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1. Introduction

Many stochastic claims reserving methods use aggregate data and yield the first
two moments (best estimate and standard error) of the outstanding liability. The
term "aggregate data" here refers to the total of payments made for each cohort
and each stage of development as opposed to the amount of each individual
payment. This paper describes an approach which differs from most stochastic
reserving methods in both these respects:

(i) it makes use of data on the amount of each individual payment (rather than
aggregate data)

(ii) it yields a complete probability distribution for the total outstanding liability
(rather than just the first two moments).

The advantage of point (ii) is that more complete information is provided for
setting the claims reserve. For most purposes, a claims reserve should include an
allowance for possible adverse experience rather than being purely the "best
estimate" (that is, the first moment, or expected value). This extra allowance is
analogous to a safety load (or risk load) in (re) insurance pricing, and we shall use
this terminology.

The standard error is a fairly crude measure of uncertainty on which to base the
safety load. It makes no allowance for possible skewness in the distribution of
outstanding liabilities. Typically, the number of IBNR claims is best represented
using a skew distribution such as the Negative Binomial. This is partly because
there is usually some potential for a single cause to give rise to many more claims
than expected, for example, a legal decision which sets a precedent. This in turn
means that the total of all outstanding liabilities has a skew distribution.

The chance that the total of outstanding liabilities will exceed the best estimate
plus some fixed multiple (e.g. two) of the standard error depends on the skewness.
If this is relatively high, this fact should be reflected in the safety load: a stochastic
method which yields only the first two moments does not provide the opportunity
to do this. By calculating a complete probability distribution for the total
outstanding liability, we have the ability to apply any safety load principle in
setting the reserve. In particular, a safety load principle which takes account of all
moments of the distribution can be applied, for example, the "proportional
hazards" principle, Wang (1995).
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Although it is possible to calculate a complete distribution of outstanding
liabilities from aggregate paid claims data, individual payments data provide more
information for this purpose, with a consequent increase in the reliability of the
results (that is, a smaller standard error). It is a well known principle in statistics
that aggregating data results in a loss of information: this is why the use of
individual payments rather than aggregate data, as mentioned at (i) above, offers
potential benefits.

There are exceptions to this principle: "sufficient statistics" are aggregations of
data which do not involve any loss of information. However, specific statistics are
"sufficient" only under specific stochastic assumptions. These assumptions might
not be appropriate, and in any case, can be more thoroughly verified using the
more detailed, pre-aggregated data.

2. Overview

There are four main stages to the approach described in this paper:

(i) construct a probability distribution for the size of individual future claim
payments

(ii) construct a probability distribution for the number of future claim payments

(iii) carry out a compounding calculation to combine the distributions calculated
in steps (i) and (ii), in order to arrive at the probability distribution for the
total of all future payments

(iv) apply an appropriate safety load principle to determine the reserve from the
probability distribution calculated at step (iii).

This paper focuses on steps (i) and (ii) because steps (iii) and (iv) are well defined
problems on which there is a substantial literature. For step (iii), the calculation of
a compound distribution, practical solutions are provided by Panjer (1981) and by
Heckman & Meyers (1983). For step (iv), the calculation of a safety-loaded
premium (or in the present context a claims reserve) from a loss distribution, a
practical and theoretically consistent solution has been provided by Wang (1995).
Although Wang's solution is not unduly complex, there are simpler approaches to
step (iv) which are discussed briefly in section 7 of this paper. (These simpler
approaches do have theoretical weaknesses, which could manifest themselves as
inconsistencies in the allocation of the total reserve across different cohorts.)

