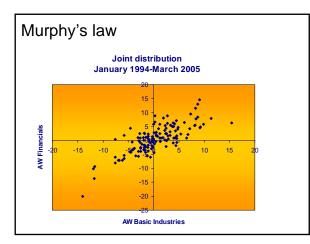
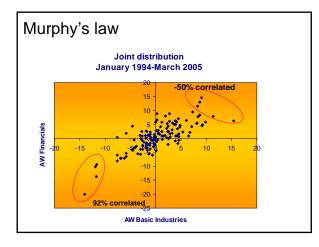
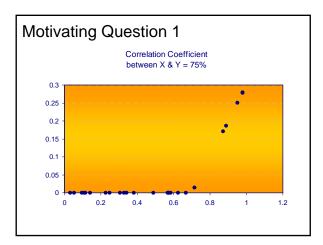


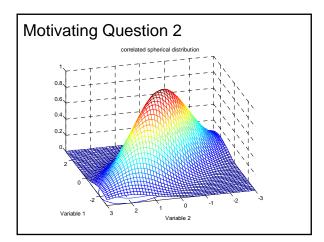
Younger members convention 5 December 2005

Martyn Dorey









- A linear combination of Normal rv's is Normal
- Regression:

 $Y = mX + \epsilon$

• m is the correlation coefficient

Desirable features of a measure of dependence

- Range [-1,1]?
- Scale invariance?
- 0 for independence?
- Extremes meaningful?

Measuring relationships • Pearson's correlation: $\rho(X,Y) = \frac{Cov(X,Y)}{\sigma(X)\sigma(Y)}$ • Spearman's rank ρ : $\upsilon = 1 - \frac{6D^2}{n(n^2 - 1)} \quad with \ D^2 = \sum_{i=1}^{n} (r_{y_i} - r_{x_i})^2$ • Kendall's τ (non linear):

$$\tau = 1 - \frac{4Q}{n(n-1)}$$

Properties of rank correlations

- $\checkmark \rho(X, X^3)$ and $\tau(X, X^3) = 1$
- \checkmark If X and Y are independent then $\rho(X,Y) = \tau(X,Y) = 0$
- ✓ -1≤ ρ(X,Y), τ(X,Y) ≤ 1
- ✓ If T:R→R is an increasing transformation, then $\rho(X,Y) = \rho(T(X),Y)$ and $\tau(X,Y) = \tau(T(X),Y)$

Multivariate distributions - Copulas

$$F_{X}$$
 and $F_{Y} \rightarrow F_{XY}$?

Sklar's Theorem

If F_{XY} is a joint distribution function with marginal distributions F_X and F_Y , then there exists a function $C:[0,1]^2 \rightarrow [0,1]$ st

$$\mathsf{F}_{\mathsf{X}\mathsf{Y}} = \mathsf{C}(\mathsf{F}_{\mathsf{X}},\mathsf{F}_{\mathsf{Y}})$$

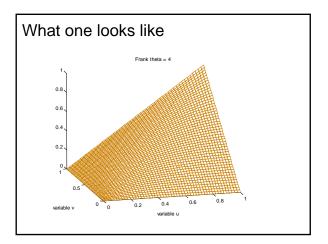
We call C a copula.

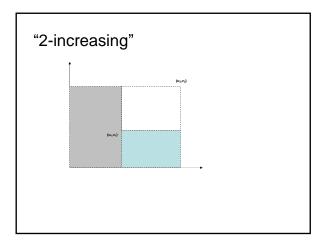
Conversely, if C is a copula, and F_X and F_Y are any marginal distributions, then F_{XY} defined above is a joint distribution with those marginals.

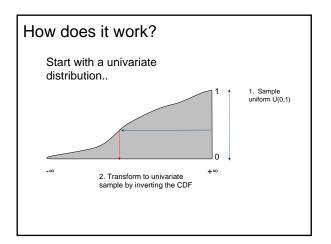
Copula – a definition

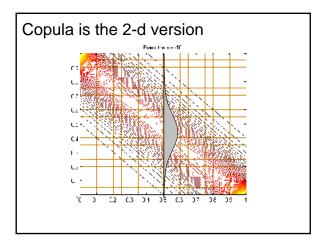
A function C: $[0,1]^2 \rightarrow [0,1]$ is a copula if:

- 1. C(0,v) = C(u,0) = 0
- 2. C(1,v) = v and C(u,1) = u all $(u,v)\epsilon[0,1]$
- 3. $C(u_2,v_2) C(u_1,v_2) C(u_2,v_1) + C(u_1,v_1) \ge 0$ all $(u_1,v_1),(u_2,v_2)\varepsilon[0,1]^2$ s.t. $u_1 \le u_2$ and $v_1 \le v_2$









