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ABSTRACT 
 

This paper covers a number of different topics associated with dependency modelling 
within economic capital models. The scope is relatively wide in that we not only address 
such technical topics as spurious relationships and the different methods of risk 
aggregation including copulas, but also more general subjects such as how does one 
communicate the results of this modelling to the Board of directors of an insurance 
company. This is a difficult subject, not just because of the underlying mathematical 
methods employed, but more so from the perspective of setting robust and defensible 
model parameters.  
 
We have endeavoured throughout this paper to include as many numerical examples as 
possible to help in the understanding of the key points, including our discussion of model 
parameterisation and the communication to an insurance executive the impact of 
dependency on economic capital modelling results.    
 
The economic capital model can be seen as a combination of the two key components, 
the marginal risk distribution of each risk and the aggregation methodology which 
combines these into a single distribution or capital number. This paper is concerned with 
the aggregation part, the methods and assumptions employed and the issues arising, 
and not the topic of the marginal risk distributions which is equally important and 
complex. 
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Introduction 
 
This paper was sponsored for the UK Actuarial Profession’s Financial Insurance Risk 
Management (“FIRM”) conference of June 2009. However, it may be of interest to other 
actuarial practice areas such as Non-Life insurance and Life assurance given their day 
to day activities involving economic capital modelling, pricing, capital allocation and 
similar.    
 
This paper is relatively wide in its scope. We originally started off with a brief that had a 
large technical bias nudging towards the more complex areas of dependency modelling 
such as copulas, but as we progressed in our writing we found ourselves addressing 
more fundamental questions such as:  
• What do we mean by correlation 
• Are correlations stable over time and how do they vary 
• Are diversification benefits realistic  
• How often do we confuse spurious relationships for dependency 
• What do people mean when they talk about ‘tail correlation’ 
• How does one communicate to the Board the impact of dependency modelling on 

economic capital results 
 
Diversification modelling is an important topic. Diversification benefits can amount to 
around 40% of an insurance company’s undiversified total economic capital and for a 
company with a $1 billion undiversified capital, $400m is a lot of credit. It is therefore of 
great importance that this number is realistic and that any modelling underpinning the 
result is analytically robust and well documented. 
 
The words dependency and correlation have recently suffered a rather negative press in 
the wake of the current financial crisis within the banking industry. Typical comments in 
the press were along the lines of “it was the fault of the Gaussian copula – it doesn’t 
capture tail dependency” or “the correlations were underestimated” or even “Anything 
that relies on correlation is charlatanism” in respect of structured credit securities and 
similarly complex financial products.  Often a result of mathematical models undone by 
their weakest link: their assumptions or their statistical properties. In the case of the 
Gaussian copula such a weak link was the lack of tail dependency in Monte Carlo 
simulation studies.  
 
There is a clear need for a greater understanding of dependency and correlation and 
their limitations if we are to avoid a repeat of such an experience for the banking industry 
and the wider financial community.   
 
Even at the more basic level one’s perspective on dependency can dramatically change 
according to how information is presented. A scatter plot between two risks will be 
interpreted differently to two risks represented as historical time series data that provide 
information on any path dependency, which is effectively lost in the scatter plot. 
 
This paper is a practical one in that it not only illustrates the many concepts and ideas 
with numerical examples but also highlights many practical considerations in measuring, 
implementing and communicating the impact of correlations and dependency structures 
on economic capital results. 
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Executive Summary 
 
Before going into the detail of each of the six main sections it is useful to provide an 
overview of the topics discussed herein. 
 
1.  Why Diversification is Important 

 
This paper is about modelling dependencies in economic capital models. We start with 
defining economic capital along with the more recent regulatory developments occurring 
under Basel II, Solvency II and the UK’s current ICA regime. Each of these has greatly 
influenced the scope of the work currently undertaken by many insurance companies 
and groups worldwide in this area. Lastly, a brief introduction is given to the idea of 
dependency.            
 
2.  Different Measures of Dependency 
 
Section 2 discusses various models of dependency. Correlation and dependency are 
often used interchangeably and yet they mean quite distinctly different things. The 
concept of linear dependency is discussed together with the various correlation 
measures of linear correlation, Spearman correlation coefficient and Kendall Tau 
correlation. Correlation as a sole measure of dependency has deficiencies and therefore 
this section goes on to describe the idea of tail dependency and the evolution of 
mathematical modelling techniques such as copulas that address many of these 
weaknesses.  
 
Finally, copulas are discussed in detail starting with their mathematical properties and 
derivation before going on to describe some of the more popular copulas such as the 
Gaussian copula, t copula and the Archimedean copula family of the Gumbel copula and 
Clayton copula.           
 
3.  Risk Aggregation 
 
Risk aggregation is at the core of insurance company’s economic capital modelling 
efforts. Each of the main aggregation methods is discussed together with their 
advantages and disadvantages from the perspective of such considerations as model 
accuracy, methodology consistency and ease of communication. A more sophisticated 
modelling approach such as Monte Carlo simulation involving copulas is more flexible 
than the use of a variance-covariance matrix calculation, but comes at the expense of 
complexities caused by copula selection, parameterisation and an increase in 
communication issues.  
 
Finally the most sophisticated, intuitively appealing and potentially the most accurate of 
the options, namely structural modelling (dependency modelling with common risk 
drivers) raises other issues such as transparency, parameterisation, and the possible 
inducement of a false sense of accuracy. Our approach has been to be neutral on each 
method and present an objective description of the strengths and weaknesses.   
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4.  Model Parameterisation 
 
This is probably the hardest topic in economic capital modelling. We begin with the idea 
of spurious relationships. The key message is that it is very important that general 
reasoning and economic rationale are used in conjunction with any numerical 
assessment of data. Thereafter parameterisation is looked at from the perspective of the 
different risk aggregation methodologies. We have constructed some simple examples to 
estimate correlation coefficients from financial time series data that illustrate the 
sensitivity of the results to the time periods used to conduct such studies and the 
inherent difficulties of determining these correlations.  
 
Some other topics in this section include discussion of using higher than average 
correlation coefficients in a variance-covariance matrix calculation as a substitute for tail 
dependence, how to estimate the missing terms in a variance-covariance matrix, positive 
semi-definite matrices and methods to fit copulas to data.          
 
5.  Impact of Dependency Modelling on Economic Capital 
 
We have constructed a hypothetical insurance company, ABC Insurance Company, to 
illustrate a number of points related to the impact of dependency modelling on economic 
capital results. We show how the economic capital varies with the use of different 
copulas and parameters and how the results compare with the variance-covariance 
approach.  
 
Finally, we provide some numerical examples that complement our earlier discussion of 
the issues arising from the common use of higher than average correlations in a 
variance-covariance matrix approach.             
 
6.  Communication of Economic Capital Modelling Dependency Impacts 
 
This section covers the issues related to communication of the results, including 
questions such as how one explains to senior management what a copula is, what it 
does and how it impacts the company’s overall economic capital. 
 
We present a wide range of possible methods that could be potentially used, discussing 
their advantages and disadvantages.  The methods outlined may be of use in the 
determination of appropriate copulas and their parameters if similar calculations are 
made from empirical data.   
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1.  Why Diversification is Important 
 
1.1  Economic Capital 
 
A financial institution, be it an insurance company or a bank, faces a multitude of risks 
that could cause a financial loss. Economic capital is the amount of risk capital that is 
needed, assessed on a realistic basis, to cover the risks being run such as insurance 
risk, market risk, credit risk and operational risk. 
 
There are three main components of an economic capital calculation, (i) risk measure, 
(ii) probability threshold and (iii) time horizon. A company may do economic capital 
calculations according to an external criteria laid down by the regulators for regulatory 
capital purposes or other criteria e.g. to satisfy specific standards for maintaining an 
external rating level such as ‘AA’ as prescribed by a rating agency.       
 
Currently the most popular risk measure that is used in banking and insurance is Value 
at Risk (“VaR”). For example, under the UK’s Individual Capital Assessment (“ICA”) 
regime an insurance company needs to hold enough capital such that there is a 
probability of 99.5% of survival over a one-year time horizon, or in other words the 
probability of insolvency over 12-months is no more than 0.5%.  
 
However, not all risks the company is facing will suffer adverse losses at the same time. 
Some areas of business may experience adverse financial losses whilst others average 
losses, or profits. Another way of viewing this is that if one was looking at the overall 
economic capital for an insurance company at the 99.5% level then this would be less 
than the sum of the 99.5% individual capital amounts for each risk.  
 
The extent to which the aggregate 99.5% capital differs from a straight sum of the 99.5% 
individual capital amounts is a measure of the level of diversification between risks. The 
lower the degree of dependency between risks the greater the diversification benefit.  
 
In other words, the effect of diversification can be expressed as 1 - ECT / Σ ECi, where 
ECT is an aggregate economic capital total for an insurance company and ECi is an 
economic capital on a stand alone basis for each risk i.   
 
The extent of the level of diversification between risks varies from company to company 
but levels in the range of 25% - 50% are common. The recent CRO Forum QIS 4 
benchmarking study of 2008 suggested that diversification reduces economic capital by 
around 40% on average. 
 
1.2  Regulatory Developments 
 
The use of economic capital models is far greater today compared with a few years ago. 
One of the key drivers to their more regular use within financial institutions has been the 
evolution of legislation for insurance companies and banks. Two of the more influential 
pieces of legislation have been the developments arising under Basel II (Banking) and 
Solvency II (Insurance). 1    
 
                                               
1 It should be noted that the UK’s ICA regime, which came into effect 1/1/2005, could be viewed 
as a forerunner of the impending Solvency II legislation.  
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Basel II 
Basel II is the second of the Basel Accords issued by the Basel Committee on Banking 
Supervision. Its purpose being to create an international standard that banking 
regulators can use when creating regulations about how much capital banks need to 
hold against financial and operational risks. 
 
Basel II uses the three pillars approach, where the first pillar specifies a minimum capital 
amount, the second pillar is a supervisory review and the third pillar is a market 
discipline. From an economic capital modelling perspective the three major components 
of risk that are covered are credit risk, operational risk and market risk. Furthermore 
within each major risk there are different permissible approaches to the quantification of 
risk. 2  
 
Solvency II 
Solvency II is a risk-based approach to insurance company supervision based on a three 
pillar approach similar to the banking industry.  
 
The first pillar contains the quantitative requirements. Within this there are two separate 
capital requirements, the Solvency Capital Requirement (“SCR”) and the Minimum 
Capital Requirement (“MCR”). The SCR is a risk-based requirement and the key 
solvency control level. Solvency II sets out two possible methods for the calculation of 
the SCR, (i) European Standard Formula or (ii) Firms' own Internal Model, i.e. their 
Economic Capital models. The SCR will cover all the quantifiable risks an insurer or 
reinsurer faces and will take into account any risk mitigation techniques such as 
reinsurance.  

The second pillar contains qualitative requirements on undertakings such as risk 
management as well as supervisory activities. The third pillar covers supervisory 
reporting and disclosure. 3  

1.3  Internal Models within Solvency II 
 
The modelling of dependencies and the calculation of overall diversification benefits 
goes beyond a pure bottom line insurance company impact. Dependency modelling will 
be an integral and very important part of a Firm’s overall internal model.4  
 
An internal model needs to be seen, for model approval, to be instrumental in the 
decision making process of a company. Such decision making including (i) the allocation 
of capital by business unit, line of business or risk (ii) risk-based profitability, (iii) risk-
based performance targets, (iv) planning etc all aside from the regulatory capital 
calculations. Each of these activities being sensitive to the underlying dependency 
structure embedded in such internal models which might make all the difference to a 
company in deciding which is a good or bad decision in the long run.   

                                               
2 For example, under Credit Risk the options are (i) Standardised approach, (ii) Foundation IRB 
and (iii) Advanced IRB, where IRB stands for “Internal Rating-Based Approach”.   
3 Solvency II will also streamline the way that insurance groups are supervised and recognise the 
economic reality of how groups operate. Groups will be able to use group-wide models and take 
advantage of group diversification benefits.  
4 The internal model under Solvency II is a lot more than just an economic capital model that 
measures and quantifies risk. 
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1.4  Dependency Structures 
 
In simplistic terms risk modelling consist of two main components (i) marginal risk 
distribution for each risk and (ii) dependency structure that links these risk distributions.  
There are enough issues alone in estimating the form of the distribution and parameters 
for the marginal risk distributions before we even consider how they might be linked. The 
realistic measurement and modelling of dependencies is one of the most difficult aspects 
of economic capital modelling facing the insurance and banking industries today.  
 
An unrealistic model of a dependency structure could result in an unrealistic optimistic 
view of an enterprise, despite the fact that the individual capital components themselves 
may be quite reasonable.  
 
1.4.1  Dependencies in the real world 
 
Dependency may arise due to the impact of macroeconomic conditions on many risks. 
For example, inflation rates, interest rates, exchange rates and equity values are not 
only interrelated but they also influence both sides of the balance sheet.  
 
The impact of these risk factors on asset values is obvious e.g. interest rates on bond 
values or inflation on equity values, but there is also a direct link to the liabilities. The 
level of inflation rates will influence the loss payments for underwriting losses and 
reserve development whilst interest rates will directly impact discounted cash value 
calculations or act as a risk factor for variation in the underwriting cycle.        
 
Other dependencies are not related to macroeconomic causes but may be a function of 
the common exposures of an insurance company by line of business. For example, 
when a major event like a hurricane occurs, seemingly unrelated insurance lines of 
business covering property, casualty and life could all be affected.  
 
1.4.2  Dependency as a mathematical representation 
 
In a perfect world every single risk would be connected via a complex array of equations 
such that Risk A  Risk B1, Risk B2…   Risk C1, Risk C2  … etc. Such a structure is 
not attainable, and even if it were an accurate parameterisation would not be feasible.  
 
A statistical dependency between two risks is most often described by a single number, 
the correlation coefficient. But for many situations this one statistic is not sufficient to 
capture the range of possible relationships between risks and one needs information on 
the nature of the dependency structure.  The term dependency structure, rather than a 
simple correlation, is typically used where  correlations between risks are not uniform 
across the range of distribution outcomes. For example, the average outcomes for risks 
A and B may be 50%  correlation, while their extreme outcomes are almost perfectly 
dependent.  
 
In the real world then we have to make do with the tools available which involves 
measuring the observed risk correlations and then determining the parameters of the 
model structure that is being used to reflect such observations.   
 
Many of these themes will be explored in more detail in the following sections.  
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2.  Different Measures of Dependency    
 
2.1  What do we mean by dependency 
 
In everyday language a lot of us use the words “correlation” and “dependency” 
interchangeably. Quite often a correlation coefficient is used in every circumstance when 
we need to measure the strength of dependency between two random variables. In fact, 
it is very important to remember that correlation is just a special case of dependency. It 
quantifies a linear relationship between two random variables whilst dependency deals 
with any kind of relationship. 
 
Dependency between two random variables (e.g. risk factors) means that there is some 
link between them, i.e. information about one random variable tells you something about 
the value of the other random variable.  One extreme is perfect dependence; if you know 
the value of one random variable, you know exactly what the value of the other random 
variable is.  The other extreme is independence; the value of one random variable does 
not enable you to make any predictions about the value of the other random variable.  
 
Dependence between two random variables can be very strong, but such a relationship 
does not need to follow a linear pattern. Consider the simple example of two random 
variables A and B. Lets us assume that A is uniformly distributed on [0,1] and also that   
B = 1 / (1- A). Obviously, there is a strong dependency between them: if we know the 
value of A, then the value of B is also known. However, the linear correlation coefficient 
between these two random variables is very low. In fact based on a random sample of 
10,000 values, the linear correlation coefficient is only 0.07. The graph below illustrates 
the reason for this. When A takes a value close to 1, B becomes very large. Therefore, 
the pattern of the relationship between A and B is very non-linear when A is close to 1.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
One of the reasons for the popularity of correlation in finance is that it is used in 
variance-covariance matrices as part of Modern Portfolio Theory, which is based on the 
normal (or more correctly, elliptical) distribution. However, in reality, a lot of financial 
risks that are dealt with in economic capital modelling and other actuarial work are not 
adequately described by the normal distribution [1], or indeed by an elliptical distribution. 
Many of these risks exhibit asymmetry and ‘fatter’ tails than described by the normal 
distribution, especially in non-life insurance, and so relying solely on correlation as a 
measure of dependency between risks can be very misleading. 
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Moreover, by definition, correlation is a constant scalar coefficient. As the market 
experience over the last year has shown, the dependency structure between random 
variables can change dramatically with the value of the underlying variables themselves. 
In stressed market conditions, the implied correlations between various assets classes 
turned out to be significantly higher than have been observed historically. 
 
Embrechts and others [2] provide the following good summary of the deficiencies of 
using correlation solely as a measure of dependency: 
 

D1. Correlation is simply a scalar measure of dependency. It cannot tell us 
everything we would like to know about the dependency structure of risks. 
 

D2. Possible values of correlation depend on the marginal distribution of the risks. 
All values between -1 and 1 are not necessarily attainable. This means, a 
model might be impossible to calibrate to certain correlation values. 
 

D3. Perfectly positively dependent risks do not necessarily have a correlation of 1. 
Perfectly negatively dependent risks do not necessarily have a correlation of -1. 
 

D4. A correlation of zero does not imply independence between risks. 
 

D5. Correlation is not invariant under monotonic transformations. For example, 
log(X) and log(Y) generally do not have the same correlation as X and Y. 
 

D6. Correlation is only defined when the variances of the risks are finite. It is not an 
appropriate dependency measure for very heavy-tailed risks where variances 
appear infinite. 

 
The following sections 2.2 to 2.4 describe the different types of correlation. 
 
2.2  Linear Correlation Coefficient 
 
We begin with by considering a pair of random variables X, Y with finite variances. 
 