3. Example Data

Each remaining section of the paper is illustrated by an example which is carried
through all sections. This example is artificially simplified: we have only three
accident years, with an unrealistically small number of claim payments in each
one. Nevertheless, the example illustrates the main features of this approach.
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The triangle below gives the number of individual claim payments:

Number of claim payments

The amount of each individual claim payment is given below. These amounts have
been pre-adjusted for inflation at 5% by applying the factor 1.1025 to each of the
10 payments in the first diagonal, and the factor 1.05 to each of the 31 payments in
the second diagonal of the run-off triangle. The adjusted amount of each payment
is given in the first column below. The second column indicates the development
year. The payments have been sorted into order of ascending size:

4. Construction of Probability Distribution for Size of Individual Payments

4.1 This is step (i) from section 2. The available data on the amounts of individual
payments made in the past can be used to construct the probability distribution for
future payments. The main issues to be taken into account are:

(a) The size of individual payments might be related to the stage of
development. In most lines of business, the claim payments tend to be larger
in later development periods than in earlier development periods. This is
because small claims are settled relatively quickly. This is an issue because
whereas the data will relate predominately to the earlier stages of
development, future payments will fall more in later stages of development.

(b) There might be payments in the future which are larger than any observed in
the past.
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The first of these (a) can be taken into account by an appropriate mixing of the
empirical loss distributions constructed for each stage of development separately.
This amounts to a simple re-weighting of the observed individual payment
amounts. This is covered in detail in section 4.2.

The second issue (b) can be taken into account by fitting an analytic distribution
with an unlimited right tail (for example, the Log-Normal or Pareto distribution).
Any standard method (such as maximum likelihood estimation (MLE) or
minimum distance estimation (MDE)) can be used, but a generalization is
necessary to take account of the re-weighting of the individual observations
mentioned above. Further details of MLE are given in section 4.3.

4.2.1 To construct a suitable probability distribution for the individual amounts of all
future payments, taking into account point (a) of section 4.1, it is necessary to
estimate what proportion of future payments will fall in each development period.
To this end, the payment numbers triangle must be projected to fill in the lower
right triangle and projected further to the right if necessary.

This is not covered in detail here because any suitable loss reserving method could
be used — from a simple chain-ladder (link-ratio) method, to a stochastic method
such as Wright (1990) — and these are documented elsewhere.

Suppose the estimated number of future payments falling in development period i
is nj. Here, i varies across development periods (i = 1,2,3...) and each ni

represents the total of expected future payments over all accident years. The
payment amount distributions appropriate for each development period separately
must be mixed together in the proportions Pi = ni / N (where N is the total of the ni)
in order to obtain a probability distribution appropriate for all future claim
payments.

More precisely: if Fi(x) is the distribution function for the size of payments made
in development period i, then the distribution function F(x) for all future payments
is given by:

0)where

For each Fi(x), we can use the empirical distribution constructed from the
observed (inflation adjusted) individual payments falling in each development
period. That is:

(2)

where: vi is the total observed number of payments in development period i
vi(x) is the number of observed payments less than or equal to x.
(vi is an abbreviation for vi( )).
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Inserting this expression into equation (1) gives:

where

Since ni(x) is defined to be the number of observed payments in development year
i which are less than or equal to x, the numerator in this expression for F(x), is the
total of the "weight" Wi for all observed payments (all development periods) which
are less than or equal to x. Similarly, the denominator N, which is defined to be the
total number of expected future payments, can be regarded as the total of this
"weight" Wi for all observed payments:

In this way, F(x) is seen to be the empirical distribution of all observed payments
(all development years combined) after applying the appropriate weight wi to each
observation.

4.2.2 The simplicity of these ideas should become apparent through an example.

First, we construct the empirical distributions for each development year from the
individual payment amounts given in section 3. These are the distributions Fi(x)
for i = 1, 2,3. All three empirical distributions are shown on the same set of axes
in Figure 1. It is quite clear that in this example, the size of payments tends to be
larger in the later development periods (this is point (a) of section 4.1).

The next step is to calculate the quantities vi and ni from the payment numbers
triangle given in section 3. The quantities vi are simply the column totals from the
payment numbers triangle:

The quantities ni are obtained by projecting the claim numbers triangle. A simple
link ratio projection, with a tail factor of 1.1, gives the following figures:

Number of claim payments
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From which we obtain (by adding columns of the lower right triangle):

Finally, the three empirical distributions shown in Figure 1 have to be mixed
according to these values for ni in order to obtain a distribution function F(x)
appropriate for all future payments.

