The Actuarial Profession making financial sense of the future

Chasing the Tail

Correlations and Dependencies in Economic Capital Models

36th Annual GIRO Convention

Richard Shaw, William Diffey and Grigory Spivak

6-9 October 2009 EICC, Edinburgh, Scotland

Correlations and Dependencies in Economic Capital Models Working Party

FIRM Working Party Members

- Richard Shaw (Chair)
- William Diffey
- Lorenzo Fattibene
- Grigory Spivak

FIRM Sponsored Paper

- The paper "Correlations and Dependencies in Economic Capital Models" is available on both the FIRM 2009 and GIRO 2009 Websites
 - Covers in more depth the many practical issues that arise in this presentation

Topics

- Why Diversification is Important
- Definition and Types of Dependency
- Aggregation Techniques
- Modelling Issues
- Impact of Dependency Modelling on Economic Capital
- Communication of Economic Capital Dependency Impacts
- Conclusions

Why Diversification is Important Diversification – Time to take stock

- Fate of the banks should be a warning to insurers
- Mis-pricing of diversification risk within asset backed structures
- Diversification is the reason why insurance companies exist
- Management of diversification should be owned by the Board and Senior Management
- An embedded ERM Framework needs to consider diversification benefits

Updated from Prechter's August 20, 2008 TV Appearance

Why Diversification is Important Diversification – A core benefit within Economic Capital

Diversification needs to be a key feature of an effective ERM Framework

Why Diversification is Important Diversification works until it doesn't

Why Diversification is Important Aspects of Diversification

- There are many practical considerations
- Diversification benefits need to be managed
 - Too valuable to overlook or neglect
 - Managed within the same risk appetite framework as earnings or volatility
- Diversification benefits may arise by accident
 - Geographical or LOB expansion
 - However, diversification rarely drives strategy
- Communication of diversification is key
 - Mixture of qualitative and quantitative methods
 - Need for risk management tools to aid this communication
 - Internal vs external communication

Why Diversification is Important Financial Management aspects of Diversification

- Regulatory Compliance
- Regulatory Capital
- Economic Capital
- Management of Risk
- Liability Valuation
- Asset Valuation (including ESGs)
- Pricing Strategic Planning & Decisions
- Capital Management
- Reinsurance Strategy
- There are many inter-dependencies

Why Diversification is Important Governance aspects of Diversification

- Correlation coefficients a common language
 - But a language that can trap the non specialist
- The Credit Crunch has identified issues:
 - Need for Diversification KRIs and KCIs
 - ESG implicit correlation transparency
 - Improvements in diversification 'Auditability'
 - Diversification trading through securitisation
- Solvency II and diversification disclosure
 - Already a feature of ICAs (UK)
 - Solvency II will require disclosure
- Investors need to be reassured

Why Diversification is Important Regulatory aspects of Diversification

- ICA:
 - ICG for 'excessive' diversification benefits has reduced in recent years
 - However, the FSA still not convinced by some companies' claims
- Solvency II:
 - Group support regime is crucial to the success of SII
 - Diversification benefits between parent companies and subsidiaries
 - Diversification benefits between Life and Non-Life QIS 4 modules
 - Risk Margins at portfolio, company or line of business level
 - Uncertainty of diversification benefits recognisable within internal models
 - Regulatory disclosure of diversification required for the first time (Pillar III)
 - Impact on M&A and Composites
- IFRS

Why Diversification is Important Rating Agencies aspects of Diversification

- Need to identify "True" diversification
 - Natural scepticism of some claims
 - Supposedly diverse institutions experienced financial stress during the credit crunch
- Remote 'tail' events happen too frequently:
 - Black Swans
- Focus on:
 - Monoline insurers
 - Fungibility of capital
 - Level of commitment to subsidiaries
- How useful are rating agency models with standard correlation matrices

Why Diversification is Important

Solvency II – An internal model is a lot more than a model for capital

... it is an integral part of the risk management process

Definition and Types of Dependency What do we mean by dependency

- The value of one risk factor gives an indication of the value of another risk factor.
- One extreme is perfect dependence: if you know the value of one risk factor, you know exactly the value of another risk factor.
- The other extreme is independence: the value of one risk factor does not enable you to make any predictions about the other risk factor
- Dependence and Correlation NOT the same thing