2.2.1  Definition 1 
 
The linear correlation coefficient between X and Y is: 
 

)()(
],[),(
YVarXVar

YXCovYXL =ρ , where ][][][],[ YEXEXYEYXCov −=  

 
If we have a sample of n observations xi  and yi  where i = 1, 2, ..., n, then the sample 
correlation coefficient, also know as Pearson product-moment correlation coefficient 
can be used to estimate the correlation between X and Y:  
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Linear correlation has the following important properties: 
• The correlation is 1 in the case of an increasing linear relationship, −1 in the case of 

a decreasing linear relationship, and some value in between in all other cases. The 
closer the coefficient is to either −1 or 1, the stronger the correlation between the 
variables. 1],[ =YXLρ  if and only if there exist a, b≠0 such that Y = a + bX 

• If the variables are independent then the correlation is 0, but the converse is not true 
because the correlation coefficient detects only linear dependencies between two 
variables. Suppose the random variable X is uniformly distributed on the interval from 
−1 to 1, and Y = X2. Then Y is completely determined by X, so that X and Y are 
dependent, but their correlation is zero; they are uncorrelated.  

• However, in the special case when X and Y are jointly normally distributed, zero 
correlation is equivalent to independence. 

• Linear correlation is invariant under a linear transformation : 
],[)(],[ 212211 YXbbsignYbaXba LL ρρ ×=++  for all real a1, a2 and b1, b2 ≠ 0 

• Linear correlation is not invariant under an arbitrary non-linear monotonic 
transformation T : ],[)](),([ YXYTXT LL ρρ ≠  
 

The last observation is a serious weakness of the linear correlation. By applying a non-
linear monotonic transformation T to two variables X and Y we are only rescaling the 
marginal risk distributions, not changing the dependency structure between the 
underlying random variables, and yet the correlation between them does change. 
 
The generalisation of correlation to the n-dimensional case is straightforward.  
 
2.2.2  Definition 2  
 
Consider vectors of random variables X = t

nXX ),...,( 1  and Y = t
nYY ),...,( 1 .  

Then given pairwise covariances Cov[X,Y] and correlations ),( YXρ for an n×n 
correlation matrix we define: 

],,[],[ jiij YXCovYXCov =  

],,[],[ jiij YXYX ρρ =  for nji ≤≤ ,1  
 
Such nxn matrices have to be symmetric and Positive Semi-Definite (“PSD”) (See 
Appendix 1 for a definition of PSD). 
 
Rank correlation is an alternative to the use of linear correlation as a measure of 
dependency. The two most common types of rank correlation are (i) Spearman 
coefficient and (ii) Kendall Tau correlation. Both of them are commonly used. 
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2.3  Spearman coefficient  
 
Definition 3  
 
Spearman Coefficient is: )](),([],[ YFXFYX YXS ρρ =   
where:  FX(X) and FY(Y) are cumulative density functions of X and Y, i.e. their ranks. 
 
In practice, a simple procedure is normally used to calculate Sρ . If we are given two 
vectors X=(X1, …, Xn) and Y=(Y1, …, Yn) that represent observations of the random 
variables X and Y, then Sρ  between X and Y is simply a linear correlation between the 
vectors of ranks of Xi and Yi.  
 
Rank correlation, and this refers to both Spearman Coefficient and Kendall Tau (See the 
next section), does not have the limitations of conditions D1, D3, D5 and D6.  
 
The following property holds for rank correlation: ],[)](),([ YXYTXT rankrank ρρ =  for any 
non-linear monotonic transformation T. Rank correlation assesses how well an arbitrary 
monotonic function could describe the relationship between two variables without 
making any assumptions about the underlying distribution frequencies of these 
variables. So we only need to know the ordering of the sample for each variable, not the 
actual values themselves. Therefore, rank correlation does not depend on marginal 
distributions of both variables. For this reason it can be used to calibrate copulas from 
empirical data. 
 
Having said this, the limitations identified in D1 and D4 still hold. It is possible to 
construct examples of random variables which are highly dependent on each other but 
have either a low or zero rank correlation coefficient. 
 
2.4  Kendall Tau correlation 
 
The Kendall Tau correlation measures dependency as the tendency of two variables, X 
and Y, to move in the same (opposite) direction. Let (Xi,,,Yi) and (Xj ,Yj) be a pair of 
observations of X and Y.  

If (Xj - Xi) and (Yj - Yi) have the same sign, then we say that the pair is concordant, if they 
have opposite signs, then we say that the pair is discordant. The following graphs 
illustrate concordant and discordant pairs in the (x,y)-plane: 

         Concordant pair:               Discordant pair: 
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Definition 4  
 
Suppose, we have a sample of n pairs of observations. Let C stand for the number of 
concordant pairs and D stand for the number of discordant pairs. A simple intuitive way 
to measure the strength of a relationship is to compute S=C-D, a quantity known as 
Kendall S.  
The normalised value of S, namely 

)1(
2
1

−
=

nn

Sτ   

is known as the Kendall Tau correlation coefficient, or Kendall tau. 
 
This measure has a simple intuitive meaning. For example, in a sample with 3/1=τ  
then 2 sets of observations (Xi,,,Yi) and (Xj ,Yj) are twice as more likely to be concordant 
than discordant. 
 
The same comments that we made about the correlation properties at the end of section 
2.3 also hold here. 
 
In section 2.5 we demonstrate the differences in the values arising from use of these 
different measures of correlation in the case of a simple example involving 10 joint data 
observations for two risks A and B.  
 
2.5  Numerical Example 
 
Let us consider the table with 10 joint observations from the two risk factors A and B: 
 
Observations Risk A Risk B Risk A Rank Risk BRank
Observation 1 0.5 0.2 5 1
Observation 2 0.6 0.9 6 8
Observation 3 0.4 0.6 4 5
Observation 4 0.8 0.3 8 2
Observation 5 0.3 0.4 3 3
Observation 6 0.2 0.7 2 6
Observation 7 0.9 0.5 9 4
Observation 8 0.7 0.9 7 8
Observation 9 0.1 1 1 10
Observation 10 100 0.8 10 7

Linear Correlation 0.21
Spearman Correlation -0.19
Kendall’s Tau -0.16
Concordant pairs 19
Discordant pairs 26  
 
The Linear correlation coefficient is equal to 0.21 whereas the Spearman correlation is 
equal to -0.19. This latter calculation involving the correlation of the ranks between the 
two risks (which are listed in the last two columns of the table).  We note that the 
Spearman correlation is very different from the linear correlation. This is because the 
linear correlation is affected by one outlier (the last observation). 
 
Kendall’s Tau is equal to -0.16 and is calculated as (19-26)/45. We note that it is close to 
the Spearman correlation, as they are both rank correlations and therefore are not 
affected by the large outlier value of Observation 10. 
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2.6  Tail Dependency   
 
The overriding deficiency of all the correlation measures that we have described so far, 
namely linear and rank correlation is that they are only scalar measures of dependency 
and do not allow us to model how dependency changes with economic circumstances 
(limitation D1 in section 2.1). 
 
For example, they do not allow us to model dependency between risks conditional on 
the underlying values of the risks themselves, which is often a feature of actual events 
be it the recent financial crisis or natural disasters such as earthquakes or hurricanes 
where the observed dependency between risks tends to increase in the event of such 
scenarios.  
 
A feature of tail dependency is that one extreme event or series of events will trigger 
risks that are normally assumed to be independent or otherwise have low correlation.  
Turning to the insurance industry it is recognised that very large events can trigger 
multiple lines of business. The 9/11 World Trade Centre attack is a prime example of this 
where large insurance loss amounts were seen in property, business interruption, 
marine, workers compensation and life insurance lines of business. However, this was 
not the not the end of the losses as the consequences included falling asset values on 
insurer’s balance sheets.  
 
The recent financial crisis, or ‘credit crunch’ as it is colloquially known has had noticeable 
impacts within the financial markets. An otherwise pattern of observed relatively low 
levels of dependency between various financial asset classes, such as equities, fixed 
income, credit risk and foreign exchange rates being replaced by severe losses 
occurring at the same time separately within each.  Dependency empirically observed in 
the market at a time of extremely bad economic conditions (tail dependence) tends to 
differ structurally from the dependency levels observed in ‘normal’ market 
circumstances.  
 
For example, see the following graph showing annual returns of two stock market 
indices: S&P500 and Nikkei 225 in each month for the last 40 years. 
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We can see from the previous graph that in benign markets, when the values of the two 
indices are highly positive, the correlation between them is relatively weak (the points on 
the RHS are quite widely spread). But in adverse conditions, when the returns are highly 
negative, the correlation is relatively larger (the points on the LHS form much more of a 
concentrated pattern). In fact, the linear correlation coefficient calculated for all months 
when the S&P500 return was negative was 0.9, whereas the linear correlation coefficient 
calculated for all months when the S&P500 return was positive was 0.4. 
 
The challenge of a good economic capital model is to capture the main features of 
complex and unpredictable relationships between multiple real world risks with relatively 
simple mathematical structures. Any differences between the model and reality being 
accentuated in times of stress.     
 
Given the complex realities of the real world there are in effect three modelling choices: 
• Use of correlation matrices together with the variance-covariance approach to capital 

aggregation. 
• Use of copulas (see 2.7) 
• Structural models where common risk drivers, e.g. inflation, are simulated with the 

joint distribution structure of risks being determined by the underlying mathematical 
relationships that exist between the risks. 

 
These different methods are discussed in more detail in section 3. 
 
2.7  What is a Copula 
 
Let us start by considering two random variables X and Y. A range of outcomes for each 
on a stand alone basis can be represented by a marginal risk distribution (“MRD”), given 
by its two-dimensional Probability Density Function (“PDF”) or Cumulative Density 
Function (“CDF”).   
 
In addition we might happen to know the distribution law which describes the joint 
distribution of any pair of values (X,Y), i.e. the three-dimensional surface. Visually one 
can think of loss amounts on the x-axis and y-axis for X and Y respectively with the z-
axis representing the value of either the joint PDF or CDF.  
 
If the joint distribution is known, it gives us the best possible information about the 
behaviour of both variables in aggregate. However, in practice, if we have a large 
number of risk variables, such as equity, fixed interest, property, non-life underwriting 
risk, non-life reserving risk etc. it is very difficult to specify a multivariate joint distribution 
between all risks. 
 
One way of dealing with this difficulty is to split the problem into two parts:  
• The first part which describes the individual behaviour of each risk in isolation, i.e. 

the stand alone marginal risk distribution and  
• The second part (which in itself is a distribution function) the dependency structure 

between the risk variables. This second part is where the copula comes in. 
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Advantages of Copulas: 
• Copulas use is consistent with a typical actuarial and financial risk modelling process 

whereby marginal risk distributions for each risk are first determined and then one 
considers separately the aggregation process.      

• There are a range of different copulas that can be used, each varying in their 
mathematical properties. 

• Copulas are very flexible in that one can combine a varied number of marginal risk 
distributions together with a varying number of copula distributions. Various types of 
copulas can be selected depending on one’s views on such characteristics of a 
dependency structure as skewness, kurtosis and tail dependence. 

• Even for a selected copula type, there is a wide range of dependency structures that 
are possible from the use of different copula parameters. 

• If one chooses to have a simple model for dependency (e.g. correlation matrix) 
combined with asymmetric heavy-tailed distributions, this can be done using a 
Gaussian copula with non-Gaussian MRDs. 

• Copulas can more accurately reflect the dependency structure between risks than 
correlation coefficients can. They avoid the deficiencies of correlations described in 
section 2.1, in particular, using a suitable copula allows the modelling of a non-zero 
tail dependency. 

• Copulas allow us to express dependencies in terms of quantities of loss distributions. 
A multivariate loss function constructed using a copula allows the estimation of 
losses at any given percentile level. 

• Most types of copulas are easily simulated using Monte-Carlo methods. 
• Copulas are gaining greater recognition as best practice by the various international 

actuarial and supervisory organisations, which should help in the internal model 
approval process. 

 
Disadvantages of Copulas: 
• There is usually not enough data to perform a credible calibration of a copula, 

especially in the tail. By definition the extreme joint loss events from various risks 
that one is trying to reflect in the modelling process are sparse in historical data. 

• Any economic capital model becomes more of a ‘Black Box’. There is often a lack of 
transparency in the modelling process. The model is harder to understand and check 
by a non-mathematician. 

Individual marginal 
risk distributions 

…joined together by 
a copula….

…into a multivariate 
joint distribution.

  

Copula

MRD1 

MRD3 

MRD2 

MRD1   

MRD3   

MRD2   
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• Communication both internally and externally becomes more of an issue when 
dealing with non-technical people. This should not be underestimated given the 
advent of Solvency II and the Pillar III disclosure requirements. 

• Copulas are essentially static models and a more realistic way of modelling 
dependency through time would be through use of stochastic process or time series 
models. 

 
2.8  Copula Mathematics 
 
2.8.1  Definition 5 
 
An n-dimensional copula is a multivariate joint distribution on [0, 1]n such that each 
marginal distribution is uniform on [0, 1], i.e. copula C is a distribution function P(U1≤u1, 
…, Ud≤ud) of a random vector (U1, …, Ud) such that for every k P(Uk≤u)=u for each 

]1,0[∈u  
 
More specifically, 

[ ] [ ]1,01,0: →nC  is a copula if: 

• ( ) 0=uC  when u  has at least one 0 component 

• ( ) iuuC =  when ( )1,...1,,1,...,1 iuu =  

• ( )uC  is n-increasing, for example for n=2: 
For any ),( 21 aa  and ),( 21 bb  such that kk ba ≤ : 

0),(),(),(),( 21212121 ≥+−− aaFabFbaFbbF  
 
Sklar’s Theorem is fundamental to the use and application of copulas. 
 
2.8.2  Sklar’s Theorem 
 
If ),...,( 1 nxxF  is a joint distribution function with marginal risk distributions 

)(),...,( 11 nn xFxF  then there exists a copula C  such that for every nRx ∈  
))(),...,((),...,( 111 nnn xFxFCxxF = . Moreover, if )(),...,( 11 nn xFxF  are continuous, then C  

is unique. 
 
This theorem means provides the mathematical framework that allows the copula to 
aggregate the individual marginal risk distributions to derive a joint distribution. 
 
Furthermore: 
 
If C  is a copula for ),...,( 1 nXX  then for every set of strictly increasing transformations 

nTT ,...,1  C  is also a copula for ))(),...,(( 1 nXXT . 
 
This means that a copula of a random vector with continuous marginal distribution 
functions is invariant under strictly increasing transformations of the components of the 
random vector. We note that this property is similar to the rank correlation properties. 
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2.9  Different types of Copula and Copula selection 
 
 An important distinguishing characteristic of different copulas is their behaviour in the 
tail. Therefore, we first define more rigorously what we mean by tail dependence. 

 
2.9.1  Definition 6  
 
Let ),( YX  be a 2-dimensional random vector with marginal distribution functions XF  
and YF .  
 
The Coefficient of Upper Tail Dependence of ),( YX  is defined as follows: 

))()((lim),( 11

1
uFXuFYPYX XYuU

−−

↑
>>=λ , provided that the limit [ ]1,0∈Uλ  exists. 

The Coefficient of Lower Tail Dependence of ),( YX  is defined as follows: 

))()((lim),( 11

0
uFXuFYPYX XYuL

−−

↓
≤≤=λ , provided that the limit [ ]1,0∈Lλ  exists. 

For example, if (X,Y) is a 2-dimensional random vector with the copula C  then it can be 
shown that: 

⎟
⎠
⎞

⎜
⎝
⎛

−
+−

=
↑ u

uuCuYX
uU 1

),(21lim),(
1

λ , provided that the limit exists, and 

⎟
⎠
⎞

⎜
⎝
⎛=

↓ u
uuCYX

uL
),(lim),(

0
λ , provided that the limit exists. 

 
2.9.2  Gaussian copula 
 
The Gaussian copula is the copula of the d-dimensional normal distribution with linear 
correlation matrix R . It is given by the following formula: 

( ))(),...,()( 1
1

1
d

d
RR uuuC −− ΦΦΦ= , where d

RΦ  denotes the d-dimensional standard 
normal distribution function with linear correlation matrix R, and 1−Φ  denotes the 
inverse of the standard normal distribution function. 
 
The Gaussian copula’s tail dependencies are zero, i.e. λU = λL= 0. This limitation means 
that the Gaussian copula is not suitable for modelling dependency with heavy tails. 
 
The graphs below show simulations from a 2-dimensional Gaussian copula, (i) the first 
graph shows results based on a Gaussian copula with a correlation rho = 0.2, and (ii) the 
second graph one with correlation rho = 0.8. Clearly, the points on the second graph are 
closer to the straight line.  
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The correlation matrix R which is a key input to the Gaussian copula needs: 
• To be symmetric with unity diagonal elements 
• All of its pairwise values to be between -1 and 1 
• To be Positive Semi-Definite (“PSD”) (see Appendix 1). 
 
2.9.3  t copula 
 
The t copula is constructed from the multivariate t distribution in much the same way as 
the Gaussian copula is derived from the multivariate normal distribution.  
 
Some of its properties are similar to the Gaussian copula, but there are differences: 
• Similarly to the Gaussian copula the t-copula is an elliptical (“bell shaped”) function. 

This makes it mathematically tractable. The t copula is easily extended to the 
multidimensional case, unlike some other copulas which are limited to two risks only.  

• The t copula can be easily simulated just like the Gaussian copula. 
• The t copula has non-zero tail dependency coefficients. This is very important, 

because it allows us to model positive tail dependency between risks.  
• Like the Gaussian copula, it requires a correlation matrix R as a parameter input. 
• However, in addition it also requires a degrees-of-freedom (“df”) parameter. The df 

parameter determines the strength of the tail dependency, the lower the value of df 
the greater the tail dependency. 

• The t copula is symmetrical and its left and right tail dependencies are equal. This is 
not the perfect solution given that economic capital modelling is predominantly 
concerned with only one side of the distribution. 

• A limitation of the t copula when modelling more than two risks is that aside from the 
pairwise correlation coefficient themselves there is only one variable, the df that 
controls the tail dependency structure. This means that all pairs of risk have the 
same tail dependency, which is clearly not realistic. This limitation can be overcome 
by the generalisation of a t-copula commonly known as the IT copula. For details see 
Ventor et al [3]. 