There is a minor complication in this example because even the oldest year is not
fully developed: this is why a tail factor was necessary. (The value 1.1 might have
been arrived at by fitting a curve to the link ratios, or by comparison with other
similar but more fully developed triangles.) This has resulted in a non-zero
estimate for n4 (representing the number of future payments in the fourth and later
development years) for which we have no corresponding distribution in Figure 1:
we have empirical distributions only for i = 1,2,3.

For the purposes of this example, we will assume that the size distribution of
individual payments is the same in development years 4 and later as in
development year 3. Under this assumption we can treat the n4 expected payments
of later development years exactly as if they were expected in development year 3:
n4 is added to n3 to give an amended value: n3 = 22.4. (Further comment on this
procedure, and an outline of a more refined approach, is given in section 8.)

The total expected number N of future payments (the sum of the ni) is 42.9. The
mixing proportions for the three empirical distributions are therefore:

Mixing the two empirical distributions F2(x) and F3(x) in these proportions results
in the distribution shown in Figure 2. As described in section 4.2.1, the mixture
distribution can also be interpreted as a distribution obtained by applying a
"weight" to each observed payment and pooling the observations over all
development years. The weight is given by Wi = ni / Vi, that is, for each
development year, it is the ratio of number of payments expected in the future, to
number observed in the past. For the present example, this gives:

These weights have a simple intuitive interpretation: the 41 observations for
development year 2 represent an expected number of 20.5 future claim payments
in development year 2, so each receives a weight of 20.5 / 41. The 22.4 expected
claims in later development years are represented by only 5 in the data, so each of
these 5 receives a weight of 22.4/5.

4.3.1 Having constructed an appropriate empirical loss distribution as described in
section 4.2, the next step is to smooth it and project a right tail to allow for the
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possibility of fixture payments larger than any observed in the past. We will use
maximum likelihood estimation (MLE), adjusted to allow for the weights Wi. The
empirical distribution can be regarded as a number of data-pairs (Xj, Wj), where Xj
is an observed payment amount, and Wj is the corresponding weight. (The weight
Wj is the same for all observations Xj falling in the same development year i,
because Wj = nj / vi' where i is the development year of observation j.)

We will use f ( x | b ) to denote the probability density function of the analytic
distribution to be fitted to the data, x represents the amount of an individual
payment as before, and b represents the parameters of the analytic family (in
general b will be a vector). In the absence of weights, MLE means setting the
parameters b to those values which maximise the log-likelihood L, which is given
by:

(3)

If our data included repeated values Xj, the same term ln(f(Xj| b) would appear
more than once in the summation. Therefore, repeated Xj values could be removed
by keeping a count rj of the number of repeats of each distinct Xj value (rj would be
1 for each unique xj value). The log-likelihood would then be given by:

(4)

Clearly, the higher the rj corresponding to an Xj, the greater the influence of that Xj

value in the fit obtained by maximising L: for this reason, the rj can be regarded
intuitively as "weights". This explains how integer weights might arise. For our
purposes, the weights Wj could have non-integer values, but nevertheless, the
weight should determine the influence of each observation Xj in determining the
analytic distribution and this is achieved by using them as multipliers of each term
in the objective function L to be maximised. For this reason, the appropriate
generalisation to basic MLE (equation (3) above) is:

(5)

Given a specific formula for f (x |b ) (for example, the Pareto or Log-Normal
formula), this optimisation problem can be solved using a numeric method such as
the Newton-Raphson algorithm in exactly the same was as in basic distribution
fitting by MLE (equation (3)). The only difference is in the interpretation of
standard errors of the resulting parameter estimates: further discussion on this
aspect is given in section 8.
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4.3.2 The table below gives the data-pairs (xj, wj) for our example data-set. The first
column is the payment amount xj (this is taken directly from section 3 for all those
payments made in development years 2 and 3). The second column gives the
weight wj. This is 0.478 or 4.48, for payments made in development years 2 and 3
respectively (see section 4.2.2):

Several different distribution families f (x |b ) have been fitted to these data by
generalized MLE (equation (5) of section 4.3.1). The following two-parameter
distribution families all provide reasonably good fits:

Gamma:

Weibull:

Log-Normal:
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The maximized log-likelihood values, and corresponding parameter estimates, are
given in the following table:

On the basis of the log-likelihood, the Gamma distribution appears to provide the
best fit (largest value of L). However, when assessing the fit of analytic
distributions to data, it is advisable also to look at graphs. All three of these fitted
distributions are shown in Figure 3, in each case, on the same set of axes as the
empirical distribution (from Figure 2). These graphs suggest that for the small and
medium sized claim payments (up to about £14,000) the Log-Normal distribution
perhaps provides a better fit than the Gamma.

