The Actuarial Profession making financial sense of the future

Credit and Counterparty Risk CILA II, 25/9/07

Colin Wilson, Barrie & Hibbert colin.wilson@barrhibb.com

Background

- For insurers most credit risk arises from asset portfolios
- Immaterial whether resulting risk is categorised as "market risk" or "credit risk" or a combination of the two
- Risk affects return expectations as well as capital requirements
- Counterparty risk is generally considered alongside credit risk, although mitigation / management strategies may differ

The Actuarial Profession making financial sense of the fut

Agenda

- Understanding credit risk
- Measuring credit risk
- Calibrating credit models
- Managing credit risk

Market risk and risk capital (1)

- Market risk (including credit risk) can be considered in three categories:
 - 1. Changes in the time-value of risk-free money i.e. risk-free yield curve moves
 - 2. Changes in the market's expectation of the distribution of future asset cashflows e.g. equity dividends, corporate bond coupons
 - 3. Changes in the market's required risk premium for the risks embedded in the above distribution of future cashflows

Market risk and risk capital (2)

- Disaggregation of sources (2) and (3) is empirically very difficult:

 - It y difficult: Is credit spread volatility solely due to changes in the market's expectations of default rates? Or changes in the level of risk premium required for bearing default risk?
- Or a mixture of both? (Similar questions for equities, risk-free bonds, options, etc.)
- But source (3) will generate mean reversion in long-term returns, while source (2) probably won't
- And source (2) will impact directly on any RBC measure while source (3) may not

The Actuarial Pro

What is solvency capital for? Do regulators want long-term insurers to hold capital so that: They will (nearly) always be able to transfer liabilities to a third party . They will (nearly) always be able to pay their liabilities That is, short-term risk transfer or long-term risk funding? These are fundamentally different And what is the appropriate probability level in each case? FSA bias (and hence Solvency II) is towards short-term risk transfer, with 99.5% probability

The A

- Long-term credit risk can be estimated using a combination of probability of default (PD), exposure at default (EAD) and loss given default (LGD) A coherent modelling framework needs to allow for correlations between defaults and between credit and .
- other market risks
- Model should also allow consistent estimation of risk for a variety of credit-based assets such as CDOs
- As always, calibrating tail events requires substantial judgement as well as suitable data
- Model may need to cover short-term spread volatility as well

The Actua

Approaches to Credit Modelling

- Structural approach (Merton)
 - · Explicitly model the firm's assets and liabilities to determine default events
 - Default probabilities (and hence bond spreads etc) are a function of the firm's volatility and moneyness
- Reduced-form approach
 - (Jarrow-Lando-Turnbull; Duffie-Singleton)
 - "why" default occurs
 - Can be thought of as a special case of the structural approach
 - Probability of default described by a credit transition matrix
 - Incorporate correlation between individual bond transitions

The Actuarial Prof

			Annual Rating	Transition at End of	Matrix: Period				
		AAA	AA	А	BBB	BB	В	CCC	Defaul
Rating at Start of Pariod	AAA	88.0%	10.6%	0.9%	0.2%	0.3%	0.0%	0.0%	0.0%
	AA	3.9%	88.0%	6.7%	0.9%	0.3%	0.3%	0.0%	0.0%
	А	0.2%	5.4%	87.8%	5.3%	0.8%	0.4%	0.0%	0.19
	BBB	0.1%	0.6%	9.6%	82.5%	5.3%	1.3%	0.2%	0.4%
	BB	0.1%	0.3%	1.1%	9.7%	79.2%	7.2%	0.9%	1.79
	В	0.0%	0.2%	0.4%	0.8%	6.3%	85.4%	2.7%	4.29
	CCC	0.0%	0.0%	1.5%	1.5%	2.6%	9.6%	70.4%	14.5%
	Default	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	100.0%

The Actuarial Profe making financial service