• The bivariate t copula with n degrees of freedom and correlation ρ  has the following 

tail dependence coefficients: ( ))1()1)(1(),(),( 1 ρρλλ +−+== + nSYXYX nUL  
where 1+nS  is the t-distribution survival function Pr(X>x) with n+1 degrees of 
freedom.  

 
The graphs below show simulation results for a bi-variate t copula with (i) correlation 
rho=0.5 and df=20 and (ii) correlation rho = 0.5 and df =2. It can be seen from the 
second graph that the copula with df =2 has a higher tail dependence. 
 
 
 
 
 
 
 
 
 
 
 

 10,000 samples from t-copula, rho=0.5, df=20

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10,000 samples from t-copula, rho=0.5, df=2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1



 21

2.9.4  Archimedean copulas  
 
Another family of copulas frequently used in actuarial modelling, in particular in non-life 
insurance, is the Archimedean family. The most common types of copulas from this 
family are the Gumbel and Clayton bi-variate copulas.  
 
The specific feature of the Archimedean copulas is the ability to model particularly heavy 
tail dependence. Unlike the t copulas, the Archimedean copulas are asymmetric. They 
allow the modelling of dependency structures where tail dependency only exists on one 
side of the distribution, i.e. either upper or lower tail dependence.  
 
Unlike the Gaussian and t copulas, they are not derived from multivariate distribution 
functions using Sklar’s theorem. 
 
Another distinguishing feature of the Archimedean copulas compared to the Gaussian 
copula and the t copula is that they do not require a correlation matrix R as an input. 
Instead, they include a parameter which controls the tail dependency between two risks. 
 
2.9.5  Gumbel copula 
 
The Gumbel family of copulas is given by the formula: 

( ) ( )[ ]( )θθθ
θ

1

2121 lnlnexp),( uuuuC −+−−= , for 1≥θ . By substituting this expression 
into the formula for the coefficient of tail dependence we get: 

θλ 122 −=U  and 0=Lλ . 
 
The graphs below show simulations from a 2-dimensional Gumbel copula with the 
parameters (i) theta=2 and (ii) theta=4. It is clear from the second graph that the 
copula with theta=4 has a higher tail dependence.  
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2.9.6  Clayton copula 
 
The Clayton family of copulas is given by the formula:  

( ) θθθ
θ

/1

1121 1),(
−−− −+= uuuuC , for 0>θ . Then 

θλ 12−=L  and 0=Uλ . 
 
The graphs below show simulations from a 2-dimensional Clayton copula with the 
parameters (i) theta=2 and (ii) theta=10. It is clear from the second graph that the 
copula with theta=10 has a higher tail dependence.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2.9.7  Copula Selection 
 
At the moment, the most commonly used copula in economic capital modelling is the 
Gaussian copula. It is relatively easy to understand, mathematically tractable and can be 
programmed easily to generate simulated output within an economic capital model. A 
limitation is that it does not induce tail dependency for extreme losses.  

A natural progression on from the Gaussian copula is to consider the use of other 
copulas such as the t copula, or those from the Archimedean copula family such as the 
Gumbel, Clayton and Frank copulas.  

In economic capital modelling we are of the opinion that the most obvious copula to 
investigate beyond the use of the Gaussian copula is the t copula (and later its extension 
the IT Copula). Even with the use of the t copula there still remains the issue of 
determining both the (i) correlation matrix and (ii) tail dependency parameter so as to 
produce results that give the requisite tail dependency at high loss percentiles.  

The question of the ‘correct’ level of tail dependency is beyond the scope of this paper.  
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3.  Risk Aggregation 
 
3.1  Risk Aggregation Framework  
 
A prima facie reason for the consideration of different dependency modelling structures 
is risk aggregation in computing overall economic capital levels for insurance companies 
and banks. Typically economic capital is calculated by first of all assessing the individual 
risk components and then considering possible techniques to aggregate these 
components to derive an overall capital number. This approach is a feature of the first 
four methods that we discuss in sections 3.3 to 3.7. 
 
3.2  Risk Aggregation Methodologies    
 
Insurance companies and banks differ in their approaches to risk aggregation, some 
techniques being more sophisticated than others. The following is a list of different 
methodologies in increasing order of complexity: 
• Simple Summation (no allowance for diversification benefits) 
• Fixed Diversification percentage 
• Variance-covariance matrix 
• Copulas 
• Structural modelling, i.e using common risk drivers 5. This method is often used in 

combination with the above methods, such as variance-covariance matrix or copulas. 
 
There are various trade-offs to consider with each method: 
• Model accuracy such as the ability to model heavy tailed risks 
• Methodology consistency 
• Numeric accuracy and availability of data to perform a realistic calibration 
• Intuitiveness and ease of communication 
• Flexibility 
• Resources 
 
Each of these will now be discussed in turn, starting with a description and discussion of 
each and then listing their advantages and disadvantages. 
 
3.3  Simple Summation    
 
This involves adding together the stand alone marginal risk capital amounts. It ignores 
potential diversification benefits and produces an upper bound for the economic capital 
number. Mathematically this is equivalent to assuming a perfect dependency between 
risks, e.g. 100% correlation. 
 
Advantages: 
• No data is required to calibrate the model correlations 
• Computational simplicity  
• Ease of communication of method and results 
• It is deemed to be conservative 

                                               
5 The word Structural modelling is being used to describe the process where underlying common 
risk drivers are identified and their interactions modelled. Their impacts on risks dependent on the 
underlying mathematical relationships that exist between risks and their common risk drivers. 
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Disadvantages: 
• This method overestimates the amount of required capital, and therefore incurs a 

cost of holding extra capital 
• Does not allow for meaningful interactions between risks 
 
3.4  Fixed Diversification percentage    
 
This method is very similar to the straight summation as described in 3.3 above, 
however it assumes a fixed percentage deduction from the overall capital figure. 
 
Advantages: 
• Data simplicity  
• Computational simplicity  
• Ease of communication of method and results 
• Recognition of diversification effects 
 
Disadvantages: 
• A crude method, but allows for some diversification benefit to reduce the capital 
• Does not allow for meaningful interactions between risks 
• Fixed diversification is not sensitive to changes in underlying risk exposures  
• Does not capture non-linearities 
 
3.5  Variance-covariance matrix    
 
This method allows for a fuller pattern of risk interactions with the assumption of differing 
pairwise correlations between risks. The overall level of diversification between risks is 
dependent on the levels of these correlations.  
 
Within this approach there are various considerations.   
 
3.5.1  Risk Dimensions – Economic Nature vs Organisational 
 
Many financial institutions, in particular large insurance groups, consist of various 
subsidiaries, business units (“BU”) or similar organisations. When faced with this 
situation there are two important dimensions of risk classification: 
• Economic nature of the risk – insurance, market, credit, operational risk etc. 
• Organisational structure – business lines or legal entities 
 
The economic nature of the risk considers aggregating risks into silos by risk-type across 
the whole group e.g. equity risk by consideration of the aggregate risk at a group 
balance sheet level. By contrast the organisational risk grouping would consider 
organisation silos before the aggregation to a group capital total. This approach deals 
with inter-risk relationships earlier on in the process and takes advantage of known 
corporate structures. An organisational classification presents far less difficulty than a 
classification by risk where definitions of risk may be imprecise across different 
organisations.  
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A third approach features aspects of both and operates at a lower level of risk 
granularity. In this situation the unit of risk that is worked with is of the form “Organisation 
/ Risk” e.g. UK / Equity, France / Fixed Interest etc, the aggregation process thereafter 
working from this base level.  
 
However, whereas at face value this would seem to be conceptually a more accurate 
approach there are other issues to consider like the smaller volumes of data at this finer 
level of granularity and the difficulties of estimating cross-terms in the enlarged 
correlation matrix. For example what would be the correlation coefficient between “UK / 
Equity” and “France / Fixed Interest” given the most likely scenario that correlation 
assumptions would only have been determined between the Equity and Fixed Interest 
risks within each business units such as the UK or France.  
 
Section 4.7 discusses the issues arising in trying to determine these cross-terms.       
 
3.5.2  Risk Granularity 
 
The finer the level of risk classification (i.e. a more granular subdivision of risk) within a 
variance-covariance matrix, the lower the intra-risk diversification (i.e. diversification 
within a risk category) and the greater the inter-risk diversification (i.e. the diversification 
between risk categories).   
 
A simple example of this would be in considering non-life insurance risk where one could 
envisage either (i) just one risk category for non-life insurance risk say in a variance-
covariance matrix with other non-insurance related risks or (ii) non-life insurance risk 
split further into broader groupings by line of business of Property, Casualty and Other 
insurance risks together with the same non-insurance related risks. All other things being 
equal scenario (i) would result in greater intra-risk diversification but lower inter-risk 
diversification than scenario (ii).   
 
Differences in approaches will generally lead to differences in the economic capital 
number given the complexity of re-working all of the various risk dependency 
relationships.  
 
3.5.3  Subdivisions of the variance-covariance matrix   
 
Sometimes the economic capital calculation will feature a series of “nested” variance-
covariance matrices. A topical example of this is the current method used within the 
standard formula approach to the Solvency II Solvency Capital requirement (“SCR”) as 
detailed in the Solvency II QIS 4 Technical Specification [4].  
 
Table 1 details the correlation matrix that is used to aggregate the individual capital 
amounts for each of the five main risk categories to derive the Basic SCR. Market Risk 
capital (“SCR Market”) is one of the major risk capital categories within this process.  
 
Table 2 shows the “nested” Market Risk correlation matrix, i.e. the matrix that is used to 
aggregate the individual capital amounts in respect of different types of market risk e.g. 
interest rates, equities etc to derive an overall Market Risk capital number for use in 
Table 1.     
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Table 1 
SCR Market SCR Default SCR Life SCR Health SCR Non-Life

SCR Market 100% 25% 25% 25% 25%
SCR Default 25% 100% 25% 25% 50%
SCR Life 25% 25% 100% 25% 0%
SCR Health 25% 25% 25% 100% 25%
SCR Non-Life 25% 50% 0% 25% 100%  
 
Table 2 

Mkt Interest Mkt Equity Mkt Property Mkt Spread Mkt Concentration Mkt Currency
Mkt Interest 100% 0% 50% 25% 0% 25%
Mkt Equity 0% 100% 75% 25% 0% 25%
Mkt Property 50% 75% 100% 25% 0% 25%
Mkt Spread 25% 25% 25% 100% 0% 25%
Mkt Concentration 0% 0% 0% 0% 100% 0%
Mkt Currency 25% 25% 25% 25% 0% 100%  
 
It is a common practice for many life insurance companies to aggregate individual stress 
tests results by using the variance-covariance matrix approach. Some non-life insurance 
companies 6 use this approach as well. However, more and more companies (at the 
moment mostly in the non-life area, although with life offices also gradually moving in the 
same direction) use more sophisticated mathematical models involving copulas and 
structural modelling.  
 
Advantages: 
• More accurate calculation than the previous two methods  
• Relatively simple, intuitive and transparent 
• Facilitates a consensus of typical correlations for use by companies  
• The use of a cascade of correlation matrices permits the easy addition of further 

risks, from a new business unit, subsidiary or risk category    
• Correlation is the only form of dependency that a lot of non-specialists are familiar 

with. This makes communication easier than some of the more sophisticated 
methods described in sections 3.6 and 3.7.  

 
Disadvantages: 
• Risks where we have empirical evidence of correlations (mainly reliable market data) 

are very few and so there is a heavy reliance on a subjective ’expert opinion’ to 
determine correlations. 

• The variance-covariance matrix approach implies that the underlying risks are 
normally (or elliptically) distributed 

• Underestimates the effects of skewed distributions and does not allow for potential 
heavier dependency in the tail 

• The value of correlations is sensitive to the underlying marginal risk distributions 
• A correlation matrix has to satisfy certain conditions (e.g. be PSD). These are often 

ignored in practice 
• All cause-effect structures cannot be properly modelled 
• Does not capture non-linearities 
 
 

                                               
6 The word insurance company has been used in a generic sense to also mean Lloyd’s 
syndicates, reinsurers and similar insurance enterprises.  
8 For the variable X at time t, Xt an AR(n) model is of the form Xt = a + Σn bi Xt-i+ σ.εt where the εt  
are i.i.d. unit normal random variables. n = 2 or 3 are common models of the underwriting cycle. 



 27

3.6  Copulas    
 
As described in section 2.7 the copula is a function that combines the marginal risk 
distributions to form a joint risk distribution. The advantages and disadvantages of 
copulas have been described in some detail in section 2.7. The list below briefly 
summarises the main points given the overall objectives we had set out in section 3.1. 
 
Advantages: 
• This method is more flexible than the use of a variance-covariance matrix 
• There are a range of different copulas that can be used, each varying in their 

mathematical properties e.g. the symmetry, strength of tail dependence, etc. 
• Copulas enable the user to build models that reflect reality more e.g. heavy tails  
• It is possible to allow for non-linearities and other higher order dependencies  
• Copulas are easily simulated using Monte-Carlo methods. 
 
Disadvantages: 
• Copula selection is non-trivial. There are many considerations. 
• Parameterisation of copulas is very difficult, by definition the joint loss data that is 

needed is sparse in the tail 
• The full marginal risk distribution is needed for each risk, rather than in the case of 

the variance-covariance matrix approach only the relevant capital number. 
• The bottom-up Monte Carlo simulations approach is more demanding 

computationally, especially if the number of risks is high 
• The communication of the method and results can be much harder 
 
3.7  Structural Modelling   
 
This method is intuitively very appealing as it can reflect directly, more than any other 
methods, possible relationships that might exist between different risks. The method can 
be describe as the simulation of common risks, for every risk, instead of modelling each 
risk separately and then aggregating them into a joint loss distribution.  The economic 
capital model implicitly captures any diversification benefits between risks.  
 
Within the structural modelling approach the risk dependencies are likely to be at a more 
granular level than one would see within the variance-covariance matrix approach. For 
example, some typical structural models capture dependencies such as:     
• Rate movements between lines of business 
• Large loss frequency between lines of business 
• Inflationary link between loss reserves and loss volatility 
• Inflationary link between loss reserves and asset values 
 
3.7.1 Non-Life Underwriting Cycle 
 
For non-life insurers the underwriting cycle is one of the more obvious candidates for 
some form of structural modelling. The non-life underwriting cycle can be thought of as a 
recurring pattern of increases and decreases in insurance prices and profits.  
 
The cycle exhibits characteristics of a dynamical system with feedback loops and 
common economic and social shocks. Each line of business typically has its own cycle 
and cycles are often linked across lines of business within any one company.   
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Models often focus on some form of profitability measure based on the loss ratio or 
combined ratio (loss ratio + expense ratio). For the dependent variable of interest then a 
number of predictor variables are possible: 
• Previous value of the variable over prior time periods  
• Other company financial variables such as reserves, investment income and capital    
• Regulatory and/or rating variables 
• Financial market variables such as interest rates and equity returns 
• Econometric variables such as inflation, GDP growth etc.  
 
3.7.2  Static vs. Non-static models 
 
In a simple autoregressive (“AR”) 8 model of the underwriting cycle, where the combined 
ratio is being modelled, the marginal risk distribution of the combined ratio in future years 
t is conditional on the prior history of combined ratios in years t-1, t-2 etc. As such we 
can think of the marginal risk distribution as being non-static in that it evolves over time. 
This is in contrast to the typical copula simulation approach where the marginal risk 
distribution is fixed.  
 
3.7.3  Simple Example 
 
A simple example of this more purist way of thinking of dependencies is where the value 
of a risk in any given scenario is made up of the impact from a set of simulated common 
risk factor drivers plus a simulated residual component for that risk. Furthermore, the 
residual components may themselves be subject to correlation.   
 
In simplified forms of Collateralised Debt Obligation (“CDO”) modelling it was common to 
assume the latent variable was the asset return of a counterparty. Default was then 
deemed to occur when the value of the counterparty’s asset return in any particular 
scenario fell below some ‘asset’ threshold, itself related to the value of its liabilities.  
 
One could represent the asset return for each counterparty as a multi-factor model.  
In the simplest case we will consider a 2 factor model which consists of a (i) systematic 
component and (ii) non-systematic part.  
 
Let the systematic component X be the “state of the economy”, R2

i the “counterparty 
asset return correlation with the market” and εi the counterparty-specific (or residual risk) 
part. It is further assumed that the variables X and εi are normally distributed. In this 
example X is the underlying common risk driver, with the values of Ri and εi also 
determining the degree of dependency between risks  
 
For each counterparty i = 1 and 2 the asset return can be defined as:    
   
ARi = [R2

i] 0.5 X + [1 - R2
i] 0.5 εi 

Furthermore, given AR1 and AR2 the asset correlation ρA is then:    
 
ρA = Corr (AR1, AR2) = [R2

1] 0.5 x  [R2
2] 0.5 

 
Example:  R2

1 = 50% and R2
2 = 20% then ρA = 15.81%   
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The R2 represents the proportion of the asset return that can be explained by variation in 
the state of the economy i.e. it’s systematic risk. The non-systematic part consists of 
both counterparty specific pieces and non-counterparty specific pieces that are common 
to groups of credit assets but are not deemed to be systematic in nature, e.g. exchange 
rates.  The R2 can be determined for a company by computing the correlation of the 
asset value of the company with an index of asset values that represents the universe of 
companies.  
 