Another method for assessing the fit of analytic distributions graphically, is to look
at the mean residual life function. This method is recommended by Hogg &
Klugman (1984). The mean residual life function is defined by:

where X is the random variable, and x is any fixed value of X. That is, mrl(x) is
defined to be the mean amount in excess of x, of payments which do exceed x.

Figure 4 shows this function plotted for each of the three fitted analytic
distributions, in each case on the same set of axes as the empirical mean residual
life. For this purpose, the empirical mean residual life has been calculated directly
from the data-points (xj, wj) using the formula:

where summation, in both numerator and denominator, is over only those
observed payment amounts xj which exceed x.

Assessing the quality of fit in this way supports the indications of the log-
likelihood values: the Gamma distribution seems to provide the closest fit to the
data. We will continue this example in later sections using only the Gamma
distribution for individual future payments. In practice, it would be advisable to
carry out the remaining calculations for at least two different fitted distributions
and to compare the results.
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5. Construction of Probability Distribution for the Number of Future
Payments

5.1 This is step (ii) from section 2. The simplest approach is to model and project the
payment numbers triangle. This can be carried out using almost any aggregate
reserving method. If a stochastic method is used, this will provide a standard
deviation as well as an expectation for the number of future payments. If a non-
stochastic method is used, a simple "rule of thumb" for obtaining a suitable value
for the standard deviation is to take the variance to be two times the expectation.
More refined methods might take account of the reported claim numbers triangle
and other relevant information.

Having obtained, one way or another, an expected value and standard deviation for
the number of future payments, the complete distribution for the number of future
payments can be taken as Negative Binomial with parameters obtained by
equating the first two moments. There are two reasons for using the Negative
Binomial distribution, the first theoretical and the second practical:

(i) The number of future payments is a counting process. The number of
payments arising from each small part of the cohort separately (for example,
each individual policy), could reasonably be modelled as Poisson. If all these
component parts were stochastically independent, then the total number of
future payments would also be Poisson (as the sum of independent
Poissons). However, the component parts will not be stochastically
independent for a variety of reasons (for example, the possibility of a legal
decision which sets a precedent). The total number is in fact an aggregation
of correlated Poisson variables. Such an aggregation is usually well
approximated as Negative Binomial. It is exactly Negative Binomial if the
Poisson parameters of the component parts are related through a common
random factor with a Gamma distribution. The Gamma distribution is
sufficiently flexible for this theoretical result to be useful in practice.
Parameter uncertainty is another element which can reasonably be taken into
account by using a Negative Binomial distribution instead of a Poisson. For
further detail on these issues, see for example Heckman & Meyers (1983).

(ii) The calculation of the distribution of aggregate outstanding liabilities (step
(iii) from section 2) is easiest if the count distribution is Negative Binomial.
Both Panjer's algorithm and Heckman/Meyers algorithm require the count
distribution to be from this family. (In fact, both algorithms work also with
the Poisson and Binomial distributions, but these distributions are not
appropriate for future claim numbers because they do not have variance
greater than mean, which is inevitable for the reasons mentioned under (i)
above.)
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The basic Negative Binomial distribution is the distribution of the number of
failures before success number m in independent binomial trials each with
probability p of success. It is given by:

However, this can be generalised to give a distribution for any m > -1 (not
restricted to integer values) by noting that:

and calculating the distribution recursively. (This is a case of Panjer's recursive
formula.)