Definition and Types of Dependency Types of dependency

- Explicit Method: Dependency between random variables is expressed via common risk factors which these random variables depend on
 - Risk1 = Function1(X1, ..., Xn, and other Risk1-specific factors) + Residual1
 - Risk2 = Function2(X1, ..., Xn, and other Risk2-specific factors) + Residual2
 - Popular approach in modelling non-life risks
 - aka Causal Modelling, Common Risk Drivers etc
- Implicit method: Dependency structure is Specified directly by:
 - Correlation matrix
 - Copula
- Implicit Method Economic Capital Aggregation:
 - Variance Covariance approach Correlation Matrix, Marginal Risk Capitals
 - Copula approach Correlation Matrix, Copula, Marginal Risk Distributions

Aggregation Techniques Variance Covariance Matrices

 Correlation matrix is associated with variance-covariance approach to aggregating dependencies:

$$Total_Capital = \sqrt{\sum_{i,j} Corr(i, j) \times Capital(i) \times Capital(j)}$$

- Mathematically linked to the dependency structure of the multivariate Normal distribution
- Standard approach to modelling dependency for many companies
- Widely used in insurance and credit markets
- Solvency II: QIS4 Technical Specification

Aggregation Techniques (Mis)use of correlations in finance

- Financial risks are NOT Normal:
 - High probability of a large loss ('negative skewness')
 - High probability of extreme outcomes ('extreme kurtosis')
 - 'Heavy tails'

 Nassim Taleb: "The thing never worked. Anything that relies on correlation is charlatanism."

Aggregation Techniques

Why NOT to use "Tail" (or "Stressed") Correlations

- Common misconception: "I need to use a Variance Covariance approach with higher tail-end correlations to capture tail dependence"
- Even if correlations were calibrated adequately to describe the level of dependency at 99.5%, what about 99%, 95%, 90% or 75% etc
- Need continuous distributions, not just another point estimate

Aggregation Techniques Concept of Copulas – Definition

Individual probability density functions....

...joined together by a copula....

...into a multi-dimensional joint distribution.

For 2 risks a copula can be viewed as inducing a greater joint likelihood of large values of U(0,1) for each risk.

The assumed marginal risk distributions for each risk are important when inverting loss amounts to values in the [0,1] space for fitting copulas by maximum likelihood

Aggregation Techniques Concept of Copulas – Tail Dependency

- Probability of one random variable taking a very large/ small value given that the other random variable takes a very large/small value
- Example: dependence between 2 indices is high in period when returns are extremely low

Aggregation Techniques

Concept of Copulas – Tail Dependency Mathematical Definition

• Upper / Lower tail dependency:

$$\lambda_{U}(X,Y) = \lim_{u \uparrow 1} P(Y > F_{Y}^{-1}(u) | X > F_{X}^{-1}(u))$$

• Lower tail dependency:

$$\lambda_{L}(X,Y) = \lim_{u \neq 0} P(Y \le F_{Y}^{-1}(u) | X \le F_{X}^{-1}(u))$$

Probability, not a correlation coefficient. Takes values (0, 1) not (-1, 1)

Aggregation Techniques Concept of Copulas – Gaussian Copula

- Copula of Multivariate normal distribution with correlation matrix R
- Key problem: NO tail dependence:

$$\lambda_U = \lambda_L = 0$$

Aggregation Techniques Concept of Copulas – T Copula

- Mathematically convenient: easily extended to multidimensional case, easily simulated.
- Can model "Tail" Dependency
- Parameters: correlation matrix R & degrees-of-freedom (DF) parameter.
- Symmetric: left and right tail dependencies are equal.
- One DF parameter for all risks. Can be extended to have individual DFs for each pair of risks

