
- Now proposed to use RDS directly in the RBC calculation
- Add 3 specific RDS amounts directly: US Wind,California Earthquake, New Madrid Earthquake
- Old process for others extend in future years









Distortion Principles

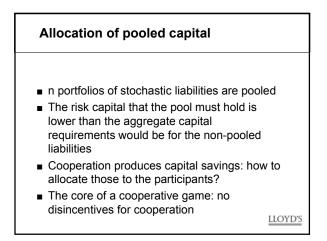
Definition of the risk measure (Denneberg (1990), Wang (1996)):

$$\rho(\mathbf{X}) = \int_{0}^{1} g(\mathbf{P}_{o}(\mathbf{X} > \mathbf{x})) d\mathbf{x}$$

$$g' > 0, g'' < 0, g(0) = 0, g(1) = 1$$

 Distortion principles satisfy the axioms of coherent risk measures, plus the requirement for comonotonic additivity

LLOYD'S



Example

- 3 Pareto distributed liabilities, α =4, β =3/4.
- Correlation matrix and correlations to the aggregate:

$$\mathbf{r}(\mathbf{X}) = \begin{pmatrix} 1 & 0.1 & 0.5 \\ 0.1 & 1 & 0.8 \\ 0.5 & 0.8 & 1 \end{pmatrix}, \quad \begin{aligned} \mathbf{r}(\mathbf{X}_1, \boldsymbol{\Sigma}_i \mathbf{X}_i) &= 0.64 \\ \mathbf{r}(\mathbf{X}_2, \boldsymbol{\Sigma}_i \mathbf{X}_i) &= 0.75 \\ \mathbf{r}(\mathbf{X}_3, \boldsymbol{\Sigma}_i \mathbf{X}_i) &= 0.90 \end{aligned}$$

Example (cont'd)

- Aggregate required capital: $\rho(\Sigma_i X_i) = 5.06$
- Allocate proportionally: $\rho(X_i) = 1.69$
- Suppose now that only the first two portfolios co-operate.
- Aggregate required capital: $\rho(X_1 + X_2) = 3.29$
- Allocate proportionally: $\rho(X_1) = \rho(X_2) = 1.64$
- The first two portfolios have an incentive to expel the third one! What went wrong?

LLOYD'S

The 'fuzzy core'

- Interested in allocations that add up to the aggregate risk and produce no disincentives for cooperation
- We need to find a vector $d \in R^n$, such that: ■ $a \Sigma_j d_j = \rho(\Sigma_j X_j)$

$$= \mathbf{b} \rho \left(\Sigma_j u_j X_j \right) \geq \Sigma_j u_j d_j \ \forall u \in [0,1]^n$$

 For the distortion principle there is only one such allocation

LLOYD'S

A formula for the core allocation

• It turns out that the core allocation is given by: $d_i = E[X_ig'(S_{\Sigma X}(\Sigma_i X_i))], \quad S_{\Sigma X}(z) = P_o(\Sigma_i X_i > z)$

))

We can re-write that formula as:

$$\mathbf{d}_{i} = \mathbf{E}_{\mathbf{Q}} [\mathbf{X}_{i}], \qquad \frac{\partial \mathbf{Q}}{\partial \mathbf{P}} = \mathbf{g}' (\mathbf{S}_{\Sigma \mathbf{X}} (\Sigma_{j} \mathbf{X}_{j}))$$

…and also as:

$$d_i = \int\limits_0^1 \int\limits_0^{r-1} F_{X_i}^{-1}(u)g'(1-v)dC_{X_i,\Sigma_jX_j}(u,v)dudv$$

Dynamic extension of risk measure and allocation method

- Let $Z = \sum_{j} X_{j}$. We can write the risk measure as: $\rho(Z) = \sup_{P \leq g(P_{o})} E_{P}[Z]$
- Assume that the underlying risk processes are Markov on [0,T]. Let B, be the event:

$$\mathbf{B}_{t} = \left\{ \boldsymbol{\omega} : \mathbf{X}_{t}^{1}(\boldsymbol{\omega}) = \mathbf{X}_{t}^{1}, \dots, \mathbf{X}_{t}^{n}(\boldsymbol{\omega}) = \mathbf{X}_{t}^{n} \right\}$$

• Then generalise the risk measure by: $\rho(Z_T | B_t) = \sup_{P \le g(P_o)} E_P[Z_T | B_t]$

