The Actuarial Profession making financial sense of the future
2003 Pensions Convention
1-3 June Grand Hotel, Brighton

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Overview

What the equity risk premium is?
How to derive a risk-adjusted discount rate? \qquad
Why do financial economists assume equities return the same as bonds?

- How you would value an LPI liability without the
\qquad assistance of GN27?
- Why don't insurers give much better annuity terms? \qquad
\qquad
\qquad

Why do this?

We (usually)
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Simple model

- Equity

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Pricing (valuation) methodology

\qquad
\qquad
\qquad
Estimate expected return

- And discount expected payout at this rate, ie \qquad

$$
100=\frac{110}{(1+10 \%)}, \quad 95=\frac{100}{(1+5 \%)}
$$

\qquad
Problem - how do we estimate the expected return for a particular cashflow profile?

Example

- Cashflow

Solution

- Can find a solution by interpolation
- Standard deviation nil gave expected return 5%
- Standard deviation 30\% gave expected return 10\%
\square So estimated price is

$$
\frac{105}{\left(1+5 \%+\frac{5}{30} 5 \%\right)}=99
$$

Arbitrage approach

$5 / 30 \times$ Equity $+26 / 30 \times$ Bond is:

\qquad
\qquad
\qquad
$(5 \times 80+26 \times 100) / 30=100$

Arbitrage argument

- Have two portfolios which give identical payouts
- The example asset (payouts $=110,100$)
- The equity/bond portfolio ($5 / 30: 26 / 30$)
- Price must be the same
- Otherwise you're placing a negative value on a portfolio which always gives positive payouts
- (Sell the dearer portfolio and buy the cheaper)
- Which is silly QED \qquad
\qquad
\qquad

Arbitrage approach
$5 / 30 \times$ Equity $+26 / 30 \times$ Bond is:
So price is:

\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Conclusions so far

Expected returns are difficult to predict

- ...so valuation appears to be a hard problem \qquad
- But arbitrage technique is very powerful
- ...so valuation becomes an easy problem \qquad
\qquad
\qquad
\qquad

General solution for binomial example

\qquad
\qquad
\qquad

- Can construct any cashflow
from a suitable equity / bond portfolio \qquad
- (A-B)/60 equities
- ($7 \mathrm{~B}-4 \mathrm{~A}$) $/ 300$ bonds
- Arbitrage argument implies:

Multiple viewpoints for solution

- State prices
- State price deflator
- Risk neutral pricing
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

State prices

Price of a cashflow in exactly one state

- State prices here are:
- 0.4

■ 0.55
$0.4 A+0.55 B$

- A cashflow profile (A,B) is equivalent to A upstate assets and B down-state assets
- So price is $0.4 \mathrm{~A}+0.55 \mathrm{~B}$

Easy to calculate, understand

- Problem when moving to continuous-states

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

State price deflators

$0.4 \mathrm{~A}+0.55 \mathrm{~B}$

\qquad
\qquad
\qquad
\qquad
Deflator $=$ State price \div Probability

- Can re-write price formula \qquad
Price $=$ expected value of (Deflator \times Cashflow)

Deflator formalism

Started with Expected return same as Discount

- le value now = Discount x Expected value (Cashflow)
- Now have Expected value (Discount x Cashflow)
- Deflator is a stochastic discount function
- Deflator takes a different value in each future state
- Stochastic scenario generator
- Generates asset prices etc in each scenario
- Generate deflators as well...

■ ... and then any cashflow can be valued
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Different investors

But not probabilities

\qquad
\qquad
\qquad
\qquad

- So they will use different deflators

Risk-neutral investor

- For a particular choice of probabilities, discount factor (deflator) is constant
$0.4 \mathrm{~A}+0.55 \mathrm{~B}$

- Apply same discount rate to all cashflows \qquad
- Hence such an investor is risk neutral

Risk neutral valuation

- Solve for probabilities rather than state prices

Value = expected payout under risk neutral probabilities, discounted at risk-free rate

Bisk-neutral valuation: notes

- 'Real-world' probabilities are lost
- Expected return on all assets the same under riskneutral probabilities
- Mathematical trick, notequivalent to a claim that all assets expected to give same return in real world

Bigger models

Bigger models

And bigger trees...

And bigger trees...

■ Recover initial term structure

In the limit move to normal distribution

■ Use term structures to set implied inflation

- Calculate prices relative to full RPl over 3 years

LPI	tree	LN
(0.5)	0.0%	0.3%
(0.3)	-0.1%	-0.5%
(3.5)	$+3.6 \%$	$+2.9 \%$

...and then can generalise

Any time period
■ Cumulative LPI or annualised LPI

■ ...but will always need an inflation volatility assumption
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Overview

What the equity risk premium is? Don't care
\square How to derive a risk-adjusted discount rate? \qquad
Use risk free rate or deflators
Why do financial economists assume equities return the same as bonds? A maths trick, they don't believe this
\qquad
How you would value an LPI liability without the assistance of GN27? Use a deflator model \qquad

- Why don't insurers give much better annuity terms?

Because they are aware of the market consistent prices for providing annuities.
\qquad
\qquad

The Actuarial Profession making financial sense of the future
2003 Pensions Convention
$1-3$ June Grand Hotel, Brighton

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

