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Summary 
 

This working paper is an extract from a larger forthcoming paper from the Stress 

Tests working party. We may modify this material prior to final publication, and we 

welcome readers’ suggested improvements. 

 

The yield curve on a particular date describes variations in interest rates as a function 

of the term for which a deposit is committed. Movements in the yield curve from one 

period to the next are an important driver of profits and losses for most financial 

institutions. 

 

So-called “full models” of yield curves, treat every point of the curve as a random 

variable in its own right. However, most firms prefer to use “component models”. For 

example, the first component might be the level of the yield curve; the second 

component might be its slope and the third component its curvature. A firm’s 

sensitivities to changes in each of these components are combined to assess the firm’s 

resilience to yield curve movements. 

 

This note considers several ways to decompose a full model into components, 

including polynomials, principal components and variance matching. 
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1.  Introduction 
 

1.1. Variables Modelled 

 

We consider the movement in the yield curve from now until a point in 1 year’s time. 

We denote this movement is denoted by X, a random vector. For the purposes of this 

note, it does not matter whether these are spot yields, par yields or forward yields. 

 

We use a deliberately unsophisticated model, so we can easily interpret outputs and so 

readers can readily replicate our results. Suppose X has zero mean, so the expected 

yield curve in a year’s time is exactly where it is now. We suppose X is modelled at 

certain key maturities, these being maturities: {1,2,3,5,10,20}. 

1.2. Variance-Covariance Matrices 

 

At each key rate, we assume the standard deviation of X is 1%. The correlation matrix 

between yields at different maturities is assumed to take the following simple form: 
Correlations           

  t=1 t=2 t=3 t=5 t=10 t=20 

t=1 1 0.9 0.8 0.7 0.6 0.5 

t=2 0.9 1 0.9 0.8 0.7 0.6 

t=3 0.8 0.9 1 0.9 0.8 0.7 

t=5 0.7 0.8 0.9 1 0.9 0.8 

t=10 0.6 0.7 0.8 0.9 1 0.9 

t=20 0.5 0.6 0.7 0.8 0.9 1 

 

The standard deviations are all 1%. Therefore, measured in percentage terms, the 

covariance matrix is the same as the correlation matrix, which is convenient for our 

example. We denote this matrix by V. 

 

The appropriate assumptions to use for a particular yield curve, a particular financial 

entity and a particular point in time are all subject to debate. Our assumptions for the 

worked example are not derived from any particular data set, but they are broadly 

representative of moves in yields for developed economies in recent times. By 

choosing simple assumptions we aim to make it easy for anyone else to verify our 

numbers. 

 

1.3. What are components? 

 

Sometimes we want to break down a yield curve into components. Each component is 

independent (or at least uncorrelated with) the other components. Traditionally, the 

components are ordered so that the first represents the level of the curve, the second 

component the slope and the third component the curvature. 

 

It is natural to construct components as polynomials. To avoid explosions at infinity, 

we do not use polynomials in t itself, but in A
t
 for some 0<A<1. For example, taking A 
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= 0.8, we find the following polynomial components. The nth component, that is the 

coefficient of Zn in the n
th
 column, is a polynomial of order n-1 in A

t
. 

Polynomial Components         

  Z1 Z2 Z3 Z4 Z5 Z6 

t=1 0.866025 -0.482214 0.017380 0.065366 -0.113533 -0.002384 

t=2 0.866025 -0.286508 -0.284323 -0.159815 -0.238404 -0.068529 

t=3 0.866025 -0.129943 -0.417666 -0.067763 0.003679 0.232518 

t=5 0.866025 0.095510 -0.440996 0.196032 0.080885 -0.037812 

t=10 0.866025 0.364980 -0.207677 0.201473 -0.147034 0.107004 

t=20 0.866025 0.482214 -0.017380 -0.065366 0.113533 0.002384 

 

In our examples, components are multiplied by standard normal variables Z1, Z2, …. 

Z6, then added together to produce the yield curve shift. We will verify that this 

replicates the desired correlation matrix. 

