
1

GENERAL INSURANCE PRICING 
SEMINAR

13 JUNE 2008, LONDON
Demand Modelling in Personal Lines
James Tanser
Watson Wyatt Limited

Agenda

 Motivation
 What makes a demand model special?
 Why are we interested?

 Tools
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 Aggregators
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What makes demand models special?

 A demand model:
 Looks at customer purchasing behaviour
 Key element is market price

 Retention models are easier
 Can get away with only old and new premiums
 New business as proxy for market premium

 Probability of purchase may be low

Why are we interested?

 We understand risk
 GLM modelling over 10 years old
 Data is clean and reliable
 We know the interactions to look for
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Why are we interested?

 We have a handle on retention
 Data is collected
 Standard models used
 Price change understood
 Integrated as part of pricing process
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Why are we interested?

 Customer demand is last ingredient
 Some data is collected – some is missing
 “Hot money”
 Lifestyle changes
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GIRO working party

 Chairman
 James Tanser (Watson Wyatt)

 Members
 John Light (RSA)
 Owen Morris (NU)
 Sophia Mealy (AON)

GIRO Working party

 Provide an introduction to the topic describing the terms 
used

 Summarise the current methodologies used in the 
market

 Summarise possible alternate methodologies identified 
by a search of available literature

 Investigate several methods using agreed methodology 
to determine the descriptive and predictive power of the 
methods when applied to actual insurance data

 Provide a brief conclusion and highlight areas for further 
work.
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Agenda

 Motivation
 What makes a demand model special?
 Why are we interested?

 Tools
 Linear and non-linear models
 Continuous variables

 Challenges
 Market price
 Aggregators

Var[Y] = V() / 

E[Y] =  = g  ( X +  )-1

Generalised linear models
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Models

 Generalised linear models cope well with most 
common requirements

 A logistic model is most appropriate
 considers log( p / [1-p] ) with binomial error
 maps [0,1] to [- , ]
 invariant to whether you model success or failure

 If lapses are low and results not to be used 
directly, a Poisson multiplicative model can help
 theoretically wrong (can predict multiple lapses), but 

easier to communicate
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Understanding the logit transform
Logit link funtion
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Other models

 Could try:
 Binomial / log link
 Binomial / probit link
 Binomial / complementary log-log link

 Transform the data
 Sampling

 Working party is looking at these

Link functions
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Sampling

 Take 100% of conversions and x% of others
 In theory, makes not difference to binomial/logit

models
 Questions:
 What rate should be targeted?
 Predicative versus Descriptive
 What about other links?

Agenda

 Motivation
 What makes a demand model special?
 Why are we interested?

 Tools
 Linear and non-linear models
 Continuous variables

 Challenges
 Market price
 Aggregators
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Continuous variables

 Why continuous?
 Model form
 Continuous variables in a GLM framework

Why continuous?

 Key drivers of demand:
 Own price
 Market price
 Interaction between the two

 Best modelled continuously
 Price sensitivity not necessarily the same 

everywhere…



12

Model form:
Linear versus non-linear

 Varying views:
 Simplistic
 Complex linear
 Non-linear

 Consider relative competitiveness as an 
example
 Our price / market price

Simplistic

 Treat as variate, assume linear

 Assumes “same” prices sensitivity everywhere
 Logit link => Lower probability individuals more 

sensitive (p/p larger)
 No-one does this, but helpful to understand 

issues

 = g-1(Xjj + c(p/m))
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Complex linear

 Use a continuous function of competitiveness

 Function is polynomial or spline
 Can interact with other variables to achieve 

range of shapes
 Simple to apply with existing tools

 = g-1(Xjj + ck.fk(p/m))

Non-linear

 Linear in competitiveness, gradient varies by 
segment

 Similar issues to simplistic, but locally OK
 Hard to fit due to co-linearity of parameters

 = g-1(Xjj + (p/m).exp(Zjj))
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What is best approach?