Aggregation Techniques Concept of Copulas – Other Copulas

- Archimedean: Gumbel, Clayton and Frank
 - Allow for heavy, non-symmetric tails
 - Difficult to extend to a multi-dimensional case
 - Copula characteristics determined by one risk parameter
 - Parameter selection less intuitive than the T Copula
- Other types: Vine copulas
 - Allow to combine different types of copulas for pairs of risk into one copula
 - More difficult to model

Modelling Issues

Practical Issues with Correlation Matrices

- Filling in the Cross terms
 - A common situation for Insurance Groups with many BUs which each have a common number of Risk Categories
 - E.g. What is the correlation for France BU Equity and UK BU Fixed Interest
- Is the Matrix Positive Semi-Definite (PSD)?
- Huge matrices for large companies
- What type of correlations to use for calibrating copulas?
- How to estimate tail dependency parameters?

Modelling Issues Filling in the Cross terms

- What is the Algorithm for Cross terms ?
- Groupe Consultatif approach: $\frac{Cor_X(A,B) + Cor_Y(A,B)}{2} \times \frac{Cor_A(X,Y) + Cor_B(X,Y)}{2}$
- In some cases this can lead to internally inconsistent values

Modelling Issues Is the Matrix Positive Semi-Definite ("PSD")

- PSD property is matrix analogue of positive numbers
- Can only perform a Cholesky Decomposition on PSD matrix: matrix version of square root
 - A Cholesky Decomposition of a starting correlation matrix is often used to simulate correlated U(0,1) values from the multi-variate normal distribution
- Required when working with Copulas
- Finding the nearest PSD matrix can be a very complex problem in the practice area of "Semi-definite" programming ("SDP")

Modelling Issues

What type of correlations to use for Calibrating Copulas

- Input R into Gaussian and T copulas is not a correlation matrix estimated from raw data
- Need to estimate Kendall Tau correlation, and then convert into copula parameter using formula:

$$\rho_{Gaussian} = \sin\left(\frac{\pi \rho_{Kendall}}{2}\right)$$

 Makes a difference for some marginal distributions, including Cauchy, Burr, Pareto

Impact of Dependency Modelling on Economic Capital ABC Insurance Company – Introduction

- ABC Insurance Company is a non-life ("P&C") insurer
- Capital is the aggregation of risks from 10 different risk categories
 - Risk distributions are assumed to be identical
 - Separate Lognormal and Normal risk distribution scenarios
 - Correlation coefficients are the same between risk-pairs 10,% 25% or 50%
- 2 different aggregation techniques are considered:
 - Copulas Correlation Matrix (10 x 10) and 10 Marginal Risk distributions
 - Gaussian Copula and T Copula with 10, 5 and 2 d.f.
 - Variance Covariance Matrix approach
 - 25,000 simulations per copula using Matlab
- Capital is measured as VaR over 12-months = Loss (%) E(Loss)

Impact of Dependency Modelling on Economic Capital ABC Insurance Company – Distribution Assumptions

Risk Type	Distribution	Mu	Sigma	E(X)	SD(X)	CV(X)
Equity	Lognormal	7.5706	0.2462	2,000	500	25%
Property	Lognormal	7.5706	0.2462	2,000	500	25%
Interest Rate	Lognormal	7.5706	0.2462	2,000	500	25%
Credit Spread	Lognormal	7.5706	0.2462	2,000	500	25%
Credit Default	Lognormal	7.5706	0.2462	2,000	500	25%
UW - Cat	Lognormal	7.5706	0.2462	2,000	500	25%
UW Non-Cat	Lognormal	7.5706	0.2462	2,000	500	25%
Reserve	Lognormal	7.5706	0.2462	2,000	500	25%
Expenses	Lognormal	7.5706	0.2462	2,000	500	25%
Operational	Lognormal	7.5706	0.2462	2,000	500	25%

Risk Type	Distribution	Mu	Sigma	E(X)	SD(X)	CV(X)
Equity	Normal	2,000	500	2,000	500	25%
Property	Normal	2,000	500	2,000	500	25%
Interest Rate	Normal	2,000	500	2,000	500	25%
Credit Spread	Normal	2,000	500	2,000	500	25%
Credit Default	Normal	2,000	500	2,000	500	25%
UW - Cat	Normal	2,000	500	2,000	500	25%
UW Non-Cat	Normal	2,000	500	2,000	500	25%
Reserve	Normal	2,000	500	2,000	500	25%
Expenses	Normal	2,000	500	2,000	500	25%
Operational	Normal	2,000	500	2,000	500	25%