 

Polynomials are not the only approach to decompositions. Another approach is to use 

principal component analysis, or PCA (Anderson, 1957), devised so that the early 

components (Z1 and Z2 for example) explain as much as possible of the variability in 

the rates, minimising the role of later components Z3 to Z6. For example, taking the 

first two components of the yield at t=1, the variance of the modelled yield is the sum 

of the squares of the first two elements of the table’s first row. If we are interested not 

only in convergence at t=1 but for all t, then we might add together the corresponding 

variances for each of the six modelled time points. PCA then equates to maximising 

the sum of the squares of elements in the first two columns. The table shows principal 

components of what we will later call “Model 6”. We will later discuss a number of 

related PCA algorithms.  

 
Principal Components: Model 6         

  Z1 Z2 Z3 Z4 Z5 Z6 

t=1 0.833278 -0.481806 0.222651 0.129099 0.077942 0.034592 

t=2 0.909996 -0.352706 0.014383 -0.129099 -0.147311 -0.094507 

t=3 0.949163 -0.129099 -0.209257 -0.129099 0.072806 0.129099 

t=5 0.949163 0.129099 -0.209257 0.129099 0.072806 -0.129099 

t=10 0.909996 0.352706 0.014383 0.129099 -0.147311 0.094507 

t=20 0.833278 0.481806 0.222651 -0.129099 0.077942 -0.034592 

 

It is often helpful to construct models with a small number of components. In that 

case, we can only approximate the desired correlation matrix. One technique for 

constructing low component models is variance matching. The table shows a three-

component example of variance-matching: 
Variance matching components   

  Z1 Z2 Z3 

t=1 0.974679 -0.223607 0.000000 

t=2 0.974679 0.223607 0.000000 

t=3 0.872082 0.223607 -0.435286 

t=5 0.872082 -0.223607 -0.435286 

t=10 0.974679 -0.223607 0.000000 

t=20 0.974679 0.223607 0.000000 
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1.4. Verifying Components 

 

How can we verify a model re-expressed as components? We have expressed our 

models in the form: 

 

X = BZ 

 

Here, X is the vector of yields varying by maturity. Z is a vector of independent 

normal variables with mean zero and unit variance. The matrix B holds the 

components, with each column of B corresponding to one component. The element Bij 

is the value of the j
th
 component evaluated at the i

th
 key maturity.  

 

From standard matrix theory (see, for example, the book by Anderson), the variance-

covariance matrix of X is BB
T
, where a superscript T denotes a matrix transpose. We 

ideally want the decomposition to reproduce the variance-covariance matrix of X. 

This means that 

 

BB
T
 = V 

 

It is easy to verify numerically that this is satisfied exactly for the polynomial 

components and for the principal components tabulated above. As we have 

demonstrated two different decompositions, we can deduce that a decomposition is 

not necessarily unique. This raises the question of whether one decomposition is 

“better” than other. 

 

On the other hand, if we constrain the number of columns of B, it may not be possible 

to find any matrix B to satisfy BB
T
 = V. In that case, we want to find B so that BB

T
 is 

as close as possible to V. For example, using the variance matching components, we 

find the following implied correlation matrix: 
Correlation matrix implied by Variance Matching Components   

  t=1 t=2 t=3 t=5 t=10 t=20 

t=1 1 0.9 0.8 0.9 1 0.9 

t=2 0.9 1 0.9 0.8 0.9 1 

t=3 0.8 0.9 1 0.9 0.8 0.9 

t=5 0.9 0.8 0.9 1 0.9 0.8 

t=10 1 0.9 0.8 0.9 1 0.9 

t=20 0.9 1 0.9 0.8 0.9 1 

 

We can see that the shaded elements: the main diagonal and two above and below it, 

are replicated exactly. However, the variance matching components overstate the 

elements on the bottom left and top right of the matrix. In particular, the variance 

matching components force the rates at t=1 and t=10 to be equal. It also forces 

equality between rates at t=2 and t=20. This is an undesirable side-effect of using only 

three components when full replication of the correlation matrix requires six 

components. 
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The remainder of this paper examines each of these decomposition tools in more 

detail. 

