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1. Does studying advanced mathematics 
develop general reasoning skills?

2. Short break: have a go at the question on your 
sheet!

3. Using comparative judgement to improve 
mathematics teaching and learning.

4. A demonstration of the NoMoreMarking 
system.
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Plan

• Why should people study mathematics?

• The Plato/Vorderman Hypothesis:  
Theory of Formal Discipline.

• Reasons to doubt the value of 
mathematics.

• Do mathematicians reason differently to 
non-mathematicians?

• Is this developmental?



Why Study Mathematics?

Mathematics has a 
privileged place on the 
school curriculum. Why? 
Two traditional reasons:

1. It’s useful in real life
2. It teaches you to think

Focus of talk:
The Theory of Formal Discipline



Why Study Mathematics?

Plato (400 BC):

“Those who have a natural 
talent for calculation are 
generally quick at every 
other kind of knowledge; 
and even the dull, if they 
have had an arithmetical 
training... become much 
quicker than they would 
otherwise have been.”



Why Study Mathematics?

Plato (400 BC):

“We must endeavour to 
persuade those who are to 
be the principal men of our 
state to go and learn 
arithmetic”



Why Study Mathematics?

John Locke (1706):

Mathematics ought to be 
taught to “all those who 
have time and opportunity, 
not so much to make them 
mathematicians as to make 
them reasonable creatures”



Why Study Mathematics?

Isaac Watts (1752)

“If we pursue mathematical 
Speculations, they will 
inure us to attend closely to 
any Subject, to seek and 
gain clear Ideas, to 
distinguish Truth from 
Falsehood, to judge justly, 
and to argue strongly”



Theory of Formal Discipline

Features of the Theory of Formal Discipline:

• Studying mathematics develops general 
reasoning abilities, which apply to non-
mathematical areas of life;

• This link is causal. 

Not just of historical interest.



Why Study Mathematics?

Professor Adrian Smith 
(Smith Report, 2004):

“Mathematical training 
disciplines the mind, 
develops logical and critical 
reasoning, and develops 
analytical and problem- 
solving skills to a high 
degree.”



Why Study Mathematics?

The Smith Report 
recommended tuition fee 
rebates for mathematics 
students, and higher 
salaries for mathematics 
teachers.



Why Study Mathematics?

Vorderman Report 
commissioned by the 
Conservative Party:

“Mathematics is not only a 
language and a subject in 
itself, but it is also critical in 
fostering logical and 
rigorous thinking”



Obvious Question
• Mathematicians are incredibly good at 

arguing for the importance of their subject. 
[Compare to psychology: “Psychology, law and media studies: the 
‘scandalous’ routes to A-grade success”, The Independent, August 
2003].

• But notice that none of these advocates 
offered any scientific evidence at all. 

• So is the Theory of Formal Discipline 
correct?

• It could be that those who choose to study 
mathematics are already better at reasoning: 
the filtering hypothesis.



• Does studying mathematics cause the 
development of general reasoning skills?

• In fact (limited) empirical evidence does 
exist.

Obvious Question



Edward Thorndike
(1874 - 1949)

Thorndike & Woodworth

THE INFLUENCE OF IMPROVEMENT IN ONE

MENTAL FUNCTION UPON THE

EFFICIENCY OF OTHER

FUNCTIONS. (I.)

BY DR. E. L. THORNDIKE,

Teachers College, New York,

AND DR. R. S. WOODWORTH,

New York University Medical School.

This is the first of a number of articles reporting an induc-

tive study of the facts suggested by the title. It will comprise

a general statement of the results and of the methods of obtain-

ing them, and a detailed account of one type of experiment.

The word function is used without any rigor to refer to the

mental basis of such things as spelling, multiplication, delicacy

in discrimination of size, force of movement, marking a's on a

printed page, observing the word boy in a printed page, quick-

ness, morality, verbal memory, chess playing, reasoning, etc.

