The Actuarial Profession
making financial sense of the future

GENERAL INSURANCE PRICING SEMINAR

13 JUNE 2008, LONDON

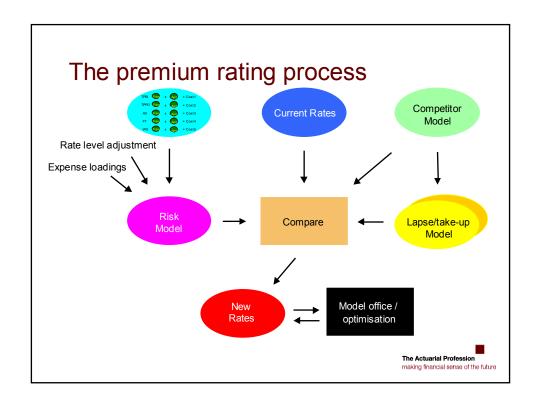
Demand Modelling in Personal Lines James Tanser Watson Wyatt Limited

Agenda

- Motivation
 - What makes a demand model special?
 - Why are we interested?
- Tools
 - Linear and non-linear models
 - Continuous variables
- Challenges
 - Market price
 - Aggregators

Agenda

- Motivation
 - What makes a demand model special?
 - Why are we interested?
- Tools
 - Linear and non-linear models
 - Continuous variables
- Challenges
 - Market price
 - Aggregators



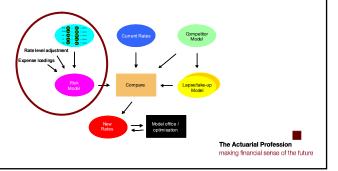
What makes demand models special?

- A demand model:
 - Looks at customer purchasing behaviour
 - Key element is market price
- Retention models are easier
 - Can get away with only old and new premiums
 - New business as proxy for market premium
- Probability of purchase may be low

The Actuarial Profession making financial sense of the future

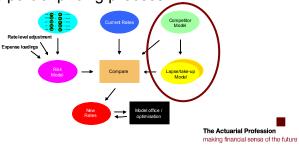
Why are we interested?

- We understand risk
 - GLM modelling over 10 years old
 - Data is clean and reliable
 - We know the interactions to look for



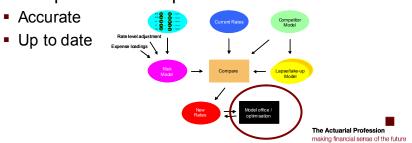
Why are we interested?

- We have a handle on retention
 - Data is collected
 - Standard models used
 - Price change understood
 - Integrated as part of pricing process



Why are we interested?

- Customer demand is last ingredient
 - Some data is collected some is missing
 - "Hot money"
 - Lifestyle changes
- Price optimisation requires model which are:



GIRO working party

- Chairman
 - James Tanser (Watson Wyatt)
- Members
 - John Light (RSA)
 - Owen Morris (NU)
 - Sophia Mealy (AON)

The Actuarial Profession
making financial sense of the future

GIRO Working party

- Provide an introduction to the topic describing the terms used
- Summarise the current methodologies used in the market
- Summarise possible alternate methodologies identified by a search of available literature
- Investigate several methods using agreed methodology to determine the descriptive and predictive power of the methods when applied to actual insurance data
- Provide a brief conclusion and highlight areas for further work.

Agenda

- Motivation
 - What makes a demand model special?
 - Why are we interested?
- Tools
 - Linear and non-linear models
 - Continuous variables
- Challenges
 - Market price
 - Aggregators

The Actuarial Profession making financial sense of the future

Generalised linear models

$$E[\underline{Y}] = \underline{\mu} = g^{-1}(X \cdot \underline{\beta} + \underline{\xi})$$