 

2. Cholesky Methods 
 

2.1. Cholesky decomposition 

 

A Cholesky decomposition is the text-book solution to finding a matrix B such that 

BB
T
 = V. The decomposition works provided that V is symmetric and positive semi-

definite. These are precisely the conditions that V is a valid variance-covariance 

matrix. 

 

The equation BB
T
 = V does not determine the matrix B uniquely. The Cholesky 

method produces a matrix B which is lower triangular, that is, so that all elements 

above and to the right of the main diagonal are zero. It also ensures that the diagonal 

elements of B are non-negative. Within these constraints, B is uniquely specified. 

 

The table shows a Cholesky decomposition for our correlation matrix: 
Cholesky Decomposition         

  Z1 Z2 Z3 Z4 Z5 Z6 

t=1 1.0 0 0 0 0 0 

t=2 0.9 0.435890 0 0 0 0 

t=3 0.8 0.412948 0.435286 0 0 0 

t=5 0.7 0.390007 0.411103 0.434613 0 0 

t=10 0.6 0.367065 0.386921 0.409048 0.433861 0 

t=20 0.5 0.344124 0.362738 0.383482 0.406745 0.433013 

 

We can see that the first component captures the first column of the correlation 

matrix. The second component starts at zero for t=1. This is because the first 

component already explains the yield shift at t=1. And so the pattern continues. The 

chart shows the components: 
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Although these components do reproduce the desired correlation matrix, they do not 

appear natural or intuitive. For example, if we recomputed the Cholesky calculation 

with the time points in reverse order, starting from t=20, the components look 

different – in fact, given the symmetry of the correlation matrix, reversing the time 

axis has the effect of a vertical reflection of the whole chart. 

 

This lack of intuition is not a problem for some applications. For example, Cholesky 

decomposition is the preferred algorithm in Monte Carlo work, on account of its 

simplicity. On the other hand, for communicating capital requirements, more intuitive 

decompositions are helpful. We now develop some of these. 

 

2.2. Solution Rotation 

 

Given the multiplicity of solutions B to the equation BB
T
 = V, we can ask how the 

different solutions are related. 

 

The answer lies in rotations. We have the model X = BZ. Here, the random vector Z 

consists of independent identically distributed N(0,1) variables. Contours of equal 

density are concentric hyper-spheres around the origin. 

 

Rotations can be written as matrix multiplication, by some matrix Ω. A matrix Ω 

corresponds to a rotation if and only if Ω
-1
 = Ω

T
. If Z is a vector of independent 

identically distributed N(0,1) variables, then so is ΩZ. Thus, a model X = BZ produces 

the same distribution for X as a model BΩZ. This means that if B is one 

decomposition, then BΩ is another. 

 

In our example, we can convert a Cholesky decomposition to polynomial components 

using the following rotation matrix: 
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Rotation to convert Cholesky Decomposition  to Polynomial 
Components     

  original Z1 original Z2 original Z3 original Z4 original Z5 original Z6 

New Z1 0.866025 -0.482214 0.017380 0.065366 -0.113533 -0.002384 

New Z2 0.198680 0.338353 -0.688167 -0.501604 -0.312521 -0.152294 

New Z3 0.209427 0.266734 -0.338611 0.200056 0.513594 0.683033 

New Z4 0.221404 0.440493 -0.104847 0.606656 0.163600 -0.592584 

New Z5 0.234834 0.568667 0.480340 0.047983 -0.529753 0.328335 

New Z6 0.250000 0.253819 0.412004 -0.577723 0.564144 -0.226510 

 

2.3. Orthonormal Polynomials 

 

Until now, our analysis has treated the yields at t = {1,2,3,5,10,20} as six distinct 

random variables. We have not used the associated time values in our models. 

 

However, it is seen empirically that yield curves are often smooth functions of time t. 

This suggests we look to smooth sample functions to build up components. One 

possible choice is the family of polynomials in t. A disadvantages of polynomials is 

their tendency to infinity for large t, while yield curves in practice tend to flatten out. 

A solution to this problem is use polynomials, not in t itself, but in A
t
 for some 

0<A<1. In our examples, we have selected A = 0.8. 