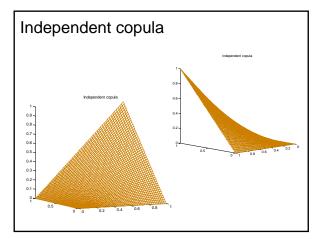
Some examples of Copulas

The independent copula:

C(u,v) = uv

- 1. C(0,v) = C(v,0) = 0
- 2. C(1,v) = v and C(u,1) = u
- $\begin{aligned} 3. \quad & C(u_2,v_2) C(u_1,v_2) C(u_2,v_1) + C(u_1,v_1) \\ & = u_2v_2 u_1v_2 u_2v_1 + u_1v_1 \end{aligned}$

 $= (u_2 - u_1)(v_2 - v_1) \ge 0$



The Gaussian copula
Copulas can be generated from known
multivariate distributions using Sklar's theorem:

$$C(u,v) = F_{XY}(F_X^{-1}(u), F_Y^{-1}(v))$$

$$C(F_X, F_Y) = F_{XY}(F_X^{-1}(F_X), F_Y^{-1}(F_Y)) = F_{XY}$$
e.g.

$$C(u,v) = \Phi^2(\Phi^{-1}(u), \Phi^{-1}(v))$$

.

The Gaussian copula

 \sim

.

Say we look at two variables:

- 1. Generate 100x2 normally distributed samples [x1 x2] = randn(100,2)
- 2. Apply a transformation to make them correlated

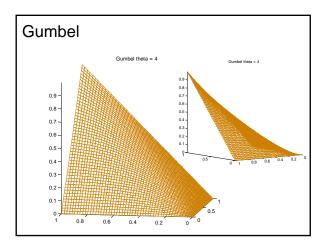
y1 = x1+x2*rho $y2 = x2*sqrt(1-rho^{2})$

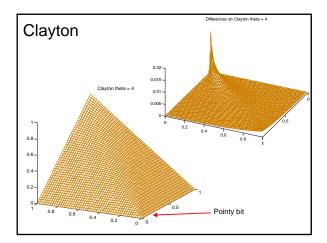
- 3. Take each column in turn and apply norm inv. U = Norminv(y1,0,1)
- 4. Treat these as samples from a cumulative dist with a Gaussian joining function.

Archimedean Copulas

- Copulas can also be generated directly by considering a formula.
- · A large class of such copulas are called archimedean copulas:
- Let $\phi:[0,1] \rightarrow [0, \infty]$ be strictly increasing and convex with $\varphi(0) = \infty$ and $\varphi(1) = 0$. Then $C(u,v) = \varphi^{-1}(\varphi(u) + \varphi(v))$

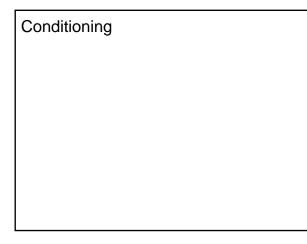
is a copula

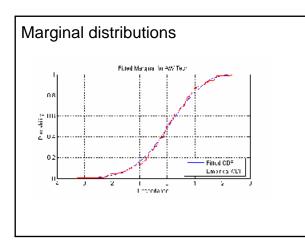




Skew elliptical distributions

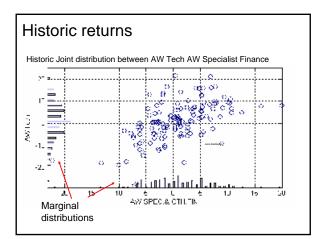
- Brand new.
- Normal (σ)
 Y = z* σ
- Skew Normal (α)
 SkewN = max(Y1,Y2)
- T distribution (v)
- TDist= z* σ *stretch
- Skew T
 - Y = SkewN*stretch

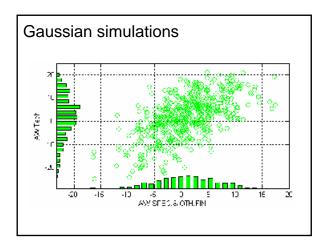


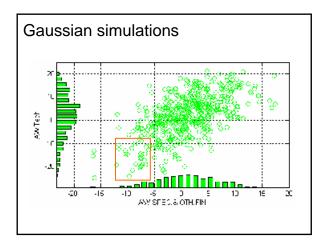


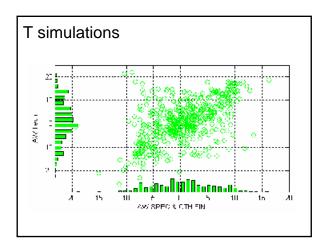
What copula to join marginals

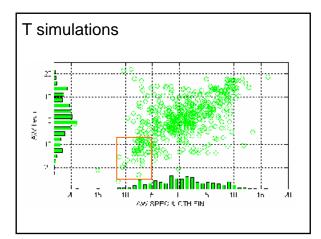
- There are a large number of known copulas how do we choose?
- Many copulas are impractical for large variables or conditioning
- Often the Gaussian is used for convenience and familiarity
- Personally prefer the T.