Advantages: 
• Theoretically it is a very appealing and intuitive method 
• Potentially the most accurate in imitating the way the ‘real world’ works with a series 

of external and internal shocks to a company  
• Could be used in combination with other methods, e.g. an inflation variable may be 

used as a common risk driver for expense and claims risks with some further 
correlation between the expense and claims risks due to other factors  

• Possible to capture non-linearities through structural risk relationships  
 
Disadvantages: 
• The most demanding in terms of inputs 
• It is not feasible to model all common risk factors at the lowest level 
• If lots of common risk factors are simulated using a Monte Carlo approach, this puts 

a very high demand on computing power 
• Transparency and results communication becomes an issue – ‘Black Box’ approach   
• Parameterisation issues relating to the structural relationships 
• Could lead to an overly complicated model providing a false sense of accuracy 
 
3.8  Aggregation Approaches  
 
Companies often use a combination of the different methods that we have described so 
far. For example, each insurance company within an insurance group may have models 
that operate in sufficient detail for its own purposes, but all companies within the group 
use common economic model output and disaster scenarios that imply dependency 
when risk is viewed at a group level.  
 
Reinsurance Credit Risk – Modelling granularity  
 
The modelling of reinsurance credit risk, i.e. the loss associated with the failure of 
reinsurance counterparties is a good example of the different levels of modelling 
granularity.  
 
One of the key dependencies for non-life insurance companies is between Catastrophe 
underwriting risk (“Cat UW risk”) and Reinsurance credit risk (“RI Credit risk”). If a low 
frequency, high severity natural catastrophe loss event were to occur, then a non-life 
company writing property related lines of business may see a large increase in 
reinsurance credit risk, due to both an increased likelihood of default by its reinsurers 
and an increased exposure i.e. larger reinsurance recoveries.       
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Different Methods are possible to reflect this dependency structure between Catastrophe 
UW Risk and Reinsurance credit risk. 
• If Cat UW risk and reinsurance credit risk are separate entries within a variance-

covariance matrix then the dependency structure between them could be proxied by 
a higher than average correlation. The marginal risk capital calculation for 
reinsurance credit risk being based on the expected level of reinsurance recoveries 
and other risk factors. 

• The next level of complexity could involve Cat UW risk including the RI Credit risk 
credit risk associated with UW risk. Given that it is common for Cat UW risk 
modelling to involve the simulation of gross losses and reinsurance recoveries such 
a method would facilitate more accurately the varying reinsurance loss exposure for 
calculation of the associated reinsurance credit risk marginal capital. In this scenario 
a variance-covariance RI Credit risk marginal capital calculation would only be in 
respect of reinsurance recoveries associated with prior year’s business.     

• Another layer of complexity would involve allowing stochastic interest rates in the 
discounting of the reinsurance loss payments in the RI Credit risk calculation given 
that the reinsurance loss exposure is on a present value basis.  

• More complex methods could involve loss given default and reinsurance default 
rates being a function of insurance losses and / or asset values etc.  

 
The last two methods, whilst being more intuitive, than the earlier methods, do at the 
same time introduce more uncertainly in terms of both model risk and parameter risk.    
 
3.9  CRO Forum Internal models benchmarking survey  
 
The CRO Forum “Internal models benchmarking study, Summary results” survey as 
carried out by Oliver Wyman (30/1/09) provides a useful overview of the current 
economic capital risk aggregation calculation methods adopted by 16 members 9 of the 
Chief Risk Officers (”CRO”) Forum, and two Associate members.  
 
Risk Aggregation (page 23) 
In terms of an overall risk aggregation the most popular approaches were (i) variance-
covariance matrix 10 (60%) and (ii) simulation (30%) with only 5% of respondents citing 
the use of copulas. 11  
 
Non-Life Underwriting Cycle (page 35) 
Within non-life business lines currently 44% of the survey respondents capture the 
underwriting cycle within their economic capital models and within 2-3 years the majority 
expect to be allowing for the underwriting cycle. Currently only about 25% of the 
companies are using autoregressive models to do this.   
 
As was discussed in section 3.7, the underwriting cycle is an obvious candidate for some 
form of structural dependency model.   
 

                                               
9 The members of the CRO Forum include some of the world’s largest insurance groups such as 
AIG, Aviva, AXA, ING, Munich Re, Prudential, Swiss Re and ZFS. 
10 This includes widespread use of stochastic models for significant risk types such as non-life 
underwriting risk and reserve run-off risk, and also stochastic models for market risk.  
11 It does appear unusual that Copulas are mentioned in a different category to simulation given 
that copula outputs rely on monte carlo simulation techniques. 
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4.  Model Parameterisation  
 
Parameterisation of the variables used to model dependency structures in economic 
capital models is very often difficult . Many issues arise, not only in the estimation of 
parameters themselves e.g. correlations for use in a variance-covariance matrix 
calculation, but how these parameters evolve over time as a result of changes in 
economic indicators, business cycles or underwriting cycles. 
 
Some of the typical questions arising are: 
• Estimation of correlation coefficients for use in a variance-covariance matrix  
• Estimation of parameters and / or correlation coefficients for use with a copula 
• What sources of data and information are needed for the parameterisation exercise 
• What sources of data and information is currently available 
• How accurate, reliable and credible are the sources of data and information available    
 
Before addressing each of these points in turn it is useful to consider the topic of 
spurious relationships and a discussion of whether relationships between variables do 
exist or are incorrectly perceived to be by chance as a result of the data under study.     
 
4.1  Spurious Relationships 
 
In statistics a spurious relationship 12 is a mathematical relationship in which two 
occurrences have no causal connection, yet it may be inferred that there is one.                      
“Correlation does not imply causation” is often used to point out that correlation does not 
imply that one variable causes the other. However, the presence of a non-zero 
correlation may hint that a relationship does exist. 
 
Edward Tufte [5] puts it succinctly: 
“Empirically observed covariation is a necessary but not sufficient condition for causality” 
or in other words “Correlation is not equal to causation; it is only a requirement for it”.    
 
4.1.1  Correlation does not imply causation 
 
1.  A occurs in correlation with B 
2.  Therefore, A causes B      
 
In this type of logical fallacy a conclusion about causality is made after observing only a 
correlation between two or more factors. When A is observed to be correlated with B it is 
sometimes taken for granted that A is causing B even when no evidence supports this. 
This is a logical fallacy as four other possibilities exist: 
(a)  B may be the cause of A 
(b)  An unknown factor C may be causing both A and B   
(c)  The ‘relationship’ is coincidence or so complex or indirect that it is more effectively   

called coincidence 
(d)  B may be the cause of A at the same time as A is the cause of B.     
 
Determining a cause and effect relationship requires further study even when the result 
is statistically significant.   

                                               
12 Sometimes called spurious correlation or spurious regression 
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Examples of each, drawn from everyday life as analogies, are: 
(a) “The more firemen fighting a fire (A), the bigger the fire is going to be (B). Therefore 

firemen cause fire “. In reality it is (B) the fire severity influencing how many firemen 
are sent (A).  

(b) “Sleeping with one’s shoes on (A) is strongly correlated with waking up with a 
headache (B)”. This ignores the fact that there is a more plausible lurking variable 
excessive alcohol (C) giving rise to the observed correlation.      

(c) “ With a decrease in the number of pirates, there has been an increase in global 
warming, therefore global warming is caused by a lack of pirates” 

(d) “ According to the ideal gas law PV = nRT, given a fixed mass, increased 
temperature (A) results in increased pressure (B), however an increase in pressure 
(B) will result in an increase in temperature (A). The two variables are directly 
proportional to each other and independent.    

 
With regards economic capital modelling simple examples of (a) and (b) are:  
(a) Increasing domestic demand and inflation (A) often leads to the Government having 

to increase short-term interest rates (B) to counter potential over-heating in the 
economy, evidence of positive correlation. Conversely falling short-term interest 
rates (B) is likely to lead increased demand, which once spare capacity is utilised, to 
increasing inflation (A), however in this case, evidence of negative correlation.   

(b) The large negative correlation between equity returns (A) and credit spreads (B) 
during 2008 could be viewed as a consequence of the financial crisis (C) 

 
Some observed correlation relationships are one way A  B. For example, a very 
severe natural catastrophe could lead to a large decrease in equity markets, but a large 
fall in equity markets is not likely to result in a natural catastrophe.  
 
4.1.2  Economic Logic 
 
When determining correlations between risks one should consider the questions: 
• Is the relationship logical (rather than spurious)    
• Is there statistical evidence for the hypothecated relationship 
 
An example of a relationship that satisfies both of these questions is in the simple 
example of a yield curve. The three year bond yield is closely related to the two year and 
four year bonds yields, which is intuitive given that yield curve movements are often 
thought of as a combination of (i) parallel shift and (ii) slope changes. Furthermore. 
empirical studies support positive correlations between adjacent points of the yield curve         
 
4.1.3  Correlation and Linearity 
 
The Pearson correlation coefficient indicates the strength of a linear relationship 
between two risks, but it alone is often not sufficient to evaluate the strength of this 
relationship. Appendix 2 shows scatter plots of Anscombe’s quartet, a set of four 
different pairs of variables created by Francis Anscombe [11]. The y variables have the 
same mean, standard deviation, linear correlation and regression line and yet in all four 
cases the distribution of the variables is markedly different.  
 
These numerical examples demonstrate that the correlation coefficient, as a statistic 
summary, cannot replace a more detailed examination of the data patterns that may 
exist.       
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4.1.4  Spurious Regression Example 
 
Consider 2 random walk time series Xt and Yt as follows: 
Xt = Xt-1 + εt 
Yt = Yt-1 + δt 
 
where: 
εt and δt are N(0,1) distributed  
X0 = Y0 = 5. 
 
Given this, a random sample of 100 values for each of X and Y for t = 0 to 99 has been 
generated. Using this output the linear correlation and R2 have been calculated. 
 
X and Y are not related and yet it is common, in repeated runs, to observe very high 
correlations far in excess of those expected from sampling error in the N(0,1) values. 
 
The following graphs show (i) Linear regression between X and Y, (ii) Time Series of X 
and Y (ii) Residuals from the linear regression. 
 
In this random example, the observed correlation between X and Y is 56.5% and 
5.9% between the residuals (any difference from zero due to sampling error). The 
time series plots for X and Y look plausible for atypical financial variables and yet we 
conclude they have a large positive correlation when in fact there no relationship 
between them at all. Moreover, there is significant autocorrelation in the residuals 
leading one to reject the linear regression model as a measure of the relationship.    
 
In fact this is illustrative of the fact that trending variables, which are often a feature 
of economic and financial time series data, are likely to lead to a regression with high 
values of R2, regardless of whether they are related or not. Differencing variables 
(changes) eliminates trends and thus avoids spurious regression. So it is important 
to consider the nature of the variables being used to determine the correlation.       
   

Linear Regression Y vs X y = 0.2112x + 4.18
R2 = 0.3192
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Time Series Y vs X
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4.2  Variance-covariance matrix correlation parameterisation  
 
The following is a list of possible approaches:   
• Empirical estimation using historical time series data   
• Use of expert judgement or industry benchmarks 
• Ranking method, e.g. using Low, Medium and High rankings 
 
Dealing with each of these in turn: 
 
4.2.1  Use of historical time series data 
 
A starting point in determining appropriate correlation estimates would be an estimate 
based on the historical time series data of underlying risks. It could be argued that any 
estimation based on internal data is the most appropriate given it will reflect an insurance 
company’s actual experience and any differences in its business and risk profile. 
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Considerations arising include: 
• Choice of index or data on which the time series is based 
• Length of time series data 
• Data frequency e.g. weekly / monthly / annual 
• Dealing with data gaps, data credibility  
• Data weightings, e.g. perhaps giving more weight to recent time periods 
• Prospective views 
 
Very often a published index is preferable to actual company data, not only because of 
the likelihood of a longer data history but to minimise data errors and secular risk. For 
example it may be more pragmatic for a UK insurance company when estimating Equity 
risk correlations to use the FTSE 100 Equity Total Return Index rather than its own data 
which could would contain a varying mix of equities from year to year.    
 
Often data is not complete therefore companies need to apply different techniques or a 
combination of techniques to overcome such shortcomings. Such techniques being: 
• Secondary data – sometimes companies supplement their internal data by 

secondary data from either public sources or from external data suppliers. For 
example, a useful source of data for underwriting risk is reinsurers’ data. 

• Simulating data – data can be enhanced by simulating historical data that is not 
currently observable. This synthetic data is itself the output from a model and 
appropriate parameters. 

 
Data quality can be an issue and can generally be grouped under 3 main headings: 
• Consistency – is the data consistent and collected in a standard format ? 
• Completeness – is the data thorough, e.g. taking into account missing dates ?  
• Accuracy – is the data correct? Common issues with data accuracy are 

processing errors, miscoding, bulk coding and bias. 
 
Each in itself can have an undue influence on the credibility or otherwise of the 
parameterisation process.  
 
One of the more important aspects of data quality is the treatment of outliers. It is 
important to check whether any series contains outliers and if so try to understand the 
reasons for their occurrence. If an insurer thinks that the outlier reflects an anomaly that 
may repeat itself in the future then it will often retain the observation. If the outlier is for 
an event that is unlikely to occur again (perhaps because of a change in exposure), or is 
perceived not to be material for the future, then sometimes companies disregard it from 
the data or assigning a lower weight (<100%) than other data points.  
 
Any omission of a data outlier, unless an incorrect data entry is not a good idea in that it 
allows for future unexpected events that may have been unforeseen when performing 
the analysis.   
 
Correlations do vary over time and in a lot of cases quite markedly, so the analysis of 
historical time series data should not just be a once in a while exercise but an analysis 
that is performed quite regularly over time.    
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4.2.2  Expert judgement / Industry benchmarks  
 
Very often company-specific data is not available or is of poor quality. Perhaps an index 
proxy for a risk is not suitable or the correlations estimated from company own data or 
index proxies vary too much over time.  
 
In such situations entries in a variance-covariance matrix may be filled on the basis of 
expert judgement. In such cases the parameters are based on the consensus of risk 
officers, underwriters, business managers, actuaries and other specialists in an 
organisation who understand the nature of risks being modelled. This is frequently 
complemented with an input from external consultants and industry benchmarks.  
 
Furthermore, expert judgement or opinion is a good starting point before any time series 
analysis has taken place serving very much as a reference point. 
 
This approach introduces an element of subjectivity but may be necessary if the 
prospective view of risk is different to that captured in the historical data. Expert opinion 
and judgement becomes more important when looking at extremes of risks where by 
definition they are unlikely to be very common in data series.      
 
The reliance on expert judgement is likely to vary by risk category. For example, this is 
likely to be more the case for operational risk than would be for equity risk. Furthermore, 
the reliance on this approach for risks may be more common for those organisations that 
are smaller in size and lack the capacity, scope and economies of scale to estimate 
correlations based on their own experience.   
 
4.2.3  Low, Medium and High rankings 
 
In the absence of any data analysis organisations may fall back on the use of Zero, Low, 
Medium or High correlation rankings or similar grading based on a subjective 
assessment of the main risk pairings. The correlation coefficients allocated to these 
groupings are determined in advance based on prior studies. But what do we actually 
mean by Medium correlation, which could be regarded as rather arbitrary. It could mean 
30%, 40%, 50% or somewhere in between. In addition, the actual values within each 
category are often dependent on the nature of their use.   
 
The following illustrates the range of realistic correlations that may appear in each of the 
correlation groupings, but others could equally be valid.   
 
Correlation Rankings 

Correlation Negative Positive
Zero 0 0
Small -0.3 to -0.1 0.1 to 0.3
Medium -0.5 to -0.3 0.3 to 0.5
High -0.5 to -1.0 0.5 to 1.0  
 
Categorising dependencies as either Low, medium or High is sometimes underplayed by 
commentators as an approach that should be limited to situations when there is no more 
accurate approach. This worryingly paints a misleading picture that correlation 
assessment with voluminous time series data sets is in anywhere near reliable or 
accurate.  
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4.3  Estimation of correlation coefficients from historical time series data 
 
Estimating “credible” correlation coefficients from historical data series is far from easy. 
The difficulty lies not in the calculation of different correlation coefficients, using the 
relevant mathematical formulae and data used, but the sensitivity of the results to the 
time periods used and the secular risk of the underlying variables.  
 
Asset related data such as equity returns and fixed interest rates are usually more 
frequently available, more homogenous and less subjective than insurance line of 
business related data. Given this, we have used financial time series data in the 
following analysis. 
 
We decided to investigate a number of questions: 
• How do correlation estimates vary with differences in the length of time series data? 
• How do annual correlation estimates vary from year to year? 
 
Figures 4.1 and 4.2 show annual time series data for 1988 to 2008 for the following: 
• LIBOR 3M rate 13 
• UK 10 year Government Bond yield (“GB 10Y”) 
• FTSE All Share Total Return 12-months ending 31/12/YY (“FTSE AS”) 
• Credit Spread for AAA rated 10 year corporate bonds as at 31/12/YY (“CS AAA”)  
• Credit Spread for BBB rated 10 year corporate bonds as at 31/12/YY (“CS BBB”)  
 
4.3.1  Estimating correlation coefficients with variation in the length of time series data  
 
Figure 4.1 shows a line graph of the values for the first 3 indices. Figure 4.2 shows a 
graph for GB 10Y vs CS AAA vs CS BBB.    
 
Figure 4.1 
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13 The time series data was obtained from Bloomberg with the exception of CS AAA and CS BBB 
data which was obtained from Iboxx. 
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On inspection of Figure 4.1 it is clear that the FTSE AS annual return shows a cycle with 
peaks and troughs over the period 1988 to 2008. Both LIBOR 3M and GB 10Y feature 
downward trends over the same period and furthermore the LIBOR 3M and GB 10Y 
graphs crossover at a number of different points, indicating the changing shapes in the 
yield curve, either upward sloping, downward sloping or inverted yield curves.  
 
Figure 4.2 

Financial Time Series Data
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For Figure 4.2 however, the general decrease in GB 10Y contrasts with the relatively flat 
credit spreads until 2006 onwards when there has been a sharp rise in the values of 
both CS AAA and CS BBB reflecting the changing market dynamics following the onset 
of the current financial crisis.  
 
These relationships between key risk variables changing over time have consequences 
when one is faced with the estimation of the pairwise correlation coefficients. These 
comments are not restricted to asset risks in isolation as an insurance liability or 
combined asset / liability time series graphs often show similar patterns. 
 