 

The table shows the coefficients of the polynomial decomposition: 
Polynomial Coefficients         

  Z1 Z2 Z3 Z4 Z5 Z6 

1 0.8660 0.4963 0.0091 -0.1128 0.1816 -0.0776 

A
t
 0 -1.2232 -2.3339 4.2749 -6.3338 7.9003 

A
2t
 0 0 2.9302 -13.7102 37.9863 -87.5140 

A
3t
 0 0 0 10.8064 -74.8113 328.9030 

A
4t
 0 0 0 0 45.8107 -493.1470 

A
5t
 0 0 0 0 0 254.3899 

 

The upper diagonal form gives a hint that these coefficients are also obtained from a 

form of Cholesky decomposition. One advantage of using polynomials is that they 

interpolate naturally for other values of t. The chart shows the polynomial 

components for a range of t values. We see that successive components become 

smaller but also more wiggly – a well-known feature of higher order polynomials. 
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The behaviour for t <1 is a possible cause for concern. It reflects the tendency of 

polynomials to wiggle. Our choice of A = 0.8 produces only minor wiggle problems 

with our chosen correlation structure. An informal test of examining charts by eye, 

suggests that most other choices of A produce more pronounced wiggles, which is 

how we chose A = 0.8 in this example. 

 

2.4. Interest Rate Standard Deviation. 

 

We have described a yield curve model using polynomials to fit yield curves. Our 

original model had yield standard deviations of 1% at all terms. However, these 

standard deviations do not necessarily apply at other, interpolated terms. The chart 

shows the interest rate standard deviation by term for our polynomial model. Note the 

vertical axis – the standard deviations are close to 1, in fact, as near to 1 as makes 

little practical difference. 

 

Polynomials are not the only way to interpolate yield curves. An alternative, and 

indeed simpler algorithm, is to use linear interpolation between observed points and 

constant extrapolation at other points. This always gives a standard deviation of 1% or 

less, with the reduction due to diversification in the interpolation between points. 

 

The chart compares standard deviations for both smooth and linear interpolation. 
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3. Principal Components 
 

3.1. Proportions Explained 

Let us consider the variance of the rate at a particular term as components are added. 

 

The first component necessarily understates the variance. For the yield curve as a 

whole, the contribution of the first component can be measured as the sum of the 

squares of the first column, which is the sum of the squares of the first noise term Z1. 

The inclusion of each new component increases the variance, until all the components 

are incorporated and the sum of the squares of the entire matrix is 1. We can 

investigate the proportion of variance explained by each component, split according to 

the time point, that is, by rows of the original matrix. The chart shows the results for 

polynomial components. In order to make the higher components more visible, the 

vertical axis starts at 60%. 
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Variance Explained: Polynomial Components
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We also show the corresponding figure for Cholesky decomposition: 

Variance Explained: Cholesky Components
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Here we see that the first component explains all of the variance for the 1 year rate. 

However, convergence is much slower for longer term rates, and indeed, is so bad for 

t ≥ 5 as to fall below our vertical scale. 

 

We can show the same chart for principal components: 
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Variance Explained: Principal Components
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We can consider how to choose the components to maximise the variance that the 

early components explain. There is clearly a trade-off here. Cholesky decomposition 

does a good job at t=1 but a terrible job at t=20. Polynomials and principal 

components are more consistently convergent across a range of terms.  

 

Taking the average across the six terms considered, we can measure the speed of 

convergence as more components are added. The bar chart shows the results (note that 

in order to make the differences more visible, the vertical axis starts at 60% 

explanation and not 0%). 
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We can see that the Cholesky approach converges slowest of all. The polynomial 

decomposition is much better, but not quite as fast as principal components analysis. 
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In fact, principal components are defined in order to maximise the speed of 

convergence, averaged across the key terms, that is to maximise the height of each 

green bar in the chart above. Therefore, the principal components represent the best 

possible convergence outcome, which cannot be beaten. This is encouraging, because 

it gives us a basis for claiming that some decompositions are “better” than others, and 

in particular that principal components analysis is “best possible”. Furthermore, this 

analysis has assumed nothing about the underlying financial business. This raises the 

hope of component analysis that can be performed once and is then valid for multiple 

applications. 