Impact of Dependency Modelling on Economic Capital ABC Insurance Company – Lognormal (25% CV, 25% Correlation)

Economic Capit	al - 25% Corı	relation				
Percentile	Return	Gaussian	t - 10 df	t - 5 df	t - 2 df	V CV
75.0%	4	1,760	1,685	1,578	1,421	1,658
90%	10	3,688	3,610	3,582	3,418	3,763
95%	20	4,928	4,906	5,004	4,889	5,182
99%	100	7,423	7,916	8,177	9,049	8,212
99.5%	200	8,391	9,087	10,031	11,052	9,455
99.95%	2,000	11,082	13,926	14,929	18,544	13,468

% change cf G	aussian Copu	ıla				
Percentile	Return	Gaussian	t - 10 df	t - 5 df	t - 2 df	V CV
75.0%	4	0.0%	-4.2%	-10.3%	-19.3%	-5.8%
90%	10	0.0%	-2.1%	-2.9%	-7.3%	2.0%
95%	20	0.0%	-0.4%	1.6%	-0.8%	5.2%
99%	100	0.0%	6.6%	10.2%	21.9%	10.6%
99.5%	200	0.0%	8.3%	19.5%	31.7%	12.7%
99.95%	2,000	0.0%	25.7%	34.7%	67.3%	21.5%

- Variance-Covariance ("V CV") capital approach similar to T Copula (n d.f.)
- Example: 99% V CV ~ T Copula 5 d.f.
- Percentiles Increase → Implied T Copula n d.f. increases (lower tail dependency)
- Note: T Copula Capital < Gaussian Capital for lower percentiles (e.g. 75%)

Impact of Dependency Modelling on Economic Capital ABC Insurance Company – Lognormal (25% CV, 10% - 50% Correl)

Economic Capi	conomic Capital - 10% Correlation				% change cf Gaussian		
Percentile	Return	Gaussian	t - 10 df	t - 5 df	t - 2 df	V CV	
75.0%	4	0.0%	-7.6%	-10.4%	-23.1%	-9.3%	
90%	10	0.0%	-1.4%	-2.3%	-6.4%	1.9%	
95%	20	0.0%	2.0%	2.1%	4.4%	6.2%	
99%	100	0.0%	7.7%	13.0%	23.5%	13.1%	
99.5%	200	0.0%	11.2%	18.5%	31.7%	15.5%	
99.95%	2,000	0.0%	21.8%	32.6%	62.9%	25.5%	

Decreasing % change trend

Economic Ca	conomic Capital - 25% Correlation				% change cf Gaussian		
Percentile	Return	Gaussian	t - 10 df	t - 5 df	t - 2 df	V CV	
75.0%	4	0.0%	-4.2%	-10.3%	-19.3%	-5.8%	
90%	10	0.0%	-2.1%	-2.9%	-7.3%	2.0%	
95%	20	0.0%	-0.4%	1.6%	-0.8%	5.2%	
99%	100	0.0%	6.6%	10.2%	21.9%	10.6%	
99.5%	200	0.0%	8.3%	19.5%	31.7%	12.7%	
99.95%	2,000	0.0%	25.7%	34.7%	67.3%	21.5%	

Economic Ca	conomic Capital - 50% Correlation				% change cf	Gaussian
Percentile	Return	Gaussian	t - 10 df	t - 5 df	t - 2 df	V CV
75.0%	4	0.0%	-1.0%	-5.9%	-12.8%	-2.2%
90%	10	0.0%	-2.5%	-2.4%	-7.2%	1.1%
95%	20	0.0%	-1.7%	0.2%	-2.1%	2.6%
99%	100	0.0%	3.7%	7.6%	14.3%	6.6%
99.5%	200	0.0%	6.7%	10.6%	18.5%	8.7%
99.95%	2,000	0.0%	11.7%	11.7%	32.7%	7.9%