Given the first two moments, E(N) and Var(N), the parameters of the Negative
Binomial are given by:

(6)

5.2 In this section, we continue the example of sections 3 and 4.2.2. In section 4.2.2
we projected the payment numbers triangle from section 3 using the chain ladder
method with a tail-factor of 1.1. These gave an expectation of 42.9 future
payments. Applying our rule of thumb gives a prediction variance of 85.8, hence a
standard deviation of 9.26. Putting these values of the first two moments in to
equations (6) gives the following parameters for the Negative Binomial
distribution:

This Negative Binomial distribution has a skewness coefficient of 0.3237 and
implies 80% confidence that the number of future payments will be in the range 32
to 54 inclusive.

6. Calculation of Compound Distribution

As stated in section 2, this stage is not covered in detail in this article as several
good methods are documented elsewhere. We briefly describe the use of Panjer's
recursive method for the example of earlier sections.

To apply Panjer's method, the individual payment distribution must be discrete
rather than continuous. In section 4.3.2 a Gamma distribution was found for the
distribution of future payment amounts. Before applying Panjer's algorithm, this
must be approximated as a discrete distribution. The approximation used for this
example is shown in Figure 5. This has a step-width of £500, and each step height
in Figure 5 is the probability that an individual payment will be equal to the
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corresponding multiple of £500. This discretization was achieved by finding the
average value of the original Gamma cumulative distribution function within each
band of width £500. This was continued up to £100,000, giving a total of 201
discrete probabilities. The Gamma distribution indicated a chance of only

1.345 × 10-6 that an individual payment would exceed £100,000.

Having discretized the payment amount distribution, it can be combined with the
Negative Binomial distribution for the number of outstanding payments (derived
in section 5.2) in order to calculate the distribution of the total outstanding liability
(refer to Panjer, 1981 for details). Figure 6 shows both the cumulative distribution
function and the probability density function of the result.

The mean of this distribution is £594,880: this is simply the product of the mean
£13,866.80 of the Gamma distribution, and the expected number 42.9 of
outstanding payments. The standard deviation is £141,102. It is clear from the
density function in Figure 6 that the outstanding liability is positively skewed: this
is due partly to the skewness of the Gamma distribution for individual payments,
and partly to the skewness of the Negative Binomial distribution for the number of
payments. The coefficient of skewness is 0.359.

7. Setting the Reserve — Safety Loads

As already pointed out in section 1, many stochastic reserving methods yield only
an expectation and a standard deviation for the future liability. To make an
allowance for possible adverse future run-off, the reserve might be set by adding
some multiple of the standard deviation (for example, one standard deviation) to
the expected value. In the present example, adding one times the standard
deviation gives a reserve of £735,982. But what is the chance that this reserve will
be inadequate, and by how much is it likely to be exceeded if it does prove
inadequate? To answer these questions, the more complete information illustrated
in Figure 6 is necessary. From Figure 6, the chance that the outstanding liability
will exceed £735,982 is 15.5%. The mean excess should this occur is the mean
residual life of the distribution evaluated at £735,982: this is £86,683.

Given the more complete information represented by Figure 6, there are many
other options for setting the reserve. We could use the criterion that there must be
a certain probability (for example 90%) that the reserve will prove to be adequate.
This means setting the reserve to a percentile of the aggregate loss distribution:
from Figure 6, the reserve with a 90% chance of adequacy is £780,000. However,
this criterion does not allow for the potential magnitude of the inadequacy in the
(10%) worst cases.

A safety load criterion which does make such an allowance, and which has several
other desirable theoretical properties, is the proportional hazards criterion (Wang,
1995). This was suggested by Wang in the context of reinsurance pricing, but is
equally valid for safety loads in reserves. The safety loaded premium is calculated
as the mean of a distribution obtained by transforming the distribution of the total
outstanding liability. The transformation suggested by Wang, the "proportional
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hazards" transform, is the raising of the survivor function 1 - F(t) to some power
1/δ, where δ is an index greater than 1 reflecting the degree of caution required.
This is illustrated by Figure 7, which shows both the outstanding liability
distribution (as in Figure 6), and its proportional hazards transform with δ=1.5.

The mean of this transformed distribution is £653,677: this would be the reserve
under this criterion. Note that, because the mean of any probability distribution is
equal to the area above the cumulative distribution function, the safety load of
£58,797 (the difference in the two means: £653,677 - £594,880), is represented by
the area between the two curves in Figure 7. The higher the index δ, the larger this
area would become. Using an index δ = 2 gives a reserve of £702,821 (safety load
of £107,941) and using δ = 3 gives £784,786 (safety load of £189,906), which is
just above the 90th percentile found earlier.