 

The chart shows the principal components resulting from the analysis: 
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We can see that the first three components capture aspects of level, slope and 

curvature, with higher components being wigglier. This is similar to the situation for 

polynomial components. 

 

3.2. Why Reduce the Number of Components? 

 

When all components are considered, any yield curve decomposition explains 100% 

of the variance. If some components are excluded, then principal components analysis 

converges best, in terms of average variance explained. 

 

Why, then might we want to truncate the decomposition, and exclude some 

components? The most important reason arises in the context of Value-at-Risk 

calculations. 

 

Let us suppose the net assets of a firm are a smooth function of the yield curve shift X. 

Then, for small X, the net assets are approximately of the form a0 + g
T
X, where a0 is 

the starting net assets before the yield shift and g is the vector gradient. With a 

variance-covariance matrix V, the variance of net assets is then g
T
Vg. Assuming 
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multivariate normal distributions and a specified confidence level α (for example 

α=0.995), the value at risk is )(
1
α

−
ΦVgg

T
. 

 

To evaluate this expression, we need to compute the gradient g. This is commonly 
estimated using central finite difference methods. With our model, based on 6 points 

of the yield curve, the estimation of g requires 12 net asset calculations, also known as 
“stress tests”. 

 
The calculation of stress tests may be an easy task, for example if all future cash flows 

are fixed. But financial firms’ cash flows are typically variable, depending not only on 
market conditions but also the actions of customers and management. In this case, net 

asset calculation may be an onerous task. A request to recalculate 12 stress tests could 
have important operational implications. The burden gets worse if more than 6 points 

on the curve are modelled. 
 

A constraint on the number of components can reduce the effort required in value-at-
risk calculations. As an intermediate step, we need to compute the variance g

T
Vg.  

Now suppose we can approximate V ≈ BB
T
. Then we can approximate the variance 

g
T
Vg ≈ g

T
BB

T
g = (B

T
g)
T
(B
T
g). A saving arises because we can compute B

T
g with 

fewer stress tests than to estimate g. The number of stress tests required is twice the 
number of components. 

 
This is how to estimate B

T
g without knowing g. Let us consider the first column of B, 

that is, the first component, a vector, b say. Then the first element of B
T
g is estimated 

as 

 
(2h)

-1
[ net assets(X=hb) – net assets(X=-hb) ] 

 
We need one of these calculations for each component, not for each point on the yield 

curve. 
 

Other contexts may also show an advantage from needing fewer components. For 
example, Monte Carlo work involves simulating the components of Z and computing 

the matrix product BZ. Both of these operations are quicker if the number of 
components is reduced. 

 
The pricing of some financial products involves optimal stopping problems. Examples 
include estimating the best time to pre-pay a fixed-rate loan or to cash in a fixed-rate 

deposit. The analysis of such products involves movable boundary problems, whose 
solution is only straightforward for low dimensional problems. For this reason, 

consideration of such products is usually in the context of 1 or 2-component models. 
 

In each of these cases, neglecting higher components introduces errors, because the 
correlation structure is modelled inaccurately. The errors may still be considered a 

price worth paying in order to benefit from the run time advantages of a low 
dimensional interest rate model. 
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3.3. Alternative Choices of Weights 

 

We have analysed principal components based on speed of convergence at key time 

points t={1,2,3,5,10,20}. 

 

We could consider alternative weights. For example, a “Model 20” that gives equal 

weight to all time points between t=1 and t=20 inclusive. Or a “Model 50” based on a 

50-year yield curve. The respective weights are show in the chart below: 
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As we shall see, it is an unhelpful feature of principal components analysis that the 

choice of weights is a major determinant of the calculated components. The need to 

choose weights does not arise for our other methods of component construction: 

orthogonal portfolios and variance matching. When using principal components 

analysis, we might (for example) construct a system of weights to reflect the relative 

size of cash flows at different terms. The ideal choice of weights might therefore vary 

from one business to another. On the other hand, it may be better to use a common 

compromise set of weights for all businesses in order to simplify aggregation 

calculations across multiple lines of business. 

 

If we are to use intermediate time points between those originally modelled, we must 

also specify a model for yields at those points. In this note we consider two 

alternatives. The linear model “L” uses linear interpolation, with flat extrapolation 

beyond the 20 year point. The smooth model “S” fits a polynomial of order 5 to the 

six observed points. 