Function is used for all sorts of qualities in all sorts of perform-

ances from the narrowest to the widest, e. g., from attention to

the word ' fire' pronounced in a certain tone, to attention to all

sorts of things. By the word improvement we shall mean

those changes in the workings of functions which psychologists

would commonly call by that name. Its use will be clear in

each case and the psychological problem will never be different

even if the changes studied be not such as everyone would call

improvements. For all purposes ' change ' maybe used instead

of ' improvement' in the title. By efficiency we shall mean the

status of a function which we use when comparing individuals

or the same individual at different times, the status on which

we would grade people in that function. By other function we

mean any function differing in any respect whatever from the

first. We shall at times use the word function-group to mean
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Edward Thorndike investigated 
the extent to which training on 
mental function X improves the 
closely related mental function Y.

Edward Thorndike
(1874 - 1949)

Thorndike & Woodworth



Edward Thorndike
(1874 - 1949)

Training:

Test:

Test:

Thorndike & Woodworth



“Improvement in any single 
mental function rarely brings 
about equal improvement in any 
other function, no matter how 
similar, for the working of every 
mental function-group is 
conditioned by the nature of the 
data in each particular case.”

Edward Thorndike
(1874 - 1949)

Thorndike & Woodworth



What about formal schooling?

Edward Thorndike
(1874 - 1949)

Thorndike

THE JOURNAL OF

EDUCATIONAL PSYCHOLOGY

Volume XV January, 1924 Number 1

MENTAL DISCIPLINE IN HIGH SCHOOL STUDIES1

E. L. THORNDIKE

With the aid of the staff of The Institute of Educational Research,

Teachers College, Columbia University

The experiment to be reported consisted of an examination in
May, 1922, and a reexamination in May, 1923, of 8564 pupils who, in
May, 1922, were in grades IX, X and XI. The two examinations were
alternative forms of a composite of tests of "general intelligence"
that are in common use, plus certain ones added in order to have
measures with spatial as well as verbal and numerical content. This
composite examination is that described in Vol. V, No. 4 of the Journal
of Educational Research, April, 1922. Each pupil who took both
examinations recorded the subjects which he studied during the
school year Sept. 22, 1922 to June 23, 1923; and the gains made in the
test were put into relation with the subjects studied. For example,
we compare the gains for the pupils who studied English, history,
geometry and Latin during the year with the g ains for the pupils who
studied English, history, geometry and shop-work. If other factors
Buch as initial ability, zeal in taking the examination, and special training
on its content are properly equalized or allowed for, the difference in
gain represents the difference between Latin and shop-work as taught
in these schools in general training or disci plinary value or improvement
in "general intelligence," or whatever a gain in such an examination
measures.

We shall report the procedures and results only in so far as is neces-
sary to enable the reader to estimate their validity. Even so the
report has to be long and somewhat elaborate. The reader needs to
know how the pupils were selected; by whom and how the examinations
were given and how far the pupils tried to do the best they could;

1 This] investigation was made possible by a grant from the Commonwealth
Fund.



Selected Findings:

Subject “Regression 
Coefficient”

French + 0.48
Bookkeeping + 0.25

Arithmetic + 0.13
Geometry + 0.13
Algebra + 0.12
Drawing – 0.01

Economics – 0.50
Sewing – 0.66

Edward Thorndike
(1874 - 1949)

Thorndike



Critique of Thorndike

Vygotsky suggested that 
Thorndike’s “general 
intelligence” measure 
wasn’t sensitive enough to 
measure developmental 
changes in reasoning skills.

Lev Vygotsky
(1896 - 1934)



Piaget

Piaget argued that domain-
independent thinking skills did exist, 
but that they couldn’t be taught. 

You just have to wait until the child is 
ready to enter the “stage of formal 
operations”. You can do nothing at all 
to help.

Jean Piaget 
(1896 - 1980)



The Cognitive Revolution

Following the cognitive revolution, 
most cognitive scientists rejected 
Piaget’s claims. 