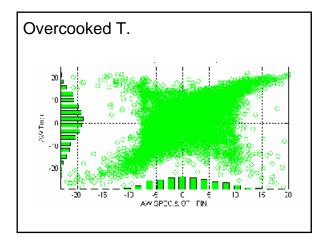






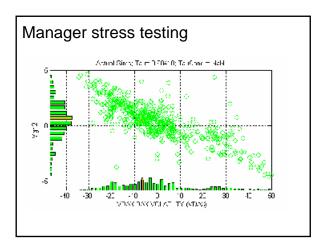


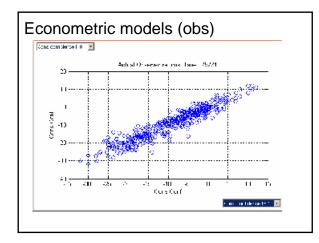


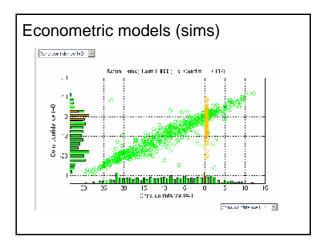


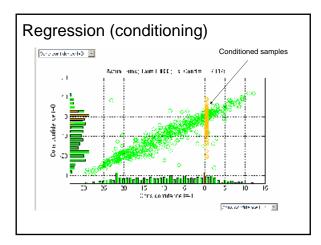
Uses of copulas in practice

- V@R analysis
- Creating multi-business line loss distributions
- Asset pricing, e.g. CDO's
- Often used to generate simulations for Monte-Carlo implementations







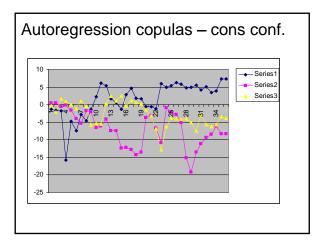


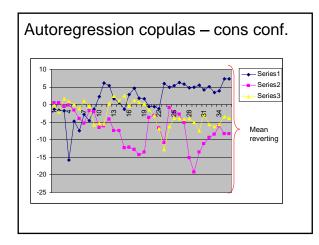
Comparison

- GLM (& neural networks)
 - Does it have to be a straight line?
 - Transformation loses transparency
 - Complex transformations lead to instability
 - Generalisation ability can be poor
 - Learning process can be slow

Time series modelling

- Feedback outputs into the input.
- Roll forward
- Condition on economic environment.
- · Like a transition matrix.





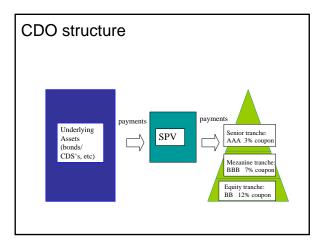
What next

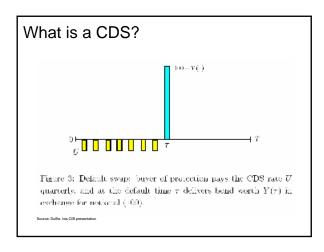
- Asymmetric copulas (clayton & adj. t)
- Bolting together different designs
 Segment input space
 - Different copulas on different relationships
- Discontinuous copulas
- More work on feedback
- Artificial intelligence

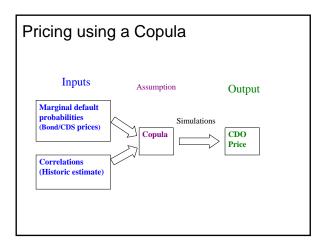
Parameterisation

- Gaussian & T copula
 Rho = sin(pi/2*Tau)
- Clayton
 Rho = 2*Tau/(1-Tau)
- Gumbel
 Rho = 1/(1-Tau)

CDOs and Copulas







Pricing using a Copula

- Generate correlated uniform random variables using Gaussian copula
- Use these to simulate random default times
- Use these to generate Monte Carlo estimate of payoffs