8. Conclusion

The aim of this paper is to present a general approach to claims reserving rather
than a single method. The essence of the approach is to make full use of detailed
claim payment information in order to calculate a complete probability distribution
for the outstanding liability. This approach has been made possible by parallel
advances in computer technology and actuarial theory. It is hoped that the ideas
presented in this article will provide a framework within which these advances can
be turned to advantage in the reserving context.

The example presented in this paper illustrates the approach but is not intended as
a model suitable for general application. Some of the more obvious refinements
and alternatives which may be necessary in practice are mentioned briefly in the
remainder of this section.

In the absence of any observed payments for the fourth and later development
periods in the example data-set, we assumed that their distribution would be the
same as for the third development period. An alternative would be to project
trends observed in the distribution across development periods. This is most easily
achieved by fitting an analytic distribution before mixing the development years
rather than after.

In the example, we could have tried fitting a Gamma distribution to each of the
three empirical distributions shown in Figure 1 separately. This would quite likely
indicate a trend increase in the b1 parameter across development periods 1,2, 3,
and possibly a trend in b2 as well. These trends could be projected to arrive at a
suitable Gamma distribution for development periods four and later. Each of the
Gamma distributions could then be discretized before mixing them to obtain a
distribution suitable for all future payments.

The approach can also be refined to take account of uncertain future claims
inflation and investment returns, and uncertainty in the parameters of the
distributions for the number and amount of individual losses.
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The rule of thumb used in the example for determining the variance of the
Negative Binomial distribution for claim numbers is very crude. In practice, it is
worth taking at least as much trouble modelling the payment number distribution
as the payment size distribution, because when the expected number of payments
is large, the payment size distribution becomes relatively less influential. It is
recommended that a stochastic method should be used to project the claim
numbers triangle, and that the variance of the Negative Binomial be set to reflect
both the future process variance and the parameter uncertainty indicated by the
stochastic method. The rule of thumb presented in this paper arises from the
observation that when claim number triangles are modelled thoroughly in this
way, the resulting prediction variance does quite often turn out to be around two
times the best estimate of the number of future payments.

Finally, a word of caution about the interpretation of the parameter standard errors
resulting from distribution fitting to weighted observations using the generalised
version of MLE as described in section 4.3.

If the Newton-Raphson method is used for MLE, a spin-off is that the inverse of
the final Hessian matrix is approximately the variance-covariance matrix of the
parameter estimates. This reflects both the volume of data, and the quality of the
fit to that data. However, when the observations are re-weighted as illustrated in
the example, the total "number of observations" becomes the sum of the weights,
and the scale of the variance-covariance matrix will depend on this quantity.

If the variance-covariance matrix is required, it is probably safest to rescale all
weights so that their total remains equal to the true number of observations. In
section 4.3.2, there are 46 observations with a total weight of 42.9. In this case, the
weights should be scaled up by the factor 1.07226 before fitting, giving revised
weights of 0.513 and 4.804, for development periods 2 and 3 respectively.
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Figure 1: Empirical Distribution for Each Development Year

Figure 2: Mixture of Development Years' 2 and 3 Distributions
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Figure 3a: Fitted Gamma Distribution for Future Payments

Figure 3b: Fitted Weibull Distribution for Future Payments

Figure 3c: Fitted Log-Normal Distribution for Future Payments
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Figure 4a: Fitted Gamma Distribution for Future Payments

Figure 4b: Fitted Welbull Distribution for Future Payments

Figure 4c: Fitted Log-Normal Distribution for Future Payments
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Figure 5: Discretized Gamma Distribution for Future Payments

09/97 D7.18



PROBABILITY DISTRIBUTION OF OUTSTANDING LIABILITY
FROM INDIVIDUAL PAYMENTS DATA

Figure 6: Probability Distribution of Outstanding Liability
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Figure 7: Proportional Hazards Transform with Index = 1 . 5
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