 

The possible combinations of weights and interpolations give us five models, which 

we will denote as Model 6, 20L, 20S, 50L and 50S. 

 

3.4. Principal Component Comparisons 

We now compare principal components under our five models: 6, 20L, 20S, 50L and 

50S. 
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In each case, the first principal component can reasonably be interpreted as a measure 

of “level”. We see differences according to where the weights lie. The first 

component is largest where the weights are largest. Thus, model 6 produces a 

maximum at t=3, while model 50 has its maximum at t = 25. The choice of 

interpolation method (L or S) has little effect. 

 

Second Principal Component Z2
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The second component captures the slope, or twist, of a yield curve move. One 

important question in value at risk calculation is the choice of pivot, that is, the term 

of interest rates which is unchanged by the twist stress test. This corresponds to the Y 

intercept of the second principal component. 

 

Our example shows that the pivot is not an inherent property of past yield curve 

moves. On the contrary, it depends on the weights chosen for principal components 
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analysis. If the weights extend a long way into the future, then the pivot occurs at a 

large t value. The choice of weights is not a purely technical decision with limited 

impact. On the contrary, a consideration of the second principal component reveals 

the importance of the choice of weights. Given the potential difference in calculated 

value at risk, a rigorous motivation for the choice of weights is important, in place of 

the heuristic reasoning we are able here to provide. The choice of smoothing method, 

however, remains unimportant. 

 

We now jump to the last principal component. 

Last Principal Component Z6
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It is unlikely that this component is much used in practice. However, the comparison 

with previous figures is interesting. We see a modest effect of the choice of weights, 

with the 20 and 50 year models looking very similar. What the last component picks 

up is the smoothing algorithm. The wiggles from the “S” models come through 

clearly, in contrast to the simpler shape under linear interpolation. 

 

3.5. Implicit Data Enhancement 

 

Ideally, interest rate data is observed from actual trades or bid/offer quotes in a deep 

liquid market. In many markets, however, trades may be infrequent or bid-offer 

spreads wide, especially for long dated cash flows. 

 

Given these difficulties, we might expect consequences for yield curve data quality 

and availability. Online sources, however, provide apparently complete information 

extending far back in time. They can do this because of substantial investment in data 

cleaning. Cleaning methods include interpolation and extrapolation to infer missing 

data points or to adjust out-of-date price information. The data collection may be a 

many stage process: individual banks apply their own cleaning algorithms to data 

made even cleaner by commercial data vendors’ systems. 
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Clean data does not easily reveal which data points are real market information and 

which are filled in by algorithm. However, principal component analysis may reveal 

this information. And you could test this in a real market by trying to transact at prices 

posted on the system. 

 

For an example of the power of PCA, suppose a user downloads yield curve data out 

to 50 years maturity. Theoretically, this data set may require 50 components for a full 

explanation of the correlation structure. Maybe, analysis of the data shows 6 

significant components, with the higher components accounting for a negligible 

proportion of total variability. 

 

One possible explanation is that there really are only 6 components in the economy. 

Another explanation is that we are dealing with a 50L or 50S model, with 6 real data 

points and 44 points constructed by interpolation. The shape of the 6
th
 component 

reveals more about the type of interpolation used. In other words, the higher 

components tell us about the process of data collection and cleaning, rather then about 

risk in the financial markets. 

 

3.6. Value-at-Risk for Hedging 

 

Economic capital is an important application of yield curve models. Economic capital 

is often regarded as having a cost, and so firms try to trade to minimise stated capital 

requirements. 

 

One important tool for this is hedging. For example, if a firm has a long exposure to 

an 11 year interest rate, they may trade in the interest rate markets to acquire a 

corresponding short exposure to the same interest rate. The net effect is immunisation 

– the firm is protected against moves in either direction, at least against small moves. 

 

Hedging is often less exact than this. A firm may decide to hedge the 11-year 

exposure with a 10-year trade, for example because the 10-year instrument is more 

liquid than an exact match. This hedge should still be effective – because the 10 year 

rate and 11 year rate are strongly correlated, but not quite as good as hedging the 

same rate as the original exposure. 

