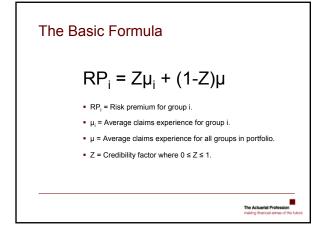
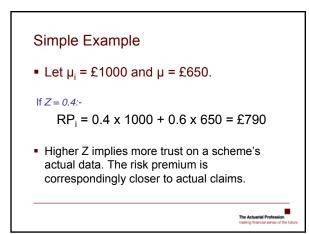


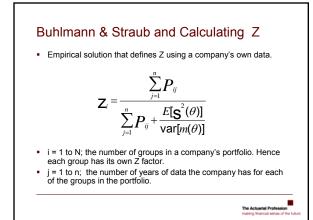
Contents

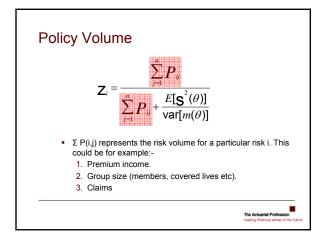
- Theory Recap
- Buhlmann & Straub model
- Applications in UK PMI Market
- Issues
- Discussion and Q & A

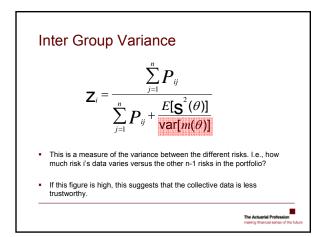
Overall aim is to share ideas, debate issues, and iron out oversights.

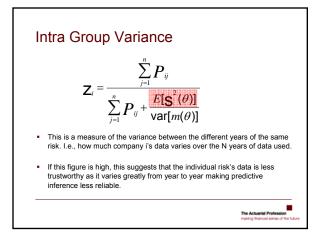

The Actuarial Profession making financial sense of the ful

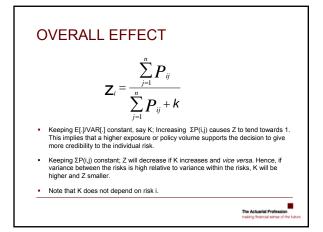

Credibility Theory Recap Credibility Theory is a method that helps answer the question:-


How much "trust" should we place on the claims experience of an individual PMI Scheme versus data from all schemes?


- Bayesian Underpinnings see assumptions later.
- Strong Insurance Applications Motor NCD, BF method.







Some Assumptions

 The distribution of each X depends on a parameter θ, whose unknown value is the same for each j = "two urn" model.

 Is the risk parameter 8 the same for each year? For example, a HR drive to encourage policyholders to claim on their PMI policy. A change in the risk characteristics of the group due to an acquisition. Change in

- 2. Given θ , the X_j's are independent but not necessarily i.i.d.
- 3. $E[X_j|\theta]$ is independent of j.
 - Are claims independent year on year? Probably not due to inflation and other time trends such as durational effects or any change in insurance conditions.
- 4. $P_j V[X_j | \theta]$ is independent of j.

 $X_j \theta$ for example could be the BC of a PMI group in year j with coefficient θ . θ for example may be a "health" coefficient. Gives the different PMI groups differing risk characteristics.

> The Actuarial Profession making financial sense of the fu

Applications

 One of our aims was to be able to calculate Z's for group sizes of which we had little or no data. Essentially answer the question:-

" What weight should we give to a PMI group scheme with 2000 members?"

 To do this we looked at simulating the group claims and then apply the credibility formulae to the simulated results.

Approach 1

Method: Model stochastically 1000 simulations of 4 year claims figures of groups

- with say 500 members. Problem:
- Because we were only considering groups of size 500, inter-group variance became very small usually negative suggesting Z = 0.
- This was the case for most runs looking at the same groups size obvious
- error Unlikely to have a 1000 groups of 500 members in our portfolio. Hence the base premium (average of collective risks) is not representative of our base experience. .

Lessons:

Credibility factors will change depending on the collective portfolio of risk a company has – since this will affect inter risk variance.

The Actual making from

Approach 2

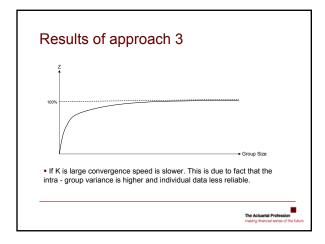
Method:

- Model stochastically 1000 simulations of 4 year claims figures of groups of varying sizes that mimic the mix of group sizes in our experience.
- Problem:
- Simulation has to be very sophisticated to ensure that it mimics reality. Factors such as lapse rates, inflation, anti selection, underwriting and . duration will alter the inter and intra variances.
- Need to incorporate the effect of joiners and leavers. This will weaken the durational effect that will change the intra risk variance.

Lessons:

 Does the benefit of simulating the data, which would be time consuming and complicated (especially if model needs to be built), outweigh using actual data?

The Actuarial Prof


Approach 3

Method

- Fit the B&S method to actual company data. This can be done by looking at a combination of company's own data and industry data from quotes. Quotes will usually give the necessary information to calculate Z.
- Problem:
- .
- Contern: The credibility factors seem high from a "hunch" point of view. We will have determined a K that is based on data that we may have quoted for but have not actually written. To calculate RP₁ we need to use µ that relates to the K. If the mix of group sizes in our portfolio changes and we continue to use the K based on the old mix, results may be misleading. Inter group variance is likely to have changed. .
- Lessons

- Need to be pragmatic when it comes to credibility theory. Cannot re calc Z every time we have get some new group data. Periodic reviews may be sensible to ensure that the K is not massively unrepresentative.

Average Group Size	Four years of policy volume	Z
10	40	33%
20	80	50%
500	2000	86%
700	2800	90%
900	3600	92%

Unknowns

- Is using market data a valid approach? Is credibility theory not a method that helps you use what you've got in the best way?
- If we use market data to calculate z, is the calculation assuming we have the same base experience as the market and a similar mix of new business.
- If we haven't, e.g. our business attracts smaller group sizes or has different underwriting practices, could we be giving too little or too much credibility?
- Does this mean that we have to use the market experience as our base rate? Is this valid, or again will differing sales channels or UW make our premium biased?
- Does it matter? Should we take a more pragmatic approach? Perhaps scenario testing may highlight possible issues.

The Actuarial Profession making financial sense of the full