Newell wrote:  
“The modern position is that learned 
problem-solving skills are, in general, 
idiosyncratic to the task.”

Bad news for Plato/Vorderman: 
mathematics cannot develop domain-
general skills, as they don’t exist!
Newell, A. (1980). One last word. In D. Tuma and F. Reif (Eds.) 
Problem Solving and Education, Hillsdale, NJ: Erlbaum.Alan Newell



Studying Psychology Improves Thinking

However, more recently Richard 
Nisbett has found that some domain-
independent thinking skills do exist, 
and that these can be taught.

In particular, he has shown that 
studying psychology makes you better 
at “statistical and methodological 
reasoning”. Not so for law or 
chemistry.

Richard Nisbett



Studying Psychology Improves Thinking

Richard Nisbett

Changes in “Statistical and 
Methodological Reasoning” across three 

years of graduate school in Michigan



Richard Nisbett

Changes in “Verbal Reasoning” across 
three years of graduate school in Michigan

Not the Case for Deductive Logic



Not the Case for Deductive Logic

Patricia Cheng even 
showed that studying 
a full course in formal 
logic doesn’t improve 
one’s abilities to 
tackle logic tasks.

(there may be 
methodological 
issues with this… 
see Attridge, 
Aberdein & Inglis, in 
press)

COGNITIVE PSYCHOLOGY 18, 293-328 (19%) 

Pragmatic versus Syntactic Approaches to Training 
Deductive Reasoning 

PATRICIA W. CHENG 

Carnegie-Mellon University 

KEITH J. HOLYOAK 

University of Michigan 

AND 

RICHARD E. NISBETTANDLINDSAY M. OLIVER 

University of Michigan 

Two views have dominated theories of deductive reasoning. One is the view 
that people reason using syntactic, domain-independent rules of logic, and the 
other is the view that people use domain-specific knowledge. In contrast with 
both of these views, we present evidence that people often reason using a type of 
knowledge structure termed prngmutic r-eusoning schemas. In two experiments, 
syntactically equivalent forms of conditional rules produced different patterns of 
performance in Wason’s selection task, depending on the type of pragmatic 
schema evoked. The differences could not be explained by either dominant view. 
We further tested the syntactic view by manipulating the type of logic training 
subjects received. If people typically do not use abstract rules analogous to those 
of standard logic, then training on abstract principles of standard logic alone 
would have little effect on selection performance, because the subjects would not 
know how to map such rules onto concrete instances. Training results obtained in 
both a laboratory and a classroom setting confirmed our hypothesis: Training was 
effective only when abstract principles were coupled with examples of selection 
problems, which served to elucidate the mapping between abstract principles and 
concrete instances. In contrast, a third experiment demonstrated that brief ab- 
stract training on a pragmatic reasoning schema had a substantial impact on sub- 
jects’ reasoning about problems that were interpretable in terms of the schema, 
The dominance of pragmatic schemas over purely syntactic rules was discussed 
with respect to the relative utility of both types of rules for solving real-world 
problems. 0 1986 Academic Press, Inc. 

This research was supported by grants from the Spencer Foundation and the National 
Science Foundation (BNS-8216068 to Hotyoak, SES-8218846 to Nisbett, and BNS-8409198 
to Holyoak and Nisbett). Holyoak was supported by an NIMH Research Scientist Develop- 
ment Award, 5K02-MHO0342. We thank the students and instructors who participated in 
our study of logic training in the classroom. We also thank Preston Covey for useful discus- 
sions and Philip Johnson-Laird and Paul Pollard for helpful comments on an earlier draft of 
the paper. Paul Thagard provided helpful comments on our training material: both he and 
Jeff Horty critiqued a draft of the paper. P. Cheng and K. Holyoak are now at the University 
of California at Los Angeles. Reprint requests may be sent to P. Cheng, Department of 
Psychology, University of California, Los Angeles, CA 90024. 
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LETTERS