 

In this case, PCA converge more slowly than we hope. PCA finds components that 

well explain movements in the yield curve, but that is not the same as explaining 

movements in my portfolio. PCA may ensure that the variances of 1 and 2 year rates 

are well explained. But to assess hedge effectiveness you also need to know the 

correlation between them. PCA solves a particular, objective function, but that 

objective function takes no account of how fast correlations converge. Technically, 

we could include covariances in the weights for evaluating convergence, but the 

optimisation would then trade off covariances against variances elsewhere. 

 

For example, let us suppose an investor has an exposure of £1 per 1% move in 1 year 

rates, which they have partially hedged with an equal and opposite exposure to the 

two year rate. From our assumed correlation matrix, we can calculate the variance of 

profit to be 1+1-2*0.9 = 0.2. We can investigate how quickly the different 
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decompositions converge to the true value. The principal components calculation 

refers to Model 6. 
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As we would expect, the Cholesky method scores well, as it builds up the volatility by 

iteration starting at the short end of the curve. With cash flows only at t=1 and t=2 in 

our example, the Cholesky method has captured all the variance in the first two terms. 

 

The principal components method performs surprisingly badly. Section 3.1 suggests 

that the first three principal components explain more than 95% of the yield curve 

variability. However, in our example, only 33% is explained by the first three 

components. Arguably, this is an unfair comparison; had we known that the cash 

flows stopped at time 2, we would have applied more weight to the early years when 

calculating principal components, and so obtain faster convergence for those flows.   

 

In this particular example, the Cholesky method gives good convergence, while 

Principal Components has the slowest convergence. This will not always be the case. 

We could construct examples illustrating any of the six possible orderings. Instead, 

our example is intended to illustrate the potential gap (in either direction) between an 

advertised “percentage explained” for the yield curve as a whole, compared to the 

actual explanatory power for a particular set of cash flows. By construction, PCA 

maximises the advertised percentage explained, and therefore carries the greatest 

potential to disappoint. 

 

In general, the problem of slow convergence is particularly acute if yield 

decomposition into components is used for constructing a hedge in the first place. For 

example, given a particular definition of level, slope and curvature, it is easy to find a 

hedge portfolio that immunises all three. Tested against that decomposition, it appears 

that risk is eliminated. What has really happened is that risk is concentrated in the 

fourth and higher components, which have been discarded on order to speed up the 

value-at-risk calculation. There are two solutions to this problem. One is to use more 

components for analysing risk than are used for building the hedge in the first place. 
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The second solution is to use a full model, including all components rather than 

truncating.  

4. Variance matching 

4.1. A One-Factor Model 

 

Suppose we are constrained to use only a single component. Then interest rates moves 

at different terms must be 100% correlated. 

 

A naïve solution is to set the interest rate standard deviation to 1% at all the modelled 

terms. We then have a solution that explains 100% of the variance for each key rate, 

although clearly the correlations are overstated. We call this “variance matching”. 

This is essentially the test which CEIOPS have calibrated for solvency II, based on 

the volatility of yields at various terms. 

 

A theoretically more sophisticated solution is to use the first component from PCA. 

The chart shows a comparison: 
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The PCA is supposed to maximise the variance explained by each component. In our 

example, the first component explains 80.8% of the yield curve variance. 

 

Yet, the variance match explains 100% of the variances. The correlations are equally 

wrong in both one-component models. So it is difficult to describe any sense in which 

the theoretical superior PCA is better in practice. Indeed, we might wonder how we 

ever convinced ourselves that 80.8% is the best possible, given that variance matching 

explains 100% of the variance. 

 

The answer to these points is subtle. The advantage of PCA is that the first component 

is one of a series. By adding more and more terms, we can get closer to the true yield 
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curve distribution. This is useful if we can somehow test convergence, optionally 

adding higher terms only when necessary. 

 

In contrast, the variance match might produce a good first guess, but we cannot refine 

that guess by adding more components. If we add further components, we might get 

the correlations more accurate, but those extra turns will also increase the variances, 

making them too large. 