$$Var[\underline{Y}] = \phi.V(\underline{\mu}) / \underline{\omega}$$

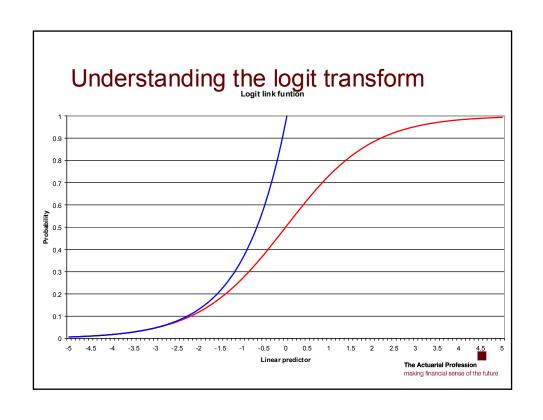
Typical model forms

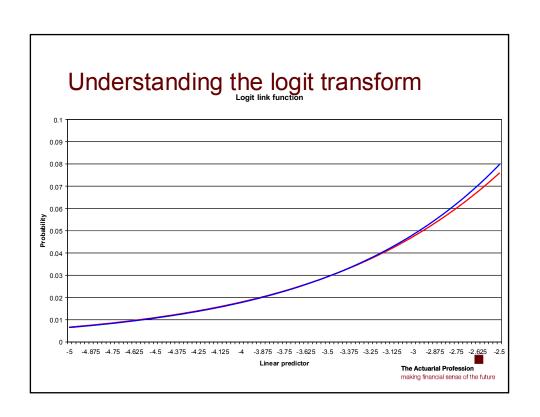
Y	Claim frequency	Claim number	Average claim amount	Probability (eg lapses)
g(x)	ln(x)	ln(x)	In(x)	In(x/(1-x))
Error	Poisson	Poisson	Gamma	Binomial
ф V(x)	1 x	1 x	estimate x ²	1 x(1-x)
<u> </u>	exposure	1	# claims	1
<u>\$</u>	0	In(exposure)	0	0

The Actuarial Profession making financial sense of the future

Models

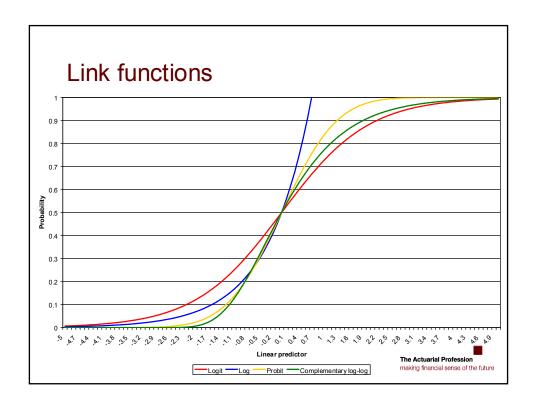
- Generalised linear models cope well with most common requirements
- A logistic model is most appropriate
 - considers log(p / [1-p]) with binomial error
 - maps [0,1] to [-∞, ∞]
 - invariant to whether you model success or failure
- If lapses are low and results not to be used directly, a Poisson multiplicative model can help
 - theoretically wrong (can predict multiple lapses), but easier to communicate





Other models

- Could try:
 - Binomial / log link
 - Binomial / probit link
 - Binomial / complementary log-log link
- Transform the data
 - Sampling
- Working party is looking at these



Sampling

- Take 100% of conversions and x% of others
- In theory, makes not difference to binomial/logit models
- Questions:
 - What rate should be targeted?
 - Predicative versus Descriptive
 - What about other links?

The Actuarial Profession making financial sense of the future

Agenda

- Motivation
 - What makes a demand model special?
 - Why are we interested?
- Tools
 - Linear and non-linear models
 - Continuous variables
- Challenges
 - Market price
 - Aggregators

Continuous variables

- Why continuous?
- Model form
- Continuous variables in a GLM framework

The Actuarial Profession making financial sense of the future

Why continuous?

- Key drivers of demand:
 - Own price
 - Market price
 - Interaction between the two
- Best modelled continuously
- Price sensitivity not necessarily the same everywhere...

Model form: Linear versus non-linear

- Varying views:
 - Simplistic
 - Complex linear
 - Non-linear
- Consider relative competitiveness as an example
 - Our price / market price

The Actuarial Profession making financial sense of the future

Simplistic

Treat as variate, assume linear

$$\mu = g^{\text{-1}}(\Sigma X_j \beta_j + c(p/m))$$

- Assumes "same" prices sensitivity everywhere
 - Logit link => Lower probability individuals more sensitive (∆p/p larger)
- No-one does this, but helpful to understand issues

Complex linear

Use a continuous function of competitiveness

$$\mu = g^{-1}(\Sigma X_j \beta_j + c_k.f_k(p/m))$$

- Function is polynomial or spline
- Can interact with other variables to achieve range of shapes
- Simple to apply with existing tools

The Actuarial Profession making financial sense of the future

Non-linear

Linear in competitiveness, gradient varies by segment

$$\mu = g^{-1}(\Sigma X_{j}\beta_{j} + (p/m).exp(\Sigma Z_{j}\gamma_{j}))$$

- Similar issues to simplistic, but locally OK
- Hard to fit due to co-linearity of parameters

What is best approach?

