

Model Review: A Case Study

Remi Koplinski, FIA Moody's Analytics

Agenda

- Introduction.
- What is Model Validation?
- Example: Credit Models in 2007.
- Responding to Model Validation.
- Summary.

Economic Scenario Generator (ESG)

- » Uses Monte Carlo simulation to generate 1000s of different paths of an economy by stochastically modelling many different economic risk drivers
 - Interest rates, equity returns, corporate bond returns
- » A simulation is a collection of many paths (trials)

Short rate – interest rate that applies over a very small period of time.

What is Model Validation?

There are many ways to judge a model:

- Mathematic Soundness: no arbitrage, internal consistency, economic theory.
 - Need to understand underlying assumptions
- Against other models and market best practice.
- Back-testing and validating results against actual data.
- Practical considerations, flexibility, extensibility and business value.
 - Model limitations vs. use case.

What do we look for in a Credit Spread Model?

Some of the questions we ask when reviewing a credit spread model:

- What are the spread dynamics?
 - Are the spreads positive, mean reverting spreads that increase with rating?
 - Is the size of spread movement proportional to spread level?
 - Are the Spreads of different ratings are highly, but not perfectly correlated?
- What are the default/transitions projection dynamics?
- What other models do we have access to?
- How well do the model results validate?
 - What's the fit to initial spreads?
 - What's the fit to spread distributional assumptions?
- Is the model appropriate for its use case?
- Is the model parsimonious, easy to explain and calibrate?

Credit Spreads from 2007

Pre 2007 most of the credit model projections were used to model long term business run-off.

We were confident that our model was appropriate. So how did we do in 2007?

Validation in 2007-2008

We made some improvements: Introducing 1 Year VAR

Responding to Model Validation

We came across an issue and we solved it by introducing a second calibration service for the same model (G2). So for capital projections we offered a 1 Year VaR (conditional) calibration and for multiyear purposes (e.g. Investment Strategy) we offered our Multiyear / Best Views (unconditional) calibration.

So should we pat ourselves on the back?

What did we learn?

1 Year V@R Calibration	Multiyear Calibration
Good Mean paths ✓	Good Mean paths ✓
Dispersion of spread levels over 10 years is too wide *	Sensible dispersion of spread levels over 10 years ✓
The volatility of spreads over 1 year is	, ,
capturing the risk. ✓	not capturing all the risk. *

However, we felt we could do better and so went back to the maths.

By introducing a risk premium which is dependent on the level of the spread we created what we call the '<u>Dual Term</u> <u>Premium' G2 Model.</u>

Back testing with Dual Term Premium

Summary

No model is perfect

- Even if you think you have a good model today, it doesn't mean it will be appropriate tomorrow.
- The mathematics and financial theory keeps evolving, so should the models we use.
- Understanding the weaknesses of your current models is paramount!

Markets change

- The markets shift and change, so the models need to be assessed against new conditions.
- The validity of underlying assumptions and forecasts needs to be frequently reviewed.
- Scenario testing (calibrating to a number of alternative assumptions) can aid in understanding of your results.

Model validation matters

- Model validation shouldn't be an afterthought but a constant proactive review of model and assumptions.
- This requires suitable resources in place, which means cost. But what's the cost of not doing it?

Be practical

 These are not simple problems to solve. Sometimes a practical solution is necessary, but having one should not stop you from looking for a better solution!