 

If we know at the outset that we might want to explore further stress tests, then the 

PCA makes sense. The first component is one step on a longer path. On the other 

hand, if more than one stress is excluded, for example by computation costs, then the 

variance match could be a better approach.  

4.2. Three Factor Variance Match 

 

We have discussed a variance match for a single factor model. We now consider 

extending this idea to three factors. 

 

We assume the importance of capturing the variance of yields at each term. With 

three factors, we are able to impose additional constraints. Knowing that hedging 

often involves offsetting risks at adjacent terms, we can ask that our three factors 

correctly replicate the correlations between adjacent terms. This is equivalent to 

reproducing the variance of the yield curve slope between terms. 

 

These are still too few constraints to determine a three factor model. We can insist 

also on capturing the correlations between rates that are next-but-one to each other. 

Equivalently, we reproduce the variance of the second differences in yield slope. 

These differences are relevant to “barbell” hedging strategies that (for example) seek 

to hedge a 2 year exposure with an average of 1 and 3 year exposures. 

 

We have articulated some constraints that are relevant to common business strategies. 

Now all we need is to solve the equations. The solution is as given in the introduction: 
Variance matching components   

  Z1 Z2 Z3 

t=1 0.974679 -0.223607 0.000000 

t=2 0.974679 0.223607 0.000000 

t=3 0.872082 0.223607 -0.435286 

t=5 0.872082 -0.223607 -0.435286 

t=10 0.974679 -0.223607 0.000000 

t=20 0.974679 0.223607 0.000000 

 

We can use these three components to reconstruct the following implied correlation 

matrix: 
Correlation matrix implied by Variance Matching Components   

  t=1 t=2 t=3 t=5 t=10 t=20 

t=1 1 0.9 0.8 0.9 1 0.9 

t=2 0.9 1 0.9 0.8 0.9 1 

t=3 0.8 0.9 1 0.9 0.8 0.9 

t=5 0.9 0.8 0.9 1 0.9 0.8 

t=10 1 0.9 0.8 0.9 1 0.9 

t=20 0.9 1 0.9 0.8 0.9 1 
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We can see that the shaded elements: the main diagonal and two above and below it, 

are replicated exactly, as required. However, the variance matching components 

overstate the elements on the bottom left and top right of the matrix. In particular, the 

variance matching components force the rates at t=1 and t=10 to be equal. It also 

forces equality between rates at t=2 and t=20. This is an undesirable side-effect of 

using only three components when six are required. 

 

4.3. Three Factor Models: Alternative Weightings 

 

We have constructed a three factor variance-match solution for a 6-point model. We 

now consider how that solution extends to models with more points on the yield 

curve. 

 

The variance match for model 6 also works for model 20L and 50L. The reason is that 

the variance match fits the variance of the value and the first and second differences. 

The second differences of a linearly interpolated curve, are zero, except at the data 

points. This means that solving for the three components commutes with 

interpolation. It does not matter whether we interpolate first, then construct 

components, or if we solve first for the components and then interpolate. 

 

The situation is different for the models 20S and 50S. The non-linear interpolation 

means that fitting the variance of second differences is not trivial. Nevertheless, it can 

be done. Furthermore, the solution for model 20S is simply the decomposition for 

50S, restricted to the first 20 years. 
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As with the original decomposition, these solutions are unique only up to rotation of 

the underlying normal variables. In this example, we chose a rotation so that the 
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second component vanishes at t=4, while the third vanishes at t=2 and t=10. These 

properties are then shared with the Model 6 components. 

 

The variance matching solution has many advantages, including replication of yield 

variances, and also the variances of first and second differences, as well as avoiding 

the need to specify time weights. There are also a few disadvantages. One 

disadvantage is the inability to build on this solution by adding more factors – if we 

want to add a fourth factor we have to go back to the beginning and build all four 

from scratch. In that sense, the PCA approach is better, as fourth factor can be added 

without disrupting the previous three. The second disadvantage of the variance match 

approach is the tendency to wiggle. This is necessary in order to capture the 

variability of yield curve slopes, but at the same time negates the intuitive appeal of a 

second factor relating to “slope” and a third to “curvature”. 
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