- More research needed
- Working party looking at variations to test predictive power
- In our survey, 4 times as many people (12) used complex linear than non-linear (3)

The Actuarial Profession making financial sense of the future

Continuous variables in a GLM framework

- Variates allow each unique data value to have a different effect on the linear predictor, but force some smoothness
- Even detailed discrete treatment can produce odd results
- In practice implemented via:
 - Polynomials

or

Splines

Polynomials

- Include powers of the variate in the model
 - One parameter for each power
 - Can scale variates to avoid large (small) values
 - Can defined orthogonal polynomials to reduce correlation
- Extrapolated values may not be sensible

The Actuarial Profession making financial sense of the future

Design matrix Polynomial

```
18
     Μ
              1
                  18
                      324
                            5832 104976
                                                1
20
     F
                  20
                      400
                          8000 160000
                                                0
     F
22
              1
                  22
                      484 10648 234256
                                                0
24
     Μ
                  24
                      576 13824 331776
                                                1
26
     M
                  26
                      676 17576 456976
                                                1
28
     Μ
                  28
                      784 21952 614656
                                                1
30
     F
                      900 27000 810000
                                                0
                  30
32
     F
                  32 1024 32768 1048576
                                                0
34
     M
                  34 1156 39304 1336336
                                                1
36
                  36 1296 46656 1679616
                                                0
```

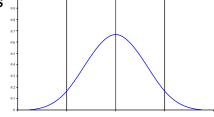
Regression splines

- Include a number of spline basis function in the model
 - Number of parameters depends of type of spline and number of knots
 - Sensible choice of basis function (eg B-splines) ensures values in [0,1]
- Can specify type
 - Order of spline
 - Type of extrapolation

The Actuarial Profession making financial sense of the future

B-Splines

- Set of basis functions usually covering four segments (defined by five knots)
- Each function is itself a cubic spline



 Each basis function has the same shape, except for the three basis functions at each extreme which occupy fewer than four segments

Spline formula

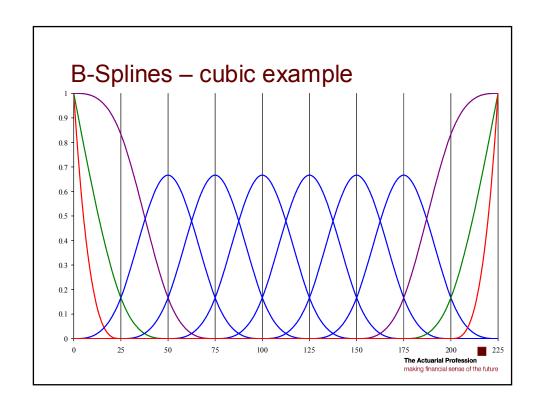
$$\frac{(x-t_{i})^{3}}{(t_{i+1}-t_{i})(t_{i+2}-t_{i})(t_{i+3}-t_{i})}$$

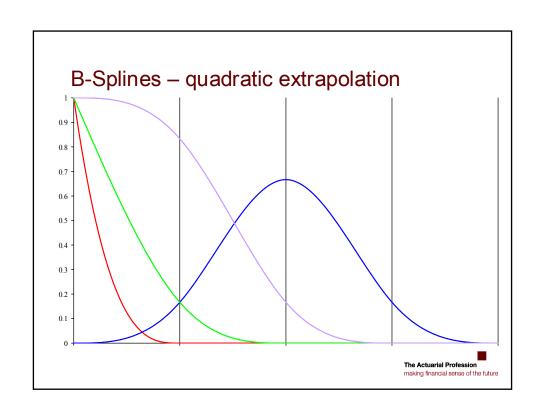
$$\frac{(x-t_{i})(t_{i+3}-x)^{2}}{(t_{i+3}-t_{i})(t_{i+3}-t_{i+1})}$$