Impact of Dependency Modelling on Economic Capital ABC Insurance Company – Lognormal (25%, 50% CV, 25% Correl)

Economic Ca	pital - 25% Co	rrelation			CV 25%	
Percentile	Return	Gaussian	t - 10 df	t - 5 df	t - 2 df	V CV
75.0%	4	0.0%	-4.2%	-10.3%	-19.3%	-5.8%
90%	10	0.0%	-2.1%	-2.9%	-7.3%	2.0%
95%	20	0.0%	-0.4%	1.6%	-0.8%	5.2%
99%	100	0.0%	6.6%	10.2%	21.9%	10.6%
99.5%	200	0.0%	8.3%	19.5%	31.7%	12.7%
99.95%	2,000	0.0%	25.7%	34.7%	67.3%	21.5%

Economic Ca	pital - 25% Co	rrelation			CV 50%	
Percentile	Return	Gaussian	t - 10 df	t - 5 df	t - 2 df	V CV
75.0%	4	0.0%	-4.7%	-11.2%	-24.4%	-17.0%
90%	10	0.0%	-0.6%	-3.3%	-5.5%	0.8%
95%	20	0.0%	3.4%	0.4%	3.7%	7.3%
99%	100	0.0%	6.0%	10.9%	23.5%	18.2%
99.5%	200	0.0%	11.5%	14.1%	32.9%	24.0%
99.95%	2,000	0.0%	13.8%	29.1%	57.1%	38.9%

- Larger $CV \rightarrow V CV$ approach gives a larger % margin over the Gaussian copula
- Larger CV → The V CV approach is equivalent to T Copula with a lower n d.f. (i.e. larger tail dependency)

Impact of Dependency Modelling on Economic Capital ABC Insurance Company – Normal vs Lognormal Distributions

Economic Ca	pital - 25% Co	rrelation		Normal	CV 25%	
Percentile	Return	Gaussian	t - 10 df	t - 5 df	t - 2 df	V CV
75.0%	4	0.0%	-2.7%	-7.4%	-15.0%	0.9%
90%	10	0.0%	-1.7%	-3.3%	-7.4%	0.8%
95%	20	0.0%	-1.1%	-0.2%	-3.3%	0.6%
99%	100	0.0%	3.7%	5.4%	13.1%	0.2%
99.5%	200	0.0%	5.5%	12.1%	19.5%	1.0%
99.95%	2,000	0.0%	19.6%	19.5%	35.8%	2.2%

Economic Ca	pital - 25% Co	rrelation		LogNorm	CV 25%	
Percentile	Return	Gaussian	t - 10 df	t - 5 df	t - 2 df	V CV
75.0%	4	0.0%	-4.2%	-10.3%	-19.3%	-5.8%
90%	10	0.0%	-2.1%	-2.9%	-7.3%	2.0%
95%	20	0.0%	-0.4%	1.6%	-0.8%	5.2%
99%	100	0.0%	6.6%	10.2%	21.9%	10.6%
99.5%	200	0.0%	8.3%	19.5%	31.7%	12.7%
99.95%	2,000	0.0%	25.7%	34.7%	67.3%	21.5%

- Variance Covariance (V CV) ~ Gaussian Copula Capital (Normal Distribution)
- Sampling error present even with 25,000 simulations

Impact of Dependency Modelling on Economic Capital ABC Insurance Company – Implied 'Tail Correlations'

Implied Corr	elation = V C	V Sum		LogNorm	CV 25%
Percentile	Return	Gaussian	t - 10 df	t - 5 df	t - 2 df
75%	4	29.6%	26.2%	21.6%	15.4%
90%	10	23.6%	22.1%	21.6%	18.7%
95%	20	21.5%	21.2%	22.6%	21.0%
99%	100	18.4%	22.4%	24.7%	32.7%
99.5%	200	17.3%	22.2%	29.5%	38.2%
99.95%	2,000	13.3%	27.5%	33.3%	57.4%

- Some companies use higher than average correlations, referred to as 'tail correlations', in the variance covariance matrices to reflect their views about tail dependence
- This is often done on the basis of a guess or prudent margin without any theoretical foundations
- Table shows the implied equal 'tail correlation' to be used with a variance covariance matrix such that the capital is equivalent to the capital from the use of a correlation matrix with 25% pairwise correlations and the respective copulas
- i.e. Correlation x% such that V CV Capital (x%) = Copula Capital (25%) at %ile.