 More research needed
 Working party looking at variations to test 

predictive power
 In our survey, 4 times as many people (12) 

used complex linear than non-linear (3)

Continuous variables in a 
GLM framework
 Variates allow each unique data value to have a 

different effect on the linear predictor, but force 
some smoothness

 Even detailed discrete treatment can produce 
odd results

 In practice implemented via:
 Polynomials
or
 Splines
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Polynomials

 Include powers of the variate in the model
 One parameter for each power
 Can scale variates to avoid large (small) values
 Can defined orthogonal polynomials to reduce 

correlation

 Extrapolated values may not be sensible

Design matrix
Polynomial

18 M
20 F
22 F
24 M
26 M
28 M
30 F
32 F
34 M
36 F

1 18 324 5832 104976 … 1
1 20 400 8000 160000 … 0
1 22 484 10648 234256 … 0
1 24 576 13824 331776 … 1
1 26 676 17576 456976 … 1
1 28 784 21952 614656 … 1
1 30 900 27000 810000 … 0
1 32 1024 32768 1048576 … 0
1 34 1156 39304 1336336 … 1
1 36 1296 46656 1679616 … 0
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Regression splines

 Include a number of spline basis function in the 
model
 Number of parameters depends of type of spline and 

number of knots
 Sensible choice of basis function (eg B-splines) 

ensures values in [0,1]

 Can specify type
 Order of spline
 Type of extrapolation

B-Splines

 Set of basis functions
usually covering four 
segments (defined 
by five knots)

 Each function is 
itself a cubic spline

 Each basis function has the same shape, except 
for the three basis functions at each extreme which 
occupy fewer than four segments
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Spline formula
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B-Splines – quadratic extrapolation
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B-Splines – constant extrapolation
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Design matrix
Spline

18 M
20 F
22 F
24 M
26 M
28 M
30 F
32 F
34 M
36 F

1 1 1 0 0 … 1
1 0.52 0.98 0.02 0 … 0
1 0.17 0.83 0.17 0 … 0
1 0.02 0.5 0.48 0.02 … 1
1 0 0.17 0.67 0.17 … 1
1 0 0.02 0.48 0.48 … 1
1 0 0 0.17 0.67 … 0
1 0 0 0.02 0.48 … 0
1 0 0 0 0.17 … 1
1 0 0 0 0.02 … 0
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Splines

 Practical way of modelling continuous variables
 Often better than polynomials
 Increases complexity, therefore best used
 when it is important that rates vary continuously with 

a variable
 when modeling elasticity to be used in price 

optimisation analyses

Example
Comparison of factor with spline
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Example retention elasticity curve
Retention analysis

Run 4 Model 2 - Interactions - Retention model
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Market price

 Key to getting good model
 Hard to get hold of
 Rates are not published
 Rates change – daily!

Sources of information

 WhatIf? 
 Direct questioning of callers
 Mystery shopping
 Conversion rates (market temperature)
 Ranking from aggregator sites
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Sources of information
Competitor Data Sources - Overall Use
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Aggregators

Drives cart and horse through traditional direct 
model
 Fixed cost per converted policy
 Looks like brokerage?
 Two sets of commission

Data issues:
 Limited information
 Time constrained
 Cannibalisation
 Low conversion rate (1%?)
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Aggregators

Drives cart and horse through traditional direct 
model
 Fixed cost per converted policy
 Looks like brokerage?
 Two sets of commission

Data issues:
 Limited information
 Time constrained
 Cannibalisation

 Low conversion rate (1%?)

Aggregators

 Low probability models present special 
challenges
 Selection of model
 Data volumes

 Working party is looking at these issues
 Ranking is of paramount importance…
 … but so is brand
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Conclusion

 Interesting area with many challenges
 If you get it right, it can give a significant 

competitive advantage

 Come and see the GIRO workshop on Demand 
Modelling!

Contact details

 James Tanser
 Watson Wyatt Limited
 +44 1737 274249
 james.tanser@watsonwyatt.com

mailto:james.tanser@watsonwyatt.com
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