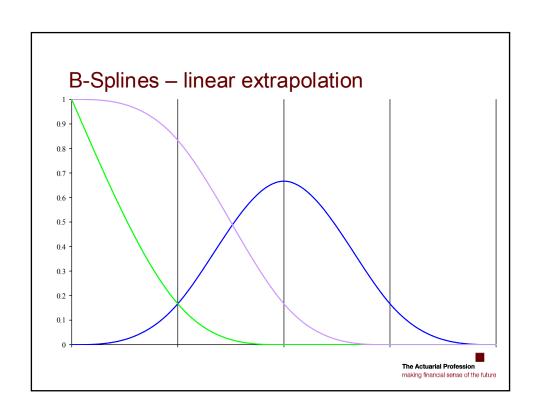
$$+\frac{(x-t_{i+1})(t_{i+3}-x)(t_{i+3}-t_{i+1})}{(t_{i+3}-t_{i+2})(t_{i+3}-t_{i+1})(t_{i+4}-t_{i+1})}$$

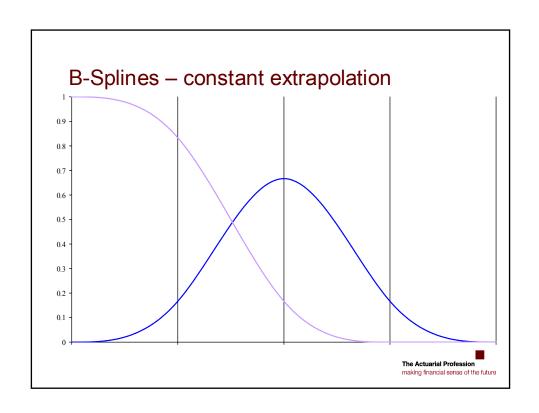
$$+\frac{(x-t_{i+1})(t_{i+3}-t_{i+1})(t_{i+4}-t_{i+1})}{(t_{i+3}-t_{i+2})(t_{i+4}-t_{i+2})(t_{i+4}-t_{i+1})}$$

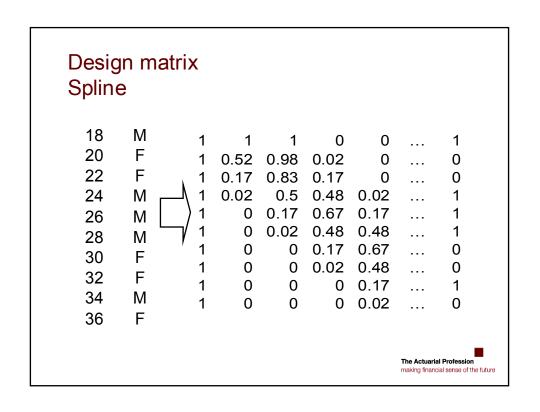
$$\frac{(x-t_{i})^{2}(t_{i+2}-x)}{(t_{i+2}-t_{i})(t_{i+2}-t_{i+1})(t_{i+3}-t_{i})} + \frac{(x-t_{i})(x-t_{i+1})(t_{i+3}-x)}{(t_{i+3}-t_{i})(t_{i+2}-t_{i+1})(t_{i+3}-t_{i+1})} + \frac{(x-t_{i+1})^{2}(t_{i+4}-x)}{(t_{i+2}-t_{i+1})(t_{i+3}-t_{i+1})(t_{i+4}-t_{i+1})} + \frac{(t_{i+4}-x)^{3}}{(t_{i+4}-t_{i+3})(t_{i+4}-t_{i+2})(t_{i+4}-t_{i+1})}$$