Pairwise correlation coefficients have been estimated between the five different risk 
types assuming four different time periods, namely (i) 20 years to 2007, (ii) 15 years to 
2007, (iii) 10 years to 2007 and (iv) 5 years to 2007.  The year 2007 has been chosen 
rather than 2008 so as to minimise as far as possible the influence of the recent financial 
crisis on the results comparison. Ideally, monthly data would have been better but for 
some of the risks the data was only available on an annual basis for time periods longer 
than 10 years ago. However, further analysis in the next section on a limited subset of 
these risks has been performed using monthly data. 
 
With only 5 data points for the 5 year period 2003 to 2007 the results will be very 
sensitive to sampling error, as will the results for the 10 year period, although to a more 
limited extent. The results are presented in Table 4.1        
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The four sets of tables clearly show not only the sensitivity of the pairwise correlation 
coefficients to the time periods chosen for the analysis, but how on some occasions 
there is a reversal of the correlation signs. These results in conjunction with figures 4.1 
and 4.2 illustrate the sensitivity of correlation estimates to the choice of data period and 
perhaps the limitations of a correlation coefficient as measures of dependency.       
 
Table 4.1 

20 Years Start 1988
End 2007

LIBOR 3M GB 10Y CS AAA CS BBB FTSE AS
LIBOR 3M 100.0% 86.4% -46.9% -28.3% 18.7%

GB 10Y 86.4% 100.0% -59.1% -43.7% 14.7%
CS AAA -46.9% -59.1% 100.0% 93.8% -59.6%
CS BBB -28.3% -43.7% 93.8% 100.0% -67.5%

FTSE AS 18.7% 14.7% -59.6% -67.5% 100.0%

15 Years Start 1993
End 2007

LIBOR 3M GB 10Y CS AAA CS BBB FTSE AS
LIBOR 3M 100.0% 68.7% -61.1% -68.5% 34.9%

GB 10Y 68.7% 100.0% -60.2% -64.8% 20.1%
CS AAA -61.1% -60.2% 100.0% 97.0% -71.5%
CS BBB -68.5% -64.8% 97.0% 100.0% -72.5%

FTSE AS 34.9% 20.1% -71.5% -72.5% 100.0%

10 Years Start 1998
End 2007

LIBOR 3M GB 10Y CS AAA CS BBB FTSE AS
LIBOR 3M 100.0% 62.3% -38.1% -45.7% 33.9%

GB 10Y 62.3% 100.0% 27.4% 21.0% -31.1%
CS AAA -38.1% 27.4% 100.0% 94.9% -89.3%
CS BBB -45.7% 21.0% 94.9% 100.0% -92.9%

FTSE AS 33.9% -31.1% -89.3% -92.9% 100.0%

5 Years Start 2003
End 2007

LIBOR 3M GB 10Y CS AAA CS BBB FTSE AS
LIBOR 3M 100.0% 62.6% -0.2% 17.6% -85.1%

GB 10Y 62.6% 100.0% 71.5% 62.6% -93.2%
CS AAA -0.2% 71.5% 100.0% 89.0% -48.8%
CS BBB 17.6% 62.6% 89.0% 100.0% -50.8%

FTSE AS -85.1% -93.2% -48.8% -50.8% 100.0%  
 
4.3.2  Estimating correlation coefficients using monthly time series data  
 
Further analysis has been performed on the following three sets of monthly time series 
data for the years 1999 to 2008:  
• LIBOR 3M rate as at the end of each month (same notation as before) 
• FTSE 10 Year Gilt Yield as at the end of each month (“FTSE G 10Y”) 
• FTSE All Share Total Return on a rolling 12-months basis as at the end of each 

month (same notation as before) 
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Table 4.2 investigates the correlation between LIBOR 3M and FTSE G 10Y under a 
number of different calculation bases.  
• Column “12 Mths” shows the correlation estimated for each year in isolation using 

12-months worth of data. For example for year 2005, 81.9% is based on the monthly 
data from Jan 2005 to through to Dec 2005.     

• Column “Cum YE 08” shows the correlation estimated using monthly data assuming 
a start year (column “Year”) through to Dec 2008.  For example for year 2005, 74.5% 
is based on monthly data from Jan 2005 to Dec 2008. This calculation imitating the 
often used process of estimating correlations from the “last x years of data”.   

• Column “Cum YE 07” is a similar calculation to Cum YE 08 but assuming monthly 
data through to Dec 2007. 

 
The latter 2 calculations are also shown in Figure 4.3. Observations of note are: 
• Annual correlations are very volatile from year to year. 
• There is more stability in using cumulative monthly data as per Cum YE 08 or Cum 

YE 07 but even here there is a fair degree of volatility. Both of these calculations 
appear to indicate a long-term average of around 50%.  

 
However, these calculations are looking at correlations between interest rates of different 
terms.  Figure 4.4 shows similar calculations to Figure 4.3 for LIBOR 3M vs FTSE AS but 
this time using 20 years of data. From inspection of this figure it is clear how volatile 
even these calculations are based on the longer time series data set. 
 
Table 4.2 
LIBOR 3M vs FTSE G 10Y

Year 12 Mths Years Data Cum YE 08 Years Data Cum YE 07
1999 21.7% 10 50.5% 9 52.8%
2000 64.0% 9 50.6% 8 53.3%
2001 32.5% 8 36.0% 7 35.3%
2002 89.2% 7 35.5% 6 32.9%
2003 56.2% 6 50.0% 5 48.5%
2004 1.7% 5 54.2% 4 49.2%
2005 81.9% 4 74.5% 3 75.5%
2006 50.1% 3 71.2% 2 67.3%
2007 -13.4% 2 70.5% 1 -13.4%
2008 81.8% 1 81.8%    

 
Figure 4.3 
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Figure 4.4 

LIBOR 3M vs FTSE AS
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4.4  Copula Parameterisation 
 
The practical issues arising when trying to estimate a correlation coefficient from real 
data were highlighted in section 4.3. With the parameterisation of copulas there is a 
further issue of how to parameterise the factors that determine the degree of tail 
dependency between risks in extreme loss scenarios.   
 
For the t copula (or its IT copula extension) one has to estimate degrees-of-freedom 
parameters, whether it is just one parameter as for the more straightforward t-copula, or 
n parameters for the more complex IT-copula. One way of doing this is to estimate the 
tail dependencies for each pair of risk factors from historical data or expert opinion / 
judgement, and then use an iterative algorithm which finds the set of degrees-of-freedom 
parameters implying the closest possible tail dependencies using the approaches 
described later in this section. 
 
If we aim to model tail dependency more accurately, whichever type of copula we are 
using, we will need to estimate extra parameters which influence the tail dependency.  
 
Estimating copula parameters needs good quality data. Problems arising include: 
• Data may not be available, and if available, either of poor quality or incomplete. 

Asset related data such as returns for equity and fixed interest rate risk are generally 
more readily available and homogenous than some of the data related to insurance 
line of business related risks.    

• Data may be sparse due to the low frequency of the risk e.g. credit default risk.   
• The frequency of the data will also be dependent on the nature of the risks. Asset 

related time series data is available at least daily whereas insurance loss data may 
typically only be available on either a quarterly or annual basis.    

• If we try to estimate parameters from real data, then we are going to have to use 
data from economic periods where extreme events occurred and by definition these 
very low frequency events are scarce data sets.  

• Managing the difficult trade-off of having a long enough historical time series to be 
representative of such events versus the potential secular risk arising.  
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4.5  Tail Dependency 
 
In simple terms, the relationships between risks may change under the extreme 
scenarios that could give rise to the financial failure of an insurance company. Historical 
data based on observations in normal market conditions may indicate that correlations 
between certain risks are low, but in times of stress such as catastrophes or liquidity 
crisis many markets and risks could be adversely affected at the same time leading to 
much higher observed dependency between risks.       
 
A common approach used by some insurance companies to reflect such tail dependency 
when performing a variance-covariance matrix economic capital calculation is to use 
correlations that are larger than an average correlation that has been estimated from 
empirical data in normal market conditions.  
 
The SCR capital aggregation formula within the Solvency II Pillar I framework illustrates 
this line of reasoning. For example, paragraph 1.84 (p20) of QIS3 Calibration of the 
underwriting risk, market risk and MCR (2007) [6] says:  
 
“ In view of the insufficiency of currently available data, the setting of these correlation 
coefficients will necessarily include a certain degree of judgement. This is also true 
because, when selecting correlation coefficients, allowance should be made for non-
linear tail correlation, which is not captured under a “pure” linear correlation approach. 
To allow for this, the correlations used should be higher than simple analysis of relevant 
data would indicate. “ 
 
Furthermore, paragraph TS.VIIIA.7, (p124) says: 
 
“ For the aggregation of the individual risk modules to an overall SCR, linear 
correlation techniques are applied. The setting of the correlation coefficients is intended 
to reflect potential dependencies in the tail of the distributions, as well as the stability of 
any correlation assumptions under stress conditions. ” 
 
The usage of higher correlations to reflect high tail dependency is a practical, 
transparent and intuitive method. In addition, the economic capital will be larger than 
would be the case from using so-called ‘average’ correlations as assessed within normal 
market conditions.  
 
However there are certain theoretical shortcomings when higher correlations are used in 
conjunction with the variance-covariance matrix approach to capital aggregation:  
• Higher correlations do not model tail dependency. Tail dependency is a measure of 

dependence between the risk factors defined using a limit. If you use a Gaussian 
copula, its tail dependence will be zero irrespective of whether you are using higher 
correlation parameters or not. 

• There are usually no theoretical foundations for their selected values. 
• Their implied ‘tail correlation’ 14 are sensitive to the underlying marginal risk 

distributions, especially when risks are not normally distributed. In fact in certain 
scenarios you can get counter-intuitive results.   

 
 
                                               
14 The implied ‘tail correlations’ referred to here are explained in detail in section 5.4   
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4.6  Variance-covariance matrix cross-terms 
 
As stated in section 3.5 there are many financial institutions, in particular large insurance 
groups that consist of various subsidiaries, business units (“BU”) or similar organisational 
subdivisions. Not only is there a need to calculate economic capital at an individual BU 
level but also at an overall aggregate level as well.  
 
One of the more common approaches to economic capital modelling, that enables an 
insurance group to report economic capital at both an (i) aggregate capital level and (ii) 
BU capital level, is through the use of an enlarged correlation matrix. Data in such a 
matrix is of the form “Organisation / Risk” e.g. UK /Equity or France/Fixed Interest etc. 
 
In addition, if an insurance company is modelling dependency within an internal model 
through the use of either a Gaussian or a t copula then it will need the aggregate 
correlation matrix as described above.  
 
The first stage in the derivation of the overall aggregate correlation matrix is the defining 
of the correlation matrix at an individual BU level. Once this has been done there is then 
the issue of the correlation matrix data entries for the cross-terms such as UK / Equity, 
France / Fixed Interest etc. 
 .  
4.6.1  Example 
 
Let us consider a simple example of a company with 2 business units A and B.  
 
Each BU has 2 risk factors: a1 and a2 in BU A and b1 and b2 in BU B.  

Le the correlation matrix for BU A be ⎥
⎦

⎤
⎢
⎣

⎡
1

1

12

12

a
a

 and  

the correlation matrix for BU B be ⎥
⎦

⎤
⎢
⎣

⎡
1

1

12

12

b
b

.  

Then the enlarged correlation matrix for the whole company would look like: 
  

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1??
1??

??1
??1

12

12

12

12

b
b

a
a

 

 
For example an insurance company might have 15 BUs each of which has 10 separate 
risk categories. In this case the enlarged correlation matrix will be of size 150 x 150.    
 
There are several questions immediately raised by this approach: 
• How does one estimate cross terms such as the correlation between a1 and b1 etc. 
• Once the cross-terms are filled in, we still need to make sure that the resulting 

correlation matrix is PSD (see section 4.8). 
 
One possible approach to this common problem was proposed by Group Consultaf in 
2005 [7]  
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4.6.2  Group Consultatif example of calculating cross-terms 
 
Consider 2 risk types X and Y, and 2 business units BU A and BU B.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The question arises of how to estimate the cross-term identified by ?.  
 
The proposed approximation of the correlation between risk type X in BU A (“XA”) and 
risk type Y in BU B (“YB”) is given by: 
 

Correlation 
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One of the conditions on the correlation factor we are trying to estimate is expressed by 
the following double inequality (See Appendix 3 for its derivation): 

)1)(1()1)(1( 2
,

2
,,,,

2
,

2
,,, ZYYXZYYXZXZYYXZYYX ρρρρρρρρρ −−+≤≤−−−  (*) 

Consider the following simple example. There are two permissible routes to get from XA 
to YB, these are described in the “Path taken” in the following table. Let us assume that 
CorX(A,B) = -0.7, CorY(A,B) = 0.9, CorA(X,Y) = 0.7 and CorB(X,Y) = 0.8. 
 
Path taken Lower Bound Upper Bound
CorX(A,B) & CorB(X,Y) -0.988 -0.132
CorA(X,Y) & CorY(A,B) 0.319 0.941  
 
Then using the proposed Group Consultatif formula ρ (XA,YB) = 0.075.  
 
Using the formula in (*) we have estimated the lower and upper bounds of the 
correlation according to which of the two possible paths have been taken. The 
correct correlation between XA and YB should lie in the permitted ranges of each 
path. Quite clearly this is not the case.   
 
It should be noted that this formula will not always produce sensible answers and 
illustrates the general issues in estimating cross-terms using similar formulae. 

BU A 
Risk type X 

BU B 
Risk type X 

BU B 
Risk type Y 

BU A 
Risk type Y 

CorX(A,B) CorY(A,B) 

CorA(X,Y) 

CorB(X,Y) 
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4.7  Positive Semi-Definite Matrices 
 
Once we have filled in the elements of the correlation matrix there is a risk that the 
resulting matrix may not be Positive Semi-Definite, i.e. it will not be a consistent 
correlation matrix.  
 
If a matrix is not PSD, an insurance company may typically still use it in the variance-
covariance approach to calculate its economic capital. However, the calculation 
approach used with an inconsistent correlation matrix might lead to counter-intuitive 
results like a total diversified economic capital higher than the total undiversified capital. 
 
Furthermore, if an insurance company is using a copula approach that requires a 
correlation matrix e.g. Gaussian copula or T copula then the model will not work as a 
matrix has to be PSD for it to be inverted as part of the Monte Carlo simulation process.  
 
It is relatively easy to find a solution in mathematical literature which alters a given 
inconsistent correlation matrix (a non-PSD symmetric matrix with unity diagonal) until it is 
PSD. See for example the eigenvalue method described in [8] or in Embrechts et al [9].  
 
The problem faced is that if a solution is relatively simple, it can produce quite large 
changes in the specified correlations and there is no way of knowing in advance if these 
changes are sensible or what is the impact on the resultant economic capital.  
 
Often insurance companies will want to impose certain constraints on the PSD 
algorithm e.g. certain key correlation are left unchanged, or can only deviate with a 
small tolerance. In such cases the algorithms become a lot more complicated and 
the resulting calculations an iterative process. 
 
4.8  Fitting Copulas to Data  
 
There are two general approaches to estimating copula parameters from a data set. 
These methods are described comprehensively in Embrechats et al [9] 
 
The two main methods are: 
• Maximum Likelihood Estimation 
• Method of Moments 
 
4.8.1  Maximum Likelihood Estimation 
 
The maximum likelihood estimation method consists of the following general procedure 
applied to any data set. For the sake of illustration we will work in 2 dimensions with the 
two risks X and Y. By extension the same procedure is valid for dimensions > 2: 
• Marginal risk distributions are fitted separately for each of X and Y 
• The so determined marginal risk distributions are then used to invert the joint data 

observations of (x,y) into a matrix U of joint values (u,v), where.u and v are defined 
by FX(x)  = u and FY(y) = v; x and y are values from X and Y respectively and u and v 
are values on the unit interval [0,1].  

• A copula is then fitted to the matrix U using the method of maximum likelihood 
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Even when the copula is the main object of interest, one still has to estimate the 
marginal risk distributions, as the copula data are never directly observed in practice.  
 
The success or otherwise therefore of the statistical quality of the estimates of the copula 
parameters will depend on the quality of the marginal risk distribution estimates.  
 
The marginal risk distributions in the first step can be chosen using either a: 
• Parametric estimation method known as the Inference Functions for Margins (“IFM”)  
• Non-Parametric estimation with variant of empirical distribution known as Canonical 

Maximum Likelihood (“CML”). 
 
The first of these methods involves the fitting of an appropriate parametric model to the 
marginal risk data in question using Maximum Likelihood or some other method. 
However, in the case of very sparse data a variant on this is to make use of a priori 
marginal risk distribution for the risk of interest.   
 
The second method involves the estimation of an empirical cumulative distribution 
function from the data, one method involving the divisor being n+1 rather than n such 
that the maximum or minimum points of the data set do not correspond to either u = 0 or 
1. In addition Kernel Smoothing may be adopted to produce a smooth rather than 
irregular shaped curve.      
 
To implement the Maximum Likelihood method the copula density needs to be derived. 
The Maximum Likelihood Estimate is generally found by the numerical maximisation of 
the resulting log-likelihood function.      
 
Appendix 8 provides an illustration of the CML method to 10 years worth of joint monthly 
data for 3M LIBOR vs FTSE All Share Total Return. The first graph shows the scatter 
plot of the joint(x,y) values and the second graph the scatter plot of the joint (u,v) after 
the CML method has been used to fit an empirical CDF to the data. In this example, 
Kernel smoothing was applied to the empirical CDF.      
 
Both the Gaussian and t copulas were fitted, the following parameters being derived: 
• Gaussian copula: Correlation = 29.52% 
• t copula: Correlation = 27.61%; t copula d.f. = 2.64 
 
4.8.2  Method of Moments 
 
The method-of-moments consists of using an empirical estimate of Kendall’s tau rank 
correlation (or alternatively Spearman’s rank correlation) to derive an estimate of a 
copula parameter.  
 