Impact of Dependency Modelling on Economic Capital ABC Insurance Company – Implied 'Tail Correlations'

Implied Corr	elation = V C	V Sum		Normal	CV 25%
Percentile	Return	Gaussian	t - 10 df	t - 5 df	t - 2 df
75%	4	24.3%	22.4%	19.3%	14.5%
90%	10	24.4%	23.2%	22.1%	19.4%
95%	20	24.5%	23.8%	24.4%	22.2%
99%	100	24.9%	27.6%	28.9%	34.9%
99.5%	200	24.3%	28.3%	33.3%	39.4%
99.95%	2,000	23.5%	38.4%	38.2%	52.7%

25% Correlation

Implied Corr	elation = V C	V Sum		LogNorm	CV 25%
Percentile	Return	Gaussian	t - 10 df	t - 5 df	t - 2 df
75%	4	29.6%	26.2%	21.6%	15.4%
90%	10	23.6%	22.1%	21.6%	18.7%
95%	20	21.5%	21.2%	22.6%	21.0%
99%	100	18.4%	22.4%	24.7%	32.7%
99.5%	200	17.3%	22.2%	29.5%	38.2%
99.95%	2,000	13.3%	27.5%	33.3%	57.4%

25% Correlation

- Copula Dynamics → Difficult to 'second' guess 'tail correlations'
- Sampling error is present e.g. "Normal" Gaussian values should equal 25%

Communication of Economic Capital Dependency Impacts Possible Risk Metric Measures

- Economic Capital Aggregation
- Joint Probability Density Function
- Scatter Plot
- Joint Excess Probability
- Tail Concentration Function
- Kendall Tau Correlation
- Coefficient of Tail Dependence
- Implied Gaussian Correlation Targeting a Risk Metric (e.g. R(z))
 Possible use in determining copulas if empirical calculations made
- 2 possible Methods for the Risk Metric of interest:
 - Between key pairs of risks e.g. UW Cat Risk and Equity
 - Construct a matrix of values for the risk metric of interest

- Description:
 - The tail strength of a copula can be defined using the Right and Left Tail Concentration Functions R(z) and L(z) * respectively as follows:
 - Right Tail Concentration Function: R(z) = P(u>z / v>z)
 - Left Tail Concentration Function: L(z) = P(u<z / v<z)</p>
 - where: u and v are defined by F_X(x) = u and F_Y(y) = v; x and y are values from X and Y respectively and u and v are values on the unit interval [0,1].

* Venter, Gary G. "Tails of Copulas". Proceedings of CAS LXXXIX (2002) pp. 68 – 113

- R(0.8) = A / (A + B)
- Only 1,000 data points from 25,000

- Advantages:
 - It is practical and the concept is relatively easy to understand
 - The calculation is relatively easy to perform
 - It provides a consistent methodology for comparing the relative strength of 2 or more different copulas
 - It is possible to represent the information either as a matrix of values for all risks or a pair of risks
- Disadvantages:
 - It is a relatively new concept
 - It is difficult to translate a value of R(z) (or L(z)) into a number that is commonly understood e.g. linear correlation, or its equivalent at the 'tails'.
 - Sampling error may distort the 'tail' dependency strength