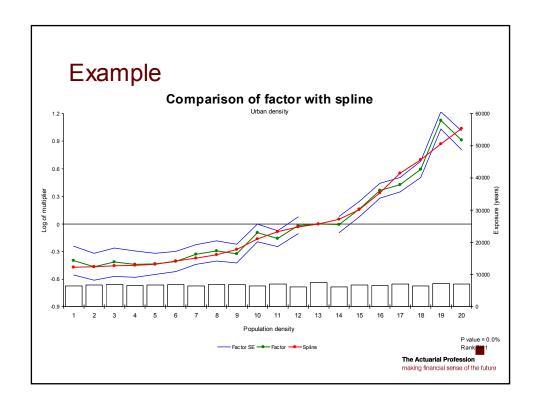


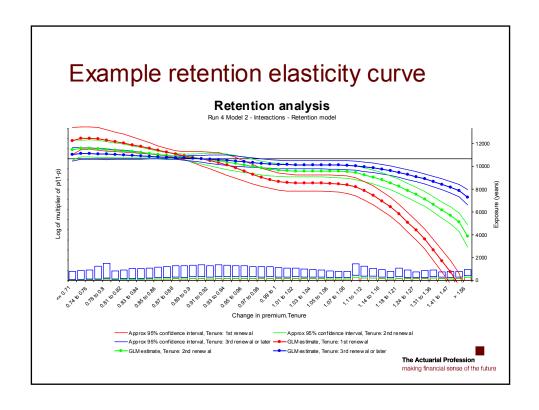




Splines

- Practical way of modelling continuous variables
- Often better than polynomials
- Increases complexity, therefore best used
 - when it is important that rates vary continuously with a variable
 - when modeling elasticity to be used in price optimisation analyses





Agenda

- Motivation
 - What makes a demand model special?
 - Why are we interested?
- Tools
 - Linear and non-linear models
 - Continuous variables
- Challenges
 - Market price
 - Aggregators

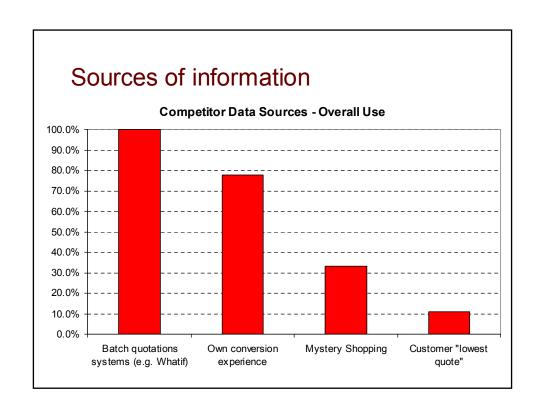
Market price

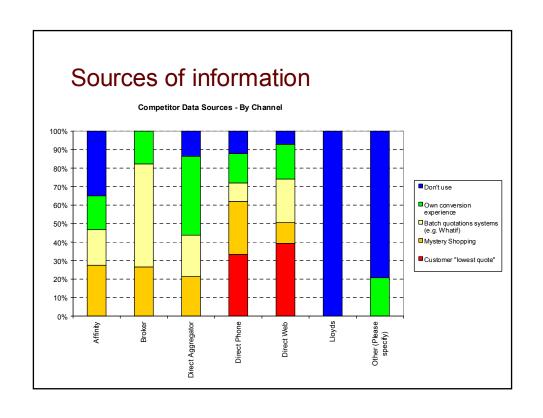
- Key to getting good model
- Hard to get hold of
 - Rates are not published
 - Rates change daily!

The Actuarial Profession making financial sense of the future

Sources of information

- WhatIf?
- Direct questioning of callers
- Mystery shopping
- Conversion rates (market temperature)
- Ranking from aggregator sites





Agenda

- Motivation
 - What makes a demand model special?
 - Why are we interested?
- Tools
 - Linear and non-linear models
 - Continuous variables
- Challenges
 - Market price
 - Aggregators

The Actuarial Profession making financial sense of the future

Aggregators

 Drives cart and horse through traditional direct model

- Fixed cost per converted policy
- Looks like brokerage?
- Two sets of commission
- Data issues:
 - Limited information
 - Time constrained
 - Cannibalisation
 - Low conversion rate (1%?)

Aggregators

Drives cart and horse through traditional direct model

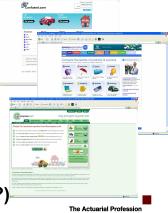
Fixed cost per converted policy

Looks like brokerage?

Two sets of commission

- Data issues:
 - Limited information
 - Time constrained
 - Cannibalisation

Low conversion rate (1%?)



The Actuarial Profession making financial sense of the future

Aggregators

- Low probability models present special challenges
 - Selection of model
 - Data volumes
- Working party is looking at these issues
- Ranking is of paramount importance...
- ... but so is brand

Conclusion

- Interesting area with many challenges
- If you get it right, it can give a significant competitive advantage
- Come and see the GIRO workshop on Demand Modelling!

The Actuarial Profession making financial sense of the future

Contact details

- James Tanser
- Watson Wyatt Limited
- **+**44 1737 274249
- james.tanser@watsonwyatt.com

The Actuarial Profession making financial sense of the future

GENERAL INSURANCE PRICING SEMINAR

13 JUNE 2008, LONDON

Demand Modelling in Personal Lines James Tanser Watson Wyatt Limited