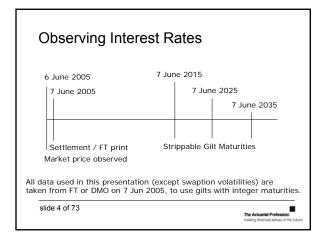
The Actuarial Profession making financial sense of the future

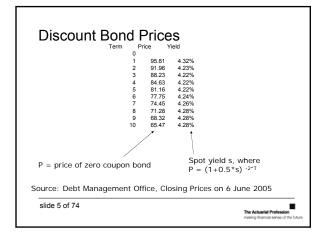
Agenda

- Market views and how to construct them
- How do market views compare to observed economic behaviour?
- How can we explain the differences?

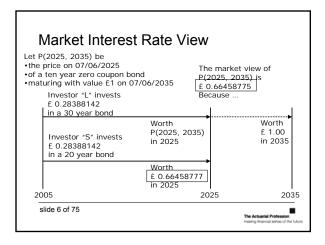
slide 2 of 71

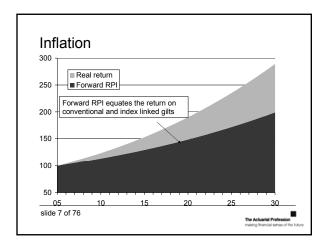

The Actuarial Profession making financial sense of the fut

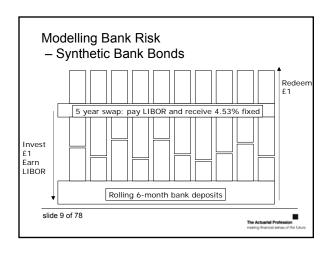
What is the market view?

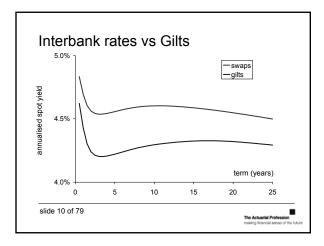

- The "market view" is the scenario [or distribution] under which all investments have the same [expected] return
 If everyone agreed in this scenario then no investment would offer superior returns.
- Buzzwords that may indicate a market view:
 - market consistent valuation
 - realistic balance sheet
 market consistent embedded value
- Buzzwords that probably don't indicate a market view: realistic approach to pension fundingmarket based valuation

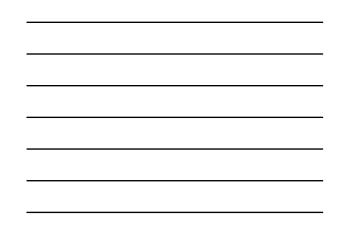
slide 3 of 72

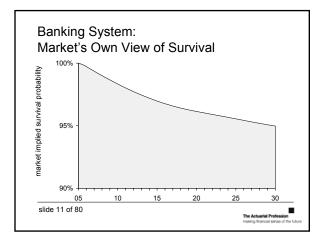

..... The Actuarial Profession making financial sense of the fi

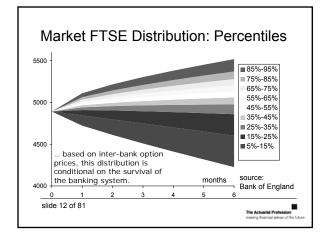


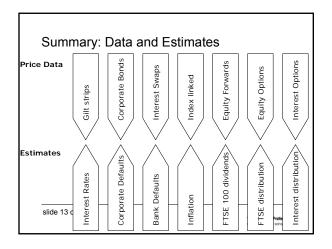


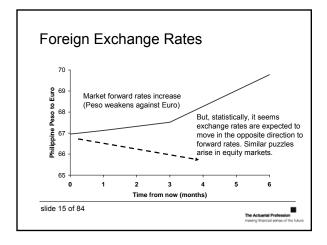



	US Dollar	Euro	GB Pound	
Japan Yen				The tabulated forward
spot	106.735	131.097	194.183	rates are those for whic
1 month	106.455	130.868	193.418	two investors see the
3 month	105.835	130.393	191.858	same return on zero
1 year	102.905	128.418	185.543	coupon bonds in their
Philippine Peso				respective currencies.
spot	54.510	66.952	99.170	
1 month	54.606	67.127	99.212	
3 month	54.801	67.518	99.344	
1 year	55.917	69.780	100.819	
South Korean W	on			
spot	1007.50	1237.46	1832.94	
1 month	1007.70	1238.77	1830.87	
3 month	1007.60	1241.42	1826.58	
1 year	1003.10	1251.79	1808.62	
source: FT, 07/0	06/2005			