R(Z): t Copula 5 d.f.			Γ	Z	95.0%						
	No.	1	2	3	4	5	6	7	8	9	10
Equity	1		17.58%	21.85%	21.61%	20.89%	19.68%	20.16%	17.98%	17.58%	19.68%
Property	2			21.18%	20.03%	19.87%	19.38%	20.03%	20.36%	19.38%	19.71%
Interest Rate	3				21.20%	19.98%	19.45%	20.82%	20.67%	19.68%	20.89%
Credit Spread	4					19.06%	18.46%	22.20%	18.91%	19.96%	21.82%
Credit Default	5						19.13%	20.71%	20.16%	19.61%	19.76%
UW - Cat	6							18.87%	18.46%	19.35%	21.62%
UW Non-Cat	7								19.27%	19.51%	21.74%
Reserve	8									21.06%	21.38%
Expenses	9										19.48%
Operational	10										
									Independe	nce	5.0%
RJEP(Z): t Copula 5	i d.f.			Z	95.0%						
RJEP(Z): t Copula 5	i d.f. No.	1	2	z 3	95.0% 4	5	6	7	8	9	10
RJEP(Z): t Copula 5	i d.f. No. 1	1	2 0.87%	z 3 1.08%	95.0% 4 1.07%	5 1.04%	6 0.98%	7 1.00%	8 0.89%	9 0.87%	10 0.98%
RJEP(Z): t Copula 5 Equity Property	i d.f. No. 1 2	1	2 0.87%	z 3 1.08% 1.04%	95.0% 4 1.07% 0.98%	5 1.04% 0.97%	6 0.98% 0.95%	7 1.00% 0.98%	8 0.89% 1.00%	9 0.87% 0.95%	10 0.98% 0.96%
RJEP(Z): t Copula 5 Equity Property Interest Rate	i d.f. No. 1 2 3	1	2 0.87%	z 3 1.08% 1.04%	95.0% 4 1.07% 0.98% 1.12%	5 1.04% 0.97% 1.06%	6 0.98% 0.95% 1.03%	7 1.00% 0.98% 1.10%	8 0.89% 1.00% 1.09%	9 0.87% 0.95% 1.04%	10 0.98% 0.96% 1.10%
RJEP(Z): t Copula 5 Equity Property Interest Rate Credit Spread	i d.f. No. 1 2 3 4	1	2 0.87%	z 3 1.08% 1.04%	95.0% 4 1.07% 0.98% 1.12%	5 1.04% 0.97% 1.06% 1.02%	6 0.98% 0.95% 1.03% 0.99%	7 1.00% 0.98% 1.10% 1.19%	8 0.89% 1.00% 1.09% 1.01%	9 0.87% 0.95% 1.04% 1.07%	10 0.98% 0.96% 1.10% 1.17%
RJEP(Z): t Copula 5 Equity Property Interest Rate Credit Spread Credit Default	i d.f. No. 1 2 3 4 5	1	2 0.87%	z 3 1.08% 1.04%	95.0% 4 1.07% 0.98% 1.12%	5 1.04% 0.97% 1.06% 1.02%	6 0.98% 0.95% 1.03% 0.99% 0.97%	7 1.00% 0.98% 1.10% 1.19% 1.05%	8 0.89% 1.00% 1.09% 1.01% 1.02%	9 0.87% 0.95% 1.04% 1.07% 1.00%	10 0.98% 0.96% 1.10% 1.17% 1.00%
RJEP(Z): t Copula 5 Equity Property Interest Rate Credit Spread Credit Default UW - Cat	i d.f. No. 1 2 3 4 5 6	1	2 0.87%	z 1.08% 1.04%	95.0% 4 1.07% 0.98% 1.12%	5 1.04% 0.97% 1.06% 1.02%	6 0.98% 0.95% 1.03% 0.99% 0.97%	7 1.00% 0.98% 1.10% 1.19% 1.05% 0.93%	8 0.89% 1.00% 1.09% 1.01% 1.02% 0.91%	9 0.87% 0.95% 1.04% 1.07% 1.00% 0.96%	10 0.98% 0.96% 1.10% 1.17% 1.00% 1.07%
RJEP(Z): t Copula 5 Equity Property Interest Rate Credit Spread Credit Default UW - Cat UW Non-Cat	6 d.f. No. 2 3 4 5 6 7	1	2 0.87%	z 3 1.08% 1.04%	95.0% 4 1.07% 0.98% 1.12%	5 1.04% 0.97% 1.06% 1.02%	6 0.98% 0.95% 1.03% 0.99% 0.97%	7 1.00% 0.98% 1.10% 1.19% 1.05% 0.93%	8 0.89% 1.00% 1.09% 1.01% 1.02% 0.91% 0.97%	9 0.87% 0.95% 1.04% 1.07% 1.00% 0.96% 0.98%	10 0.98% 0.96% 1.10% 1.17% 1.00% 1.07% 1.09%