This simpler procedure uses sample rank correlation estimates. This method has the 
advantage that marginal risk distributions do not need to be estimated and consequently 
inference about the copula does not depend on margin assumptions. 
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We illustrate the method by estimating the correlation matrix parameter used for 
Gaussian and t copulas. 
 
Both the Gaussian and t copulas require a linear correlation matrix as an input 
parameter. This matrix is the linear correlation matrix related to the corresponding 
multivariate Normal distribution. This means that, if the user is estimating the correlation 
parameters from sample data, then most likely the estimated correlation coefficient will 
be different from that required as input to the Gaussian and t copulas to perform Monte 
Carlo simulation, unless that is we assume that the marginal risk distributions being used 
are normally distributed. 
 
The theoretically correct approach for Monte Carlo simulation is to calculate the Kendall 
tau correlation coefficients between risks from sample data and then to convert these 
into linear correlation parameters using the following formula: 

⎟
⎠
⎞

⎜
⎝
⎛=

2
sin Kendall

Gaussian
πρ

ρ .  

This formula works for any elliptical copula, of which the Gaussian and t-copulas are the 
most notable. 
 
In practice, if sample data arises from marginal risk distributions related to the Normal 
distribution family such as the Student t, Chi Squared, Gamma and Lognormal 
distributions then the estimated correlation parameters ρGaussian are generally quite close 
to the estimated linear correlation coefficients from the sample data.  
 
However, the Pareto, Burr and Cauchy distributions are examples of marginal risk 
distributions where the estimated correlation parameters ρGaussian are very different to the 
estimated linear correlation coefficients from the sample data. 
 
The following graph shows the correlation parameters sampled from two-dimensional 
distributions using a Gaussian copula with various marginal distributions. 
 

Correlation parameters using Gaussian copula with various 
marginal risk distributions
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5.  Impact of Dependency Modelling on Economic Capital 
 
This section illustrates, through the use of a case study, the impact of different 
correlation and dependency structures on the economic capital modelling results of a 
hypothetical insurance organisation ABC Insurance Company. 
 
5.1  ABC Insurance Company 
 
ABC Insurance company writes non-life insurance business in the UK. It calculates 
economic capital using (i) copula simulation and (ii) a variance-covariance matrix 
approach. This will involve separate risk distributions by risk category, a correlation 
matrix and an appropriate copula.  
 
For the sake of convenience and to illustrate the concepts, the marginal risk distributions 
are all initially assumed to be Lognormal with a Coefficient of Variation (“CV”) equal to 
25%.16 Furthermore the pairwise correlation coefficients between all risks are assumed 
to be identical.  
 
5.1.1  Risk Distributions 
 
The following is a list of the main risk categories and parameters of the risk distributions.  
 
Risk Type Distribution Mu Sigma E(X) SD(X) CV(X)
Equity Lognormal 7.5706 0.2462 2,000 500 25%
Property Lognormal 7.5706 0.2462 2,000 500 25%
Interest Rate Lognormal 7.5706 0.2462 2,000 500 25%
Credit Spread Lognormal 7.5706 0.2462 2,000 500 25%
Credit Default Lognormal 7.5706 0.2462 2,000 500 25%
UW - Cat Lognormal 7.5706 0.2462 2,000 500 25%
UW Non-Cat Lognormal 7.5706 0.2462 2,000 500 25%
Reserve Lognormal 7.5706 0.2462 2,000 500 25%
Expenses Lognormal 7.5706 0.2462 2,000 500 25%
Operational Lognormal 7.5706 0.2462 2,000 500 25%  
 
5.1.2  Correlation Matrix 
 
The correlation matrix is shown below for a constant correlation of 25%17 between risks. 
 
CORRELATION MATRIX

No. 1 2 3 4 5 6 7 8 9 10
Equity 1 1.00 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
Property 2 0.25 1.00 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
Interest Rate 3 0.25 0.25 1.00 0.25 0.25 0.25 0.25 0.25 0.25 0.25
Credit Spread 4 0.25 0.25 0.25 1.00 0.25 0.25 0.25 0.25 0.25 0.25
Credit Default 5 0.25 0.25 0.25 0.25 1.00 0.25 0.25 0.25 0.25 0.25
NL UW - Catastrophe 6 0.25 0.25 0.25 0.25 0.25 1.00 0.25 0.25 0.25 0.25
NL UW Non-Catastrophe 7 0.25 0.25 0.25 0.25 0.25 0.25 1.00 0.25 0.25 0.25
NL Reserving 8 0.25 0.25 0.25 0.25 0.25 0.25 0.25 1.00 0.25 0.25
Expenses 9 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 1.00 0.25
Operational 10 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 1.00  
                                               
16 Results are also shown for the (i) Lognormal distribution with a CV of 50% and the     (ii) 
Normal distribution with a CV of 25%. These other marginal risk distribution parameters are 
shown in appendix 6.  
17 Results are also shown for other correlations i.e. 10% and 50%. 
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5.2  Modelling Assumptions  
 
The analysis performed considers: 
• The impact of different copulas and parameters on the economic capital modelling 

results. The modelling shows results for four different copulas, namely: 
 Gaussian Copula 
 t Copula with 10, 5 and 2 degrees of freedom (“d.f.”) 

• Furthermore, economic capital numbers are also shown using the variance-
covariance matrix approach (“V CV”) to risk aggregation      

• Results are shown at varying percentiles ranging from 75% to 99.95% 
• The economic capital is based on a Value at Risk (“VaR”) risk measure over 12-

months and Capital = Loss (%) – E(Loss) 18 19  
• The copula simulation results are based on 25,000 simulations for each copula.  
 
5.3  Modelling Results 
 
The results of this modelling exercise are discussed in sections 5.3.1 to 5.3.3. 
 
5.3.1  Lognormal risks (CV = 25%, Correlation = 25%) 
  
Economic Capital - 25% Correlation
Percentile Return Gaussian t - 10 df t - 5 df t - 2 df V CV

75.0% 4 1,760 1,685 1,578 1,421 1,658
90% 10 3,688 3,610 3,582 3,418 3,763
95% 20 4,928 4,906 5,004 4,889 5,182
99% 100 7,423 7,916 8,177 9,049 8,212

99.5% 200 8,391 9,087 10,031 11,052 9,455
99.95% 2,000 11,082 13,926 14,929 18,544 13,468

% change cf Gaussian Copula 
Percentile Return Gaussian t - 10 df t - 5 df t - 2 df V CV

75.0% 4 0.0% -4.2% -10.3% -19.3% -5.8%
90% 10 0.0% -2.1% -2.9% -7.3% 2.0%
95% 20 0.0% -0.4% 1.6% -0.8% 5.2%
99% 100 0.0% 6.6% 10.2% 21.9% 10.6%

99.5% 200 0.0% 8.3% 19.5% 31.7% 12.7%
99.95% 2,000 0.0% 25.7% 34.7% 67.3% 21.5%  

 
The economic capital results for the t copula and the variance-covariance matrix 
approaches have been expressed as percentage changes +/- % of the economic capital 
arising from use of the Gaussian copula, e.g. at 99% the economic capital using the t 
copula with 5 d.f. (8,177) is 10.2% higher than that arising from the Gaussian copula at 
the same percentile (7,423). 
 
If we consider the Gaussian copula as our reference point then quite clearly there is 
a very wide range of outcomes depending on the approach used to aggregate risks.   
 

                                               
18 We have used the notation 90%, 99.5% to mean the worst 1 in 10, 1 in 200 year result etc. 
19 Loss(%) = Loss amount at % percentile of interest e.g. 99%; E( Loss) = Expected Loss 
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Comments: 
• When the marginal risk distributions are non-normal and positively skewed, then at 

higher percentiles the V CV capital approach to capital aggregation gives larger 
economic capital than from use of the Gaussian copula.   

• When the marginal risk distributions are normally distributed then the V CV and 
Gaussian economic capital results should be identical, ignoring sampling error.  

• With lognormal marginal risk distributions, the variance-covariance matrix approach 
to economic capital at the higher percentiles produces similar capital to a t copula. 
For example at 99% the V CV economic capital is 8,212 which is slightly larger than 
the economic capital of 8,177 arising from the use of the t copula with 5 d.f.     

• As the percentile increases, the larger the implied d.f (lower tail dependency) for the t 
copula so as to give the same economic capital as the V CV approach.   

 
Appendix 7 provides the same exhibit as above but shows the sensitivity of the results to 
different correlation coefficients. Results are shown for correlations of 10%, 25% and 
50%.  When the correlation increases, there is a decrease in the economic capital 
margin, for the t copula and V CV approaches, over the Gaussian copula method 
 
5.3.2  Lognormal risks (CV = 25% and 50%, Correlation = 25%) 
 
A natural question to ask is what is the sensitivity of the economic capital to variation in 
the CV of the underlying marginal risk distributions. In this simple example, the CV of the 
Lognormal distribution has been doubled form 25% to 50%.   
 
Economic Capital - 25% Correlation CV 25%
Percentile Return Gaussian t - 10 df t - 5 df t - 2 df V CV

75.0% 4 0.0% -4.2% -10.3% -19.3% -5.8%
90% 10 0.0% -2.1% -2.9% -7.3% 2.0%
95% 20 0.0% -0.4% 1.6% -0.8% 5.2%
99% 100 0.0% 6.6% 10.2% 21.9% 10.6%

99.5% 200 0.0% 8.3% 19.5% 31.7% 12.7%
99.95% 2,000 0.0% 25.7% 34.7% 67.3% 21.5%

Economic Capital - 25% Correlation CV 50%
Percentile Return Gaussian t - 10 df t - 5 df t - 2 df V CV

75.0% 4 0.0% -4.7% -11.2% -24.4% -17.0%
90% 10 0.0% -0.6% -3.3% -5.5% 0.8%
95% 20 0.0% 3.4% 0.4% 3.7% 7.3%
99% 100 0.0% 6.0% 10.9% 23.5% 18.2%

99.5% 200 0.0% 11.5% 14.1% 32.9% 24.0%
99.95% 2,000 0.0% 13.8% 29.1% 57.1% 38.9%  

 
The economic capital in the tables is expressed as percentage changes +/- % of the 
economic capital arising from use of the Gaussian copula. 
 
 
 
 
 
 



 51

Comments: 
• At the higher percentiles, 95% and above, a larger CV results in a larger economic 

capital margin for the V CV approach compared to the Gaussian copula capital.   
• Furthermore, with a higher CV the V CV approach results in a lower implied d.f for 

the equivalent t copula giving the same economic capital as the V CV approach.  For 
example, at 99% with a CV of 25% the V CV approach is similar to a t copula with 5 
d.f. whereas with a CV of 50% the V CV approach looks to be similar to a t Copula 
with d.f. about half-way between 2 and 5 d.f.      

 
5.3.3  Normal vs Lognormal risks (CV = 25%, Correlation = 25%) 
 
The analysis here considers the sensitivity of the economic capital results to variation in 
the assumed marginal risk distributions. A comparison has been made of the results 
arising from use of the Normal distribution compared to those arising from assuming the 
Lognormal distribution as used in earlier sections. 
 
Economic Capital - 25% Correlation Normal CV 25%

Percentile Return Gaussian t - 10 df t - 5 df t - 2 df V CV
75.0% 4 0.0% -2.7% -7.4% -15.0% 0.9%

90% 10 0.0% -1.7% -3.3% -7.4% 0.8%
95% 20 0.0% -1.1% -0.2% -3.3% 0.6%
99% 100 0.0% 3.7% 5.4% 13.1% 0.2%

99.5% 200 0.0% 5.5% 12.1% 19.5% 1.0%
99.95% 2,000 0.0% 19.6% 19.5% 35.8% 2.2%

Economic Capital - 25% Correlation LogNorm CV 25%
Percentile Return Gaussian t - 10 df t - 5 df t - 2 df V CV

75.0% 4 0.0% -4.2% -10.3% -19.3% -5.8%
90% 10 0.0% -2.1% -2.9% -7.3% 2.0%
95% 20 0.0% -0.4% 1.6% -0.8% 5.2%
99% 100 0.0% 6.6% 10.2% 21.9% 10.6%

99.5% 200 0.0% 8.3% 19.5% 31.7% 12.7%
99.95% 2,000 0.0% 25.7% 34.7% 67.3% 21.5%  

 
The economic capital in the tables is expressed as percentage changes +/- % over and 
above the respective economic capital arising from use of the Gaussian copula.  
 
Comments: 
• When the marginal risks distributions are Normal then the V CV approach to capital 

aggregation should give economic capital results identical to those arising from use 
of the Gaussian copula.  

• The last column in the top table above shows percentage value differences that are 
nearly, but not exactly equal to 0%. Any differences from 0% are due to sampling 
error, even with 25,000 simulations. 

 
5.4  Use of ‘tail correlations’ instead of tail dependence 
 
It was mentioned in section 4.5 that the use of ‘tail correlations’ within a variance-
covariance matrix approach to replicate the effect of tail dependence has some serious 
methodological limitations.  
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An alternative approach which would allow companies to get around these difficulties 
would be to use a copula with positive tail dependency, such as a t-copula. 
Nevertheless, in reality many companies are currently using higher than average 
correlations, referred to as ‘tail correlations’, to reflect views about tail dependence. 
 
A natural question to ask is how these ‘tail correlations’ compare to the correlation 
matrices used as an input parameter for a Gaussian and t-copulas. For the purpose of 
the numeric examples in this section we assume that that the pairwise correlation 
coefficients between risks are all equal to 25%.  
 
We then calculate the effective correlation coefficient x% such that:   
Economic Capital V CV (x%) = Economic Capital t copula (25%) at any given percentile. 
 
We will now compute what these x% correlations should be in the case of two scenarios, 
(i) Normal marginal risk distributions and (ii) Lognormal marginal risk distributions.  
 
Implied Correlation = V CV Sum  Normal CV 25%

Percentile Return Gaussian t - 10 df t - 5 df t - 2 df
75.0% 4 24.3% 22.4% 19.3% 14.5%

90% 10 24.4% 23.2% 22.1% 19.4%
95% 20 24.5% 23.8% 24.4% 22.2%
99% 100 24.9% 27.6% 28.9% 34.9%

99.5% 200 24.3% 28.3% 33.3% 39.4%
99.95% 2,000 23.5% 38.4% 38.2% 52.7%

25% Correlation

Implied Correlation = V CV Sum  LogNorm CV 25%
Percentile Return Gaussian t - 10 df t - 5 df t - 2 df

75.0% 4 29.6% 26.2% 21.6% 15.4%
90% 10 23.6% 22.1% 21.6% 18.7%
95% 20 21.5% 21.2% 22.6% 21.0%
99% 100 18.4% 22.4% 24.7% 32.7%

99.5% 200 17.3% 22.2% 29.5% 38.2%
99.95% 2,000 13.3% 27.5% 33.3% 57.4%

25% Correlation  
 
Comments: 
• For the Normal distribution the correlations are very close to 25% which is consistent 

with the V CV approach being equivalent to use of the Gaussian copula.  
• For the Lognormal distribution the implied ‘tail correlation’ is generally lower than that 

of the Normal distribution at the higher loss percentiles.  
• For any given percentile and t copula the implied ‘tail correlation’ is sensitive to the 

choice of distribution, which in these examples have quite modest CVs.    
• With the Lognormal distribution, for any given percentile e.g. 99.5% the range of 

implied ‘tail correlation’ varies from 22.2% to 38.2% for a t copula with 10 d.f. to one 
with 2 d.f. There is also a marked variation by percentile. In the case of a t copula 
with 10 d.f. the ‘tail correlation’ is lower than the average correlation at 99.5%.   

 
The conclusion we draw from these results is that it can be very difficult to come up with 
an adequate set of ‘tail correlations’ without any regard for the theoretical underpinnings. 
The results can vary quite significantly depending on what level of tail dependency the 
company is aiming to model. 
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6.  Communication of Economic Capital Modelling Dependency Impacts 
 
One of the key challenges facing organisations is how to communicate the effect of 
different dependency structures on the economic capital results.  
 
This section describes some very simple measures that could be adopted by firms in 
their communication either internally to the board of directors and senior management or 
externally to various stakeholders.  
 
The methods outlined may be of use in the determination of appropriate copulas and 
their parameters if similar calculations are made from empirical data.   
 
For the sake of simplicity we shall continue with the use of ABC Insurance Company to 
illustrate the calculations for each of the measures of interest. 
 
6.1  Communication Measures 
 
The following is a list of possible measures. It is not exhaustive but illustrative of different 
approaches, some more complex than others:   
• Economic Capital Aggregation  
• Joint Probability Density Function 
• Scatter Plot 
• Joint Excess Probability 
• Tail Concentration Function  
• Kendall Tau Correlation 
• Coefficient of Tail Dependence 
• Implied ‘Gaussian’ Correlation  
 
There are three possible levels of data granularity: 
• Comparisons made at an aggregate level e.g. total Economic Capital 
• Comparisons made between a pair of risks e.g. “Scatter Plot ” 
• Comparisons made between all risk pairs e.g. “Tail Concentration Function “ 
 
The numerical exhibits that follow are based on simulated output assuming: 
• 10 risk categories for ABC Insurance Company 
• Pairwise correlation coefficients of 25% between all risks 
• t copula with 5 d.f. unless otherwise stated e.g. in section 6.3 Economic Capital 

Aggregation where other copula assumptions are assumed   
• 25,000 simulations 
 
6.2  Economic Capital Aggregation  
 
Description 
The objective here is to calculate the total economic capital at the different percentiles 
using a number of different risk aggregation techniques. In the exhibit that follows capital 
numbers are shown for the (i) Gaussian copula, (ii) t Copula at 10, 5 and 2 d.f. and (iii) 
Variance-covariance matrix approach to capital aggregation. 
 