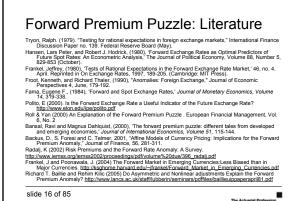






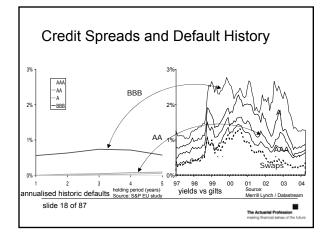


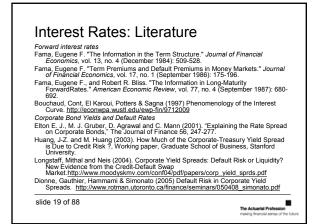
What do Market Views Tell Us about Economic Behaviour?

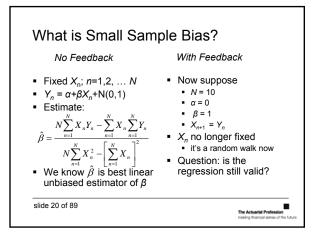

- How good is the Market View as a predictor of outcomes?
- Is it as good as:
 - naïve forecast: tomorrow's price = today's
 - statistical methods?
- If market views are bad forecasts then this implies a profit opportunity
 - because you can lock in the market forecast and profit if your forecast turns out to be correct

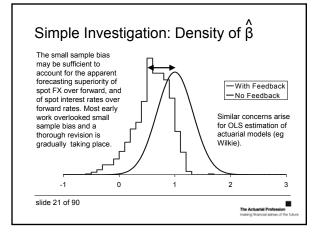
slide 14 of 83

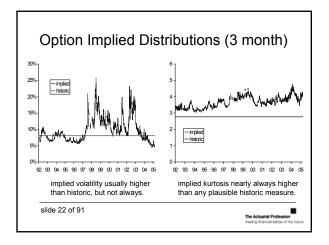
The Actuarial Profession making financial sense of the full

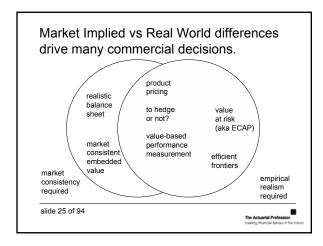





Imp	lied Spot Y	ields			maturi	ty date		
		2005	2010	2015	2020	2025	2030	2035
~	2005		4.26%	4.33%	4.37%	4.34%	4.32%	4.29%
valuation date	2010			4.39%	4.42%	4.37%	4.34%	4.29%
ð	2015				4.44%	4.36%	4.32%	4.27%
<u>lo</u>	2020					4.28%	4.26%	4.21%
lat	2025		t view: yie	4.23%	4.17%			
Ъ	2030	increa		4.11%				
>	2035	return	in early y	ears				
Most Likely Yi	t Likely Yie	elds maturity date						
		2005	2010	2015	2020	2025	2030	2035
d)	2005		4.26%	4.33%	4.37%	4.34%	4.32%	4.29%
valuation date	2010	_		4.33%	4.37%	4.34%	4.32%	4.29%
ĉ	2015				4.37%	4.34%	4.32%	4.29%
ē	2020					4.34%	4.32%	4.29%
Jai	2025	Statist	ical view:	bonds wit	h higher		4.32%	4.29%
al	2030	initial	initial yield deliver higher returns					4.29%
>	2035	over th						








<section-header><section-header><section-header><list-item><list-item><list-item><list-item><list-item><text>

Explaining the Differences Risk premiums you can't get risk premiums from market prices alone large deflators in rare / extreme events is this the same as market inefficiency? Frictional costs Costs of capital, tax, transactions and other frictions are already implicit in option prices Impact greatest for extreme strikes The market "implied volatility" is not a pure volatility estimate Misinterpretation of statistical tests small sample blases outliers, non-normal distributions Peso effects (unobserved rare but extreme outcomes)

slide 24 of 93

The Actuarial Profession making financial sense of the to

A large and inconclusive literature debates the predictive abilities of implied vs historic models. Tempting to choose the model that tells you whatever you want to prove, citing the appropriate subset of the literature to support your case. Many outstanding issues relate to statistical bias; these are mathematical questions that can in principle be resolved definitively one way or the other. However, awareness of this issue disseminates slowly. Avoid double counting of frictional costs, for example in risk retention / hedge evaluations, pricing or MCEV work.

The Actuarial Profession making financial sense of the fut

The Actuarial Profession making financial sense of the future

Derivative Prices and Market Behaviour Andrew Smith

Session G 10:20 – 10:40, 21 June 20