RJEP(Z): t Copula 5 Equity Property Interest Rate Credit Spread Credit Default UW - Cat UW Non-Cat Reserve	i d.f. No. 1 2 3 4 5 6 7 8	1	2 0.87%	z 3 1.08% 1.04%	95.0% 4 1.07% 0.98% 1.12%	5 1.04% 0.97% 1.06% 1.02%	6 0.98% 0.95% 1.03% 0.99% 0.97%	7 1.00% 0.98% 1.10% 1.19% 1.05% 0.93%	8 0.89% 1.00% 1.09% 1.01% 1.02% 0.91% 0.97%	9 0.87% 0.95% 1.04% 1.07% 1.00% 0.96% 0.98% 1.04%	10 0.98% 0.96% 1.10% 1.17% 1.00% 1.07% 1.09% 1.05%
RJEP(Z): t Copula 5 Equity Property Interest Rate Credit Spread Credit Default UW - Cat UW Non-Cat Reserve Expenses	i d.f. No. 1 2 3 4 5 6 7 8 9	1	2 0.87%	z 3 1.08% 1.04%	95.0% 4 1.07% 0.98% 1.12%	5 1.04% 0.97% 1.06% 1.02%	6 0.98% 0.95% 1.03% 0.99% 0.97%	7 1.00% 0.98% 1.10% 1.19% 1.05% 0.93%	8 0.89% 1.00% 1.09% 1.01% 1.02% 0.91% 0.97%	9 0.87% 0.95% 1.04% 1.07% 1.00% 0.96% 0.98% 1.04%	10 0.98% 0.96% 1.10% 1.17% 1.00% 1.07% 1.09% 1.05% 0.98%
RJEP(Z): t Copula 5 Equity Property Interest Rate Credit Spread Credit Default UW - Cat UW Non-Cat Reserve Expenses Operational	i d.f. No. 1 2 3 4 5 6 7 8 9 10	1	2 0.87%	z 1.08% 1.04%	95.0% 4 1.07% 0.98% 1.12%	5 1.04% 0.97% 1.06% 1.02%	6 0.98% 0.95% 1.03% 0.99% 0.97%	7 1.00% 0.98% 1.10% 1.19% 1.05% 0.93%	8 0.89% 1.00% 1.09% 1.01% 1.02% 0.91% 0.97%	9 0.87% 0.95% 1.04% 1.07% 1.00% 0.96% 0.98% 1.04%	10 0.98% 0.96% 1.10% 1.17% 1.00% 1.07% 1.09% 1.05% 0.98%

Correlation = 25%; T Copula 5 d.f.; Calculated from 25,000 simulated outputs

- Interest Rate vs UW Non-Cat
- Implied Gaussian copula correlation @ 99.0% (99.5%) = 54% (62%) etc

Communication of Economic Capital Dependency Impacts RJEP(z) – Right Joint Excess Probability Copula Comparison

Interest Rate vs UW Non-Cat

Conclusions Concluding Remarks

- Managing Diversification benefit a key component of capital management
 - including effective communication to internal and external stakeholders
- Key Modelling Challenges:
 - Correlation spurious relationships, parameterisation and variation over time
 - Copulas selection and parameterisation
 - Model risk and parameter risk
- Communication Challenges:
 - What do we understand and mean by 'tail correlation'
 - Copulas Communication to non-technical people
- 'Tail correlations":
 - Should really be using correlation matrices together with copulas
 - Often a selection without theoretical foundations a 'Guess' or 'Margin'
 - However, practical issues QIS 4, allow use of V CV approach to capital
 - A difficult trade-off