The exhibit shown is the same as that shown in section 5.3.1. 
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Exhibit 
 
Economic Capital - 25% Correlation
Percentile Return Gaussian t - 10 df t - 5 df t - 2 df V CV

75.0% 4 1,760 1,685 1,578 1,421 1,658
90% 10 3,688 3,610 3,582 3,418 3,763
95% 20 4,928 4,906 5,004 4,889 5,182
99% 100 7,423 7,916 8,177 9,049 8,212

99.5% 200 8,391 9,087 10,031 11,052 9,455
99.95% 2,000 11,082 13,926 14,929 18,544 13,468

% change cf Gaussian Copula 
Percentile Return Gaussian t - 10 df t - 5 df t - 2 df V CV

75.0% 4 0.0% -4.2% -10.3% -19.3% -5.8%
90% 10 0.0% -2.1% -2.9% -7.3% 2.0%
95% 20 0.0% -0.4% 1.6% -0.8% 5.2%
99% 100 0.0% 6.6% 10.2% 21.9% 10.6%

99.5% 200 0.0% 8.3% 19.5% 31.7% 12.7%
99.95% 2,000 0.0% 25.7% 34.7% 67.3% 21.5%  

 
Advantages 
• It is relatively simple to understand  
• It is possible to directly measure the financial impact on a company  
 
Disadvantages 
• One has no information of what is happening at an individual risk category level at 

each percentile of interest 
• The calculations are more computer intensive than those that will be discussed in the 

following sections. 
 
6.3  Joint Probability Density Function 
 
Description 
The Joint Probability Density function is a 3 dimensional representation of the plot of 
values (u,v) of the risk factor distributions X and Y, where u and v are defined by the 
relationships FX(x)  = u and FY(y) = v. A greater density of points represented by a larger 
value of the PDF. When there is tail dependency one would expect to see a greater 
density in the region of (1,1).   
 
Exhibit 
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Advantages 
• It is relatively simple to understand. 
• The exhibits are relatively easy to create. 
 
Disadvantages 
• Sampling error may distort the presence or otherwise of ‘tail’ dependency strength 
• There is no numerical measure that reflects the degree of dependency between risks  
• One can only use this method for a pair of risks at a time 
 
6.4  Scatter Plot 
 
Description 
A scatter plot involves a plot of values (u,v) of the risk factor distributions X and Y, where 
u and v are defined by the relationships FX(x)  = u and FY(y) = v. Furthermore, x and y 
are values from X and Y respectively and u and v are values on the interval [0,1].  
 
The extent of the clustering of points in the region of (1,1) indicates the level of ‘tail’ 
dependency between 2 risks. 
 
Exhibit 
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Advantages 
• It is relatively simple to understand. 
• The exhibits are very easy to create. 
 
Disadvantages 
• Sampling error may distort the presence or otherwise of ‘tail’ dependency strength 
• There is no numerical measure that reflects the degree of dependency between risks  
• It may be difficult to distinguish a pair or risks with higher tail dependence from a pair 

of risks with higher correlation but lower tail dependence. 
• One can only use this method for a pair of risks at a time 
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6.5  Joint Excess Probability 
 
Description 
For a pair of risks, the Joint Excess Probability is the joint probability that 2 risks are 
either greater or lower than some deemed threshold. Notation wise: 
• RJEP(z) = P( u>z, v>z ) 22 
• LJEP(z) = P( u<z, v<z )  
 
where: u and v are defined by FX(x)  = u and FY(y) = v; x and y are values from X and Y 
respectively and u and v are values on the unit interval [0,1].  
 
For independence the values of RJEP(z) and LJEP(z) are (1-z)2 and z2 respectively.    
 
Exhibit 
The following is an illustration of the RJEP(z) concept using a scatter plot of the 
simulation output for two hypothetical risks X and Y.  
 
e.g. RJEP(0.8) = No. of Points in A / Total No. of Points (in this case 1,000)   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The following diagram is a matrix of values of the function RJEP(0.95) for each of the 
pairwise combinations of the 10 risks.23 
 
For comparative purposes the value of RJEP(0.95) = 0.25% is shown where risks are 
independent of each other, i.e. there is 0% correlation. In this example the values 
between risk pairs should be identical however the presence of sampling error leads to 
small differences. With different pairwise correlations between risks the matrix of values 
becomes more meaningful.  

                                               
22 The functions RJEP(z), LJEP(z) are invented notation to distinguish between the top right hand 
and bottom left hand corners of the area [0,1] x [0,1].  
23 Even with 25,000 simulations sampling error is evident 
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RJEP(Z):  t Copula 5 d.f. z 95.0%
No. 1 2 3 4 5 6 7 8 9 10

Equity 1 0.87% 1.08% 1.07% 1.04% 0.98% 1.00% 0.89% 0.87% 0.98%
Property 2 1.04% 0.98% 0.97% 0.95% 0.98% 1.00% 0.95% 0.96%
Interest Rate 3 1.12% 1.06% 1.03% 1.10% 1.09% 1.04% 1.10%
Credit Spread 4 1.02% 0.99% 1.19% 1.01% 1.07% 1.17%
Credit Default 5 0.97% 1.05% 1.02% 1.00% 1.00%
UW - Cat 6 0.93% 0.91% 0.96% 1.07%
UW Non-Cat 7 0.97% 0.98% 1.09%
Reserve 8 1.04% 1.05%
Expenses 9 0.98%
Operational 10

Independence 0.25%  
 
Advantages 
• It is practical and the concept is relatively easy to understand  
• The calculation is relatively easy to perform 
• It allows the quantification of the level of dependence at a given percentile in a way 

which is both mathematically tractable, and simple to understand 
• It provides a consistent methodology for comparing the relative strength of 

dependency between 2 or more risks whether the dependence between them is 
expressed using copulas or correlations, or in any other way 

• For more than two risks it is possible to estimate RJEP(z) and LJEP(z) for each pair 
of risks and present the information as a matrix of values for all risks or a pair of risks 

 
Disadvantages 
• For most of practitioners used to linear correlations this would be a new concept and 

some confusion between the two numbers is possible. In particular, it could be 
mistaken to be a ‘tail correlation’, i.e. the level of correlation in the tail. In fact, the 
RJEP(z) and LJEP(z) functions are probabilities, i.e. take values between 0 and 1 
whereas a correlation coefficient takes values between -1 and 1. 

• It is difficult to translate a value of RJEP(z) or LJEP(z) into a number that is 
commonly understood e.g. linear correlation, or its equivalent at the ‘tails’.  

• The value of RJEP(z) or LJEP(z) depends on the marginal risk distributions, not only 
on the dependence structure between the risks. 

• Sampling error may distort the presence or otherwise of ‘tail’ dependency strength 
 
6.6  Right Tail Concentration Function  
 
Description 
For a pair of risks, the strength of ‘tail’ dependence between risk factors can be defined 
using the Right and Left Tail Concentration Functions R(z) and L(z) [10] respectively as 
follows: 
• Right Tail Concentration Function:  R(z) = P( u>z / v>z ) = P( u>z, v>z ) / P ( v>z )  
• Left Tail Concentration Function:     L(z) = P( u<z / v<z ) = P( u<z, v<z ) / P ( v<z ) 

       
where: u and v are defined by FX(x)  = u and FY(y) = v; x and y are values from X and Y 
respectively and u and v are values on the unit interval [0,1].  
 
Technically speaking if we have more than two risks, e.g. three risks, then R(z) should 
be defined as R(z) = P( u>z / v>z, w>z ) etc.  
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Exhibit 
The following is an illustration of the R(z) concept using a scatter plot of the simulation 
output for two hypothetical risks X and Y.  
 
e.g. R(0.8) = No. of Points in A / ( Total No. of Points (A + B))   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The following is a matrix of values of the function R(0.95) for each of the pairwise 
combinations of the 10 risks. 24 In this example the values between risk pairs should be 
identical however the presence of sampling error leads to small differences. With 
different pairwise correlations between risks the matrix of values becomes more 
meaningful.  
 
For comparative purposes the value of R(0.95) = 5.0% is shown where risks are 
independent of each other, i.e. there is 0% correlation. 
 
R(Z):  t Copula 5 d.f. z 95.0%

No. 1 2 3 4 5 6 7 8 9 10
Equity 1 17.58% 21.85% 21.61% 20.89% 19.68% 20.16% 17.98% 17.58% 19.68%
Property 2 21.18% 20.03% 19.87% 19.38% 20.03% 20.36% 19.38% 19.71%
Interest Rate 3 21.20% 19.98% 19.45% 20.82% 20.67% 19.68% 20.89%
Credit Spread 4 19.06% 18.46% 22.20% 18.91% 19.96% 21.82%
Credit Default 5 19.13% 20.71% 20.16% 19.61% 19.76%
UW - Cat 6 18.87% 18.46% 19.35% 21.62%
UW Non-Cat 7 19.27% 19.51% 21.74%
Reserve 8 21.06% 21.38%
Expenses 9 19.48%
Operational 10

Independence 5.0%  
 
 
 
 
 
 
 
 
 
                                               
24 Even with 25,000 simulations sampling error is evident 
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Advantages 
• It is practical and the concept is relatively easy to understand  
• The calculation is relatively easy to perform 
• It allows the quantification of the level of dependence at a given percentile in a way 

which is both mathematically tractable, and simple to understand 
• It is closely linked to another important copula parameter: “Coefficient of Tail 

Dependence” (section 6.8) which is a limiting case of the tail concentration function 
• It provides a consistent methodology for comparing the relative strength of 

dependency between two or more risks whether the dependence between them is 
expressed using copulas or correlations, or in any other way 

• For more than two risks it is possible to estimate R(z) and L(z) for each pair of risks 
and present the information as a matrix of values for all risks or a pair of risks 

 
Disadvantages 
• For most of practitioners used to linear correlations this would be a new concept and 

some confusion between the two numbers is possible. In particular, it could be 
misunderstood to be a ‘tail correlation’, i.e. the level of correlation in the tail. In fact, 
the tail concentration functions are different mathematical objects: they are 
probabilities, i.e. take values between 0 and 1 whereas correlation coefficient takes 
values between -1 and 1. 

• It is difficult to translate a value of R(z) or L(z) into a number that is commonly 
understood i.e. linear correlation  

• Sampling error may distort the presence or otherwise of ‘tail’ dependency strength 
 
For comparative purposes the tables of matrices for R(0.95) and RJEP(0.95) are shown 
for both the T Copula with 5 d.f. and the Gaussian Copula in appendix 4.   
 
6.7  Kendall Tau Correlation 
 
The concept and definition of the Kendall tau rank correlation (or simply the Kendall tau) 
was discussed in section 2.4. 
 
It is a type of rank correlation, i.e. a correlation coefficient which depends on the ranking 
of data points, not on their values. It’s values lie between -1 and 1.    
 
In this example the values between risk pairs should be identical however the presence 
of sampling error leads to small differences. With different pairwise correlations between 
risks the matrix of values becomes more meaningful.  
 
Exhibit 
 
Kendall Tau:  t Copula 5 d.f.

No. 1 2 3 4 5 6 7 8 9 10
Equity 1 17.62% 16.72% 17.74% 18.31% 16.29% 17.73% 16.72% 16.49% 17.50%
Property 2 15.38% 15.92% 16.39% 15.72% 17.20% 16.43% 16.29% 17.25%
Interest Rate 3 16.02% 16.67% 17.29% 17.66% 16.68% 16.71% 17.02%
Credit Spread 4 16.27% 17.17% 16.70% 15.94% 15.96% 16.02%
Credit Default 5 16.35% 17.22% 15.75% 15.68% 17.25%
UW - Cat 6 15.61% 15.16% 16.71% 17.90%
UW Non-Cat 7 15.56% 15.86% 17.63%
Reserve 8 16.73% 17.26%
Expenses 9 16.19%
Operational 10  
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Advantages 
• It is intuitively simple and the concept is relatively easy to understand.  
• It is more intuitive to someone who is used to regular linear correlations than other 

measures such as tail dependence 
• It does not depend on the absolute value of observations, which means it should be 

better dealing with data outliers. 
• It provides a consistent methodology for comparing the relative strength of two or 

more different random variables with any type of dependency structure. 
• It is possible to represent the information either as a matrix of values for all risks or a 

pair of risks 
 
Disadvantages 
• The calculation is slightly more challenging than with other methods  
• It is difficult to translate values Kendall Tau into numbers that are commonly 

understood e.g. linear correlation, or its equivalent at the ‘tails’.  
• It does not identify trends like an ever-increasing “strength of relationship” with an 

increasing percentile, i.e. it is just a scalar measure, like the linear correlation. 
 
Kendall Tau matrices are shown for both the t Copula with 5 d.f. and the Gaussian 
Copula in appendix 5.  
 
6.8  Coefficient of Tail Dependence 
 
Description 
 
The Coefficient of Tail Dependence between two risks is an asymptotic measure of the 
dependence in the tails of the bivariate distribution (X,Y). 
 
The mathematical definition of tail dependence was discussed in section 2.9.1. 
 
For a multivariate distribution with a Gaussian copula, the tail dependence between any 
pair of risks is always zero. This is one of the important deficiencies of the Gaussian 
copula for modelling dependence. 
 
For continuously distributed random variables with the t Copula the Coefficient of Tail 
Dependence is: 

• λ = 2tν+1( -(ν+1)0.5(1-ρ)0.5/ (1+ρ)0.5 )      

where: ρ is the pairwise correlation coefficient between two risks  
 
These coefficients can be viewed as the limiting conditional probabilities of the functions 
R(z) and L(z) respectively (see section 6.6) 
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Exhibit 
For t copulas with 10, 5 and 2 d.f. respectively the following is a table of values for λ in 
the case of a 25% pairwise correlation between risks.  
 

T d.f. λ
10 2.6%
5 10.7%
2 27.2%  

 
Advantages 
• This is the most accurate mathematical measure of the “true” tail dependence 

between two risks 
• It does not depend on the estimated percentile, it is just one single characteristic of a 

dependence structure, e.g. copula 
• It provides a consistent methodology for comparing the relative strength of two or 

more different copulas 
• It is possible to represent the information either as a matrix of values for all risks or a 

pair of risks 
 
Disadvantages 

• It is a relatively new concept and could be counter-intuitive to those who are just 
familiar with correlations. Moreover, it could actually be confused for ‘tail correlation’, 
because λ takes values between 0 and 1 (although correlation can take values 
between -1 and 1) 

• The values of λ are limiting values and do not reflect an ever-increasing value with 
an increasing percentile.  

• λ = 0 for Gaussian copula  
• For the t copula λ is limited by the combination of a degrees of freedom parameter 

and correlation coefficient. Not all values of λ between 0 and 1 are achievable by 
fixing one of these two parameters and varying the other. E.g., if you are trying to 
calibrate a t Copula for two risks with correlation 0.5 and a Coefficient of Tail 
Dependence of 0.7 by choosing the degrees of freedom parameter, this might not be 
possible. 

• The values use a closed-form solution which may, unless enough simulations are 
run, provide inconsistent values with values of R(z) from simulated output 

 
6.9 Implied ‘Gaussian’ Correlation  
 
Description 
This method is really a combination of the methods previously described in sections 
6.5 and 6.6 with notable differences:    
• R(z) and RJEP(z) values are shown for more than one percentile 
• R(z) and RJEP(z) values are shown for 3 different scenarios, (i) Independence 

(where correlation is 0%) (ii) Gaussian copula and (iii) t copula with 5 d.f.. The latter 
two using the relevant correlation coefficients. 
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Exhibit 
The graph below shows the values of R(z) for Interest rate risk vs UW Non-Cat risk 
assuming a correlation of 25%.   
 
On inspection it can be seen that the values of R(z) are greater for the t copula in 
comparison with the Gaussian Copula; which in turn has larger values of R(z) compared 
to an assumption of independence between the risks. This observation holds for all 
percentiles. Furthermore the ratio of R(z) (t copula) / R(z) (Gaussian copula) increases 
with an increasing percentile. 
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The numbers behind this exhibit can also be used to determine a so-called ‘Implied’ 
Gaussian correlation between a pair of risks at each percentile. For example, at 99.0% 
the value of R(z) = 15.96% and 5.31% for the t copula with 5 d.f. and Gaussian copula 
respectively. However, if the linear correlation between these two risks is increased from 
25% to 54% then the value of R(z) at 99.0% assuming the Gaussian copula now equals 
the same value of R(z) = 15.96% as was the case with a linear correlation of 25% and 
the t copula with 5 d.f. This approach is very sensitive to sampling error.               
 
Advantages 
• It is very useful to compare the t copula alongside the Gaussian Copula and the 

scenario of Independence. In this way one can get a feeling for the degree of tail 
dependency of the t Copula at each percentile 

• Furthermore, showing values at different percentiles is a useful way of comparing 
how the relative values between the t Copula and the Gaussian copula change with 
percentile. 

• It is easy to calculate and technically correct 
• The exhibits are very easy to generate within a simulation model 
 
Disadvantages 
• It is difficult to translate values of R(z) and RJEP(z) into numbers that are commonly 

understood e.g. linear correlation.  
• There are not many data points at the extreme percentiles and so the calculation is 

very sensitive to any sampling error in the joint distribution output.    
• One can only use this method for a pair of risks at a time 
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Conclusions 
 
Dependency is a very complex area of economic capital modelling allowing for a wide 
choice of various model types and approaches to parameterisation. Issues that arise 
over a typical 12-month modelling time horizon are compounded when we move into a 
multi-year model.    
 
Even something intuitively simple as a correlation coefficient can cause serious practical 
difficulties, including spurious relationships, availability of data and technical constraints. 
As was mentioned earlier on in the paper a simple scatter plot is likely to lead to a 
different interpretation than an historical time series representation of the same 
information.  
 
A few general messages coming out of our work are as follows: 
   
1. A single correlation coefficient is often not enough to describe the dependency 

between risks in more extreme scenarios, the distribution-based copula approach to 
modelling dependency can be more meaningful 
 

2. If copulas are used then the selection of an appropriate copula and its parameters 
should be based on sound analysis and judgement. However, there are considerable 
issues in trying to parameterise heavy-tailed copulas and so a pragmatic approach is 
often called, which is touched upon in section 6. 
 

3. A company needs to be extremely careful if it is using higher correlations within the 
variance-covariance framework as a substitute for tail dependence and copulas. The 
choice of correlations should not be based on the notion of a prudent margin in the 
absence of any analytical work underpinning the assumptions made. One needs to 
remember that a correlation matrix can be calibrated to reflect the average level of 
dependence related to a certain confidence level, but it will not work with a different 
probability of loss. 
 

4. Copulas do not model the change of dependency structure over time, in particular at 
different points in the economic cycle, and in the case of non-life insurance 
companies the underwriting cycle.  
 

5. Even a simple correlation matrix can cause quite a lot of issues including positive 
semi-definiteness, high dimensionality and filling in the missing terms.        

 
In our research we have touched upon a number of different topics, some more complex 
than others.  Whilst much valuable work within the sphere of dependency modelling has 
been accomplished over the last few years more still needs to be done in advance of the 
implementation of robust models and credible parameters within the Solvency II 
framework. We would like to think that the actuarial profession will be at the forefront of 
such developments as they affect insurance organisations. 
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Appendix 1 
 

Positive Semi-Definite Matrices 
 
Definition 
 
A positive semi-definite (PSD) matrix is similar in many ways to a non-negative real 
number. 
 
An n × n real symmetric matrix M is positive definite if zTMz ≥ 0 for all non-zero vectors z 
with real entries, where zT denotes the transpose of z. 
 
Cholesky Decomposition 
 
The importance of PSD matrices in statistics derives from the following property: 
 
If a square matrix A has real entries and is PSD, then A can be decomposed as A=LL*, 
where L is a lower triangular matrix with real entries, and L* denotes the transpose of L. 
This is the Cholesky decomposition. 
 
Any square matrix A with non-zero pivots can be written as the product of a lower 
triangular matrix L and an upper triangular matrix U; this is called the LU decomposition. 
However, if A is PSD, we can choose the factors such that U is the transpose of L. 
 
One can intuitively think of Cholesky decomposition as an operation similar to taking a 
square root in a matrix world.   
 
Example 1 
 
The following diagrams show what at first appearances appear to be perfectly normal 
matrices. Yet, the first one is PSD and the other is not.   
 
PSD Matrix

Risk 1 2 3 4 5 6
1 1.00 0.20 0.50 0.10 0.20 0.60
2 0.20 1.00 0.20 0.70 0.40 0.10
3 0.50 0.20 1.00 0.50 0.25 0.30
4 0.10 0.70 0.50 1.00 0.10 0.20
5 0.20 0.40 0.25 0.10 1.00 -0.25
6 0.60 0.10 0.30 0.20 -0.25 1.00

Non-PSD Matrix
Risk 1 2 3 4 5 6

1 1.00 0.20 0.50 0.10 0.20 0.60
2 0.20 1.00 -0.20 0.70 0.40 0.10
3 0.50 -0.20 1.00 0.50 0.25 0.30
4 0.10 0.70 0.50 1.00 0.10 0.20
5 0.20 0.40 0.25 0.10 1.00 -0.25
6 0.60 0.10 0.30 0.20 -0.25 1.00  
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Example 2 
 
The following illustrates the computation of the cholesky decomposition matrix (Table 2) 
from the original correlation matrix in Table 1. Table 4 is the matrix computed through a 
multiplication of the cholesky matrix and its transpose (Table 3). As can be seen, and 
agrees with theory, this calculation gives us the original correlation matrix. 
 
Table 1 - CORRELATION MATRIX

No. 1 2 3 4 5 6 7 8 9 10
Equity 1 1.00 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
Property 2 0.25 1.00 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
Interest Rate 3 0.25 0.25 1.00 0.25 0.25 0.25 0.25 0.25 0.25 0.25
Credit Spread 4 0.25 0.25 0.25 1.00 0.25 0.25 0.25 0.25 0.25 0.25
Credit Default 5 0.25 0.25 0.25 0.25 1.00 0.25 0.25 0.25 0.25 0.25
NL UW - Catastrophe 6 0.25 0.25 0.25 0.25 0.25 1.00 0.25 0.25 0.25 0.25
NL UW Non-Catastrophe 7 0.25 0.25 0.25 0.25 0.25 0.25 1.00 0.25 0.25 0.25
NL Reserving 8 0.25 0.25 0.25 0.25 0.25 0.25 0.25 1.00 0.25 0.25
Expenses 9 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 1.00 0.25
Operational 10 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 1.00

Table 2 - CHOLESKY MATRIX
No. 1 2 3 4 5 6 7 8 9 10

Equity 1 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Property 2 0.25 0.97 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Interest Rate 3 0.25 0.19 0.95 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Credit Spread 4 0.25 0.19 0.16 0.94 0.00 0.00 0.00 0.00 0.00 0.00
Credit Default 5 0.25 0.19 0.16 0.13 0.93 0.00 0.00 0.00 0.00 0.00
NL UW - Catastrophe 6 0.25 0.19 0.16 0.13 0.12 0.92 0.00 0.00 0.00 0.00
NL UW Non-Catastrophe 7 0.25 0.19 0.16 0.13 0.12 0.10 0.91 0.00 0.00 0.00
NL Reserving 8 0.25 0.19 0.16 0.13 0.12 0.10 0.09 0.91 0.00 0.00
Expenses 9 0.25 0.19 0.16 0.13 0.12 0.10 0.09 0.08 0.90 0.00
Operational 10 0.25 0.19 0.16 0.13 0.12 0.10 0.09 0.08 0.08 0.90

Table 3 - TRANSPOSE CHOLESKY MATRIX
No. 1 2 3 4 5 6 7 8 9 10

Equity 1 1.00 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
Property 2 0.00 0.97 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19
Interest Rate 3 0.00 0.00 0.95 0.16 0.16 0.16 0.16 0.16 0.16 0.16
Credit Spread 4 0.00 0.00 0.00 0.94 0.13 0.13 0.13 0.13 0.13 0.13
Credit Default 5 0.00 0.00 0.00 0.00 0.93 0.12 0.12 0.12 0.12 0.12
NL UW - Catastrophe 6 0.00 0.00 0.00 0.00 0.00 0.92 0.10 0.10 0.10 0.10
NL UW Non-Catastrophe 7 0.00 0.00 0.00 0.00 0.00 0.00 0.91 0.09 0.09 0.09
NL Reserving 8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.91 0.08 0.08
Expenses 9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.90 0.08
Operational 10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.90

Table 4 - ORIGINAL MATRIX - CHECK
No. 1 2 3 4 5 6 7 8 9 10

Equity 1 1.00 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
Property 2 0.25 1.00 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
Interest Rate 3 0.25 0.25 1.00 0.25 0.25 0.25 0.25 0.25 0.25 0.25
Credit Spread 4 0.25 0.25 0.25 1.00 0.25 0.25 0.25 0.25 0.25 0.25
Credit Default 5 0.25 0.25 0.25 0.25 1.00 0.25 0.25 0.25 0.25 0.25
NL UW - Catastrophe 6 0.25 0.25 0.25 0.25 0.25 1.00 0.25 0.25 0.25 0.25
NL UW Non-Catastrophe 7 0.25 0.25 0.25 0.25 0.25 0.25 1.00 0.25 0.25 0.25
NL Reserving 8 0.25 0.25 0.25 0.25 0.25 0.25 0.25 1.00 0.25 0.25
Expenses 9 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 1.00 0.25
Operational 10 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 1.00  
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Appendix 2 
 

Anscombe’s Quartet 
 
Description 
Anscombe’s quartet consists of four data sets which have the same identical statistical 
properties but which are very different to each other when viewed graphically. The 
different graphs are labelled 1 through to 4. The linear regression line for each set of 
points is given by y = 3 + 0.5x. 
 
The statistics for all 4 data sets are shown in the following table: 
 

Property Value
Mean of each x variable 9.0
Variance of each x variable 10.0
Mean of each y variable 7.5
Variance of each y variable 3.75
Correlation between each x and y variable 0.816
Linear regression line y = 3 + 0.5x    
 
Comments on the Graphs 
Graph 1 – What one would expect when considering two correlated variable that follow 
the assumption of normality.    
Graph 2 – The relationship is not linear but an obvious non-linear relationship exists.    
Graph 3 – The linear relationship is perfect except for one outlier.    
Graph 4 – The relationship between variables is not linear but one outlier is enough to 
give a correlation of 0.81 and make it appear as though there is one. 
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Appendix 3 
 

Ranges for estimates of missing correlation 
 
 
Given two correlation coefficients ρX,Y and ρY,Z , the valid range for ρX,Z is given by the 
following double inequality: 
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This double inequality can be deduced by the following reasoning. 
 
The partial correlation between X and Z dependent on Y is: 
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This partial correlation must be between -1 and 1: 
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Simplifying we get our required double inequality: 
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Appendix 4 
 

RJEP(0.95) & R(0.95) – t Copula 5 df, Gaussian Copula and Independence   
 

R(Z):  t Copula 5 d.f. z 95.0%
No. 1 2 3 4 5 6 7 8 9 10

Equity 1 17.58% 21.85% 21.61% 20.89% 19.68% 20.16% 17.98% 17.58% 19.68%
Property 2 21.18% 20.03% 19.87% 19.38% 20.03% 20.36% 19.38% 19.71%
Interest Rate 3 21.20% 19.98% 19.45% 20.82% 20.67% 19.68% 20.89%
Credit Spread 4 19.06% 18.46% 22.20% 18.91% 19.96% 21.82%
Credit Default 5 19.13% 20.71% 20.16% 19.61% 19.76%
UW - Cat 6 18.87% 18.46% 19.35% 21.62%
UW Non-Cat 7 19.27% 19.51% 21.74%
Reserve 8 21.06% 21.38%
Expenses 9 19.48%
Operational 10

RJEP(Z):  t Copula 5 d.f.
No. 1 2 3 4 5 6 7 8 9 10

Equity 1 0.87% 1.08% 1.07% 1.04% 0.98% 1.00% 0.89% 0.87% 0.98%
Property 2 1.04% 0.98% 0.97% 0.95% 0.98% 1.00% 0.95% 0.96%
Interest Rate 3 1.12% 1.06% 1.03% 1.10% 1.09% 1.04% 1.10%
Credit Spread 4 1.02% 0.99% 1.19% 1.01% 1.07% 1.17%
Credit Default 5 0.97% 1.05% 1.02% 1.00% 1.00%
UW - Cat 6 0.93% 0.91% 0.96% 1.07%
UW Non-Cat 7 0.97% 0.98% 1.09%
Reserve 8 1.04% 1.05%
Expenses 9 0.98%
Operational 10

R(Z):  Gaussian Copula
No. 1 2 3 4 5 6 7 8 9 10

Equity 1 11.14% 11.22% 11.88% 12.12% 11.06% 10.89% 11.47% 11.55% 11.71%
Property 2 11.31% 11.63% 12.68% 11.55% 11.47% 13.17% 13.09% 11.71%
Interest Rate 3 11.80% 10.98% 10.82% 12.45% 10.90% 10.66% 12.45%
Credit Spread 4 11.22% 11.85% 11.46% 11.69% 12.49% 13.68%
Credit Default 5 13.19% 12.30% 11.33% 11.89% 11.65%
UW - Cat 6 10.67% 11.99% 12.41% 12.82%
UW Non-Cat 7 14.12% 11.46% 12.19%
Reserve 8 11.88% 12.52%
Expenses 9 11.01%
Operational 10

RJEP(Z):  Gaussian Copula
No. 1 2 3 4 5 6 7 8 9 10

Equity 1 0.54% 0.55% 0.58% 0.59% 0.54% 0.53% 0.56% 0.56% 0.57%
Property 2 0.56% 0.58% 0.63% 0.57% 0.57% 0.65% 0.65% 0.58%
Interest Rate 3 0.58% 0.54% 0.53% 0.61% 0.54% 0.52% 0.61%
Credit Spread 4 0.56% 0.60% 0.58% 0.59% 0.63% 0.69%
Credit Default 5 0.65% 0.61% 0.56% 0.59% 0.58%
UW - Cat 6 0.52% 0.58% 0.60% 0.62%
UW Non-Cat 7 0.70% 0.57% 0.60%
Reserve 8 0.59% 0.62%
Expenses 9 0.56%
Operational 10

R(Z):  Independence 5.0%
RJEP(Z):  Independence 0.25%  
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Appendix 5 
 

Kendall Tau – t Copula 5 d.f. and Gaussian Copula   
 
Kendall Tau:  t Copula 5 d.f.

No. 1 2 3 4 5 6 7 8 9 10
Equity 1 17.62% 16.72% 17.74% 18.31% 16.29% 17.73% 16.72% 16.49% 17.50%
Property 2 15.38% 15.92% 16.39% 15.72% 17.20% 16.43% 16.29% 17.25%
Interest Rate 3 16.02% 16.67% 17.29% 17.66% 16.68% 16.71% 17.02%
Credit Spread 4 16.27% 17.17% 16.70% 15.94% 15.96% 16.02%
Credit Default 5 16.35% 17.22% 15.75% 15.68% 17.25%
UW - Cat 6 15.61% 15.16% 16.71% 17.90%
UW Non-Cat 7 15.56% 15.86% 17.63%
Reserve 8 16.73% 17.26%
Expenses 9 16.19%
Operational 10

Kendall Tau:  Gaussian Copula
No. 1 2 3 4 5 6 7 8 9 10

Equity 1 16.25% 16.24% 15.64% 16.29% 15.97% 16.24% 15.53% 16.90% 15.58%
Property 2 16.13% 16.37% 15.35% 14.62% 16.00% 15.24% 17.53% 15.59%
Interest Rate 3 16.33% 15.90% 15.23% 14.50% 15.66% 16.78% 16.31%
Credit Spread 4 15.21% 15.30% 15.54% 15.16% 17.13% 16.62%
Credit Default 5 16.17% 13.69% 14.71% 14.85% 16.29%
UW - Cat 6 13.38% 16.68% 15.72% 16.85%
UW Non-Cat 7 14.64% 14.75% 15.54%
Reserve 8 16.97% 15.78%
Expenses 9 15.71%
Operational 10  
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Appendix 6 
 

ABC Insurance Company – Other distribution parameters   
 
Risk Type Distribution Mu Sigma E(X) SD(X) CV(X)
Equity Lognormal 7.4893 0.4724 2,000 1,000 50%
Property Lognormal 7.4893 0.4724 2,000 1,000 50%
Interest Rate Lognormal 7.4893 0.4724 2,000 1,000 50%
Credit Spread Lognormal 7.4893 0.4724 2,000 1,000 50%
Credit Default Lognormal 7.4893 0.4724 2,000 1,000 50%
UW - Cat Lognormal 7.4893 0.4724 2,000 1,000 50%
UW Non-Cat Lognormal 7.4893 0.4724 2,000 1,000 50%
Reserve Lognormal 7.4893 0.4724 2,000 1,000 50%
Expenses Lognormal 7.4893 0.4724 2,000 1,000 50%
Operational Lognormal 7.4893 0.4724 2,000 1,000 50%

Risk Type Distribution Mu Sigma E(X) SD(X) CV(X)
Equity Normal 2,000 500 2,000 500 25%
Property Normal 2,000 500 2,000 500 25%
Interest Rate Normal 2,000 500 2,000 500 25%
Credit Spread Normal 2,000 500 2,000 500 25%
Credit Default Normal 2,000 500 2,000 500 25%
UW - Cat Normal 2,000 500 2,000 500 25%
UW Non-Cat Normal 2,000 500 2,000 500 25%
Reserve Normal 2,000 500 2,000 500 25%
Expenses Normal 2,000 500 2,000 500 25%
Operational Normal 2,000 500 2,000 500 25%  
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Appendix 7 
 

ABC Insurance Co. – Lognormal risks (CV = 25%, Corr = 10%, 25%, 50%) 
 

Economic Capital - 10% Correlation % change cf Gaussian
Percentile Return Gaussian t - 10 df t - 5 df t - 2 df V CV

75.0% 4 0.0% -7.6% -10.4% -23.1% -9.3%
90% 10 0.0% -1.4% -2.3% -6.4% 1.9%
95% 20 0.0% 2.0% 2.1% 4.4% 6.2%
99% 100 0.0% 7.7% 13.0% 23.5% 13.1%

99.5% 200 0.0% 11.2% 18.5% 31.7% 15.5%
99.95% 2,000 0.0% 21.8% 32.6% 62.9% 25.5%

Economic Capital - 25% Correlation % change cf Gaussian
Percentile Return Gaussian t - 10 df t - 5 df t - 2 df V CV

75.0% 4 0.0% -4.2% -10.3% -19.3% -5.8%
90% 10 0.0% -2.1% -2.9% -7.3% 2.0%
95% 20 0.0% -0.4% 1.6% -0.8% 5.2%
99% 100 0.0% 6.6% 10.2% 21.9% 10.6%

99.5% 200 0.0% 8.3% 19.5% 31.7% 12.7%
99.95% 2,000 0.0% 25.7% 34.7% 67.3% 21.5%

Economic Capital - 50% Correlation % change cf Gaussian
Percentile Return Gaussian t - 10 df t - 5 df t - 2 df V CV

75.0% 4 0.0% -1.0% -5.9% -12.8% -2.2%
90% 10 0.0% -2.5% -2.4% -7.2% 1.1%
95% 20 0.0% -1.7% 0.2% -2.1% 2.6%
99% 100 0.0% 3.7% 7.6% 14.3% 6.6%

99.5% 200 0.0% 6.7% 10.6% 18.5% 8.7%
99.95% 2,000 0.0% 11.7% 11.7% 32.7% 7.9%  
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Appendix 8 
 

Canonical Maximum Likelihood – LIBOR 3M vs FTSE All Share Total Return 
 
Scatter Plot of values for LIBOR 3M vs FTSE All Share Total Return 
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Scatter Plot of [0,1] values for LIBOR 3M vs FTSE All Share Total Return 
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