Putting brain training to the test
Adrian M. Owen1, Adam Hampshire1, Jessica A. Grahn1, Robert Stenton2, Said Dajani2, Alistair S. Burns3,
Robert J. Howard2 & Clive G. Ballard2

‘Brain training’, or the goal of improved cognitive function
through the regular use of computerized tests, is a multimillion-
pound industry1, yet in our view scientific evidence to support its
efficacy is lacking. Modest effects have been reported in some
studies of older individuals2,3 and preschool children4, and
video-game players outperform non-players on some tests of
visual attention5. However, the widely held belief that commer-
cially available computerized brain-training programs improve
general cognitive function in the wider population in our opinion
lacks empirical support. The central question is not whether per-
formance on cognitive tests can be improved by training, but
rather, whether those benefits transfer to other untrained tasks
or lead to any general improvement in the level of cognitive func-
tioning. Here we report the results of a six-week online study in
which 11,430 participants trained several times each week on cog-
nitive tasks designed to improve reasoning, memory, planning,
visuospatial skills and attention. Although improvements were
observed in every one of the cognitive tasks that were trained,
no evidence was found for transfer effects to untrained tasks, even
when those tasks were cognitively closely related.

To investigate whether regular brain training leads to any
improvement in cognitive function, viewers of the BBC popular
science programme ‘Bang Goes The Theory’ participated in a six-
week online study of brain training. An initial ‘benchmarking’ assess-
ment included a broad neuropsychological battery of four tests that
are sensitive to changes in cognitive function in health and disease6–12.
Specifically, baseline measures of reasoning6, verbal short-term
memory (VSTM)7,12, spatial working memory (SWM)8–10 and
paired-associates learning (PAL)11,13 were acquired. Participants were
then randomly assigned to one of two experimental groups or a third
control group and logged on to the BBC Lab UK website to practise
six training tasks for a minimum of 10 min a day, three times a week.
In experimental group 1, the six training tasks emphasized reasoning,
planning and problem-solving abilities. In experimental group 2, a

broader range of cognitive functions was trained using tests of short-
term memory, attention, visuospatial processing and mathematics
similar to those commonly found in commercially available brain-
training devices. The difficulty of the training tasks increased as the
participants improved to continuously challenge their cognitive per-
formance and maximize any benefits of training. The control group
did not formally practise any specific cognitive tasks during their
‘training’ sessions, but answered obscure questions from six different
categories using any available online resource. At six weeks, the bench-
markingassessmentwas repeated and the pre- andpost-training scores
were compared. The difference in benchmarking scores provided the
measure of generalized cognitive improvement resulting from train-
ing. Similarly, for each training task, the first and last scores were
compared to give a measure of specific improvement on that task.

Of 52,617 participants aged 18–60 who initially registered, 11,430
completed both benchmarking assessments and at least two full
training sessions during the six-week period. On average, participants
completed 24.47 (s.d.5 16.95) training sessions (range5 1–188
sessions). The three groups were well matched in age (39.14 (11.91),
39.65 (11.83), 40.51 (11.79), respectively) and gender (female/
male5 5.5:1, 5.6:1 and 4.3:1, respectively).

Numerically, experimental group 1 improved on four benchmark-
ing tests and experimental group 2 improved on three benchmarking
tests (Fig. 1), with standardized effect sizes varying from small (for
example, 0.35 (99% confidence interval (CI), 0.29–0.41)) to very
small (for example, 0.01 (99% CI,20.05–0.07)). However, the con-
trol group also improved numerically on all four tests with similar
effect sizes (Table 1). When the three groups were compared directly,
effect sizes across all four benchmarking tests were very small (for
example, 0.01 (99% CI, 20.05–0.07) to 0.22 (99% CI, 0.15–0.28))
(Table 2). In fact, for VSTM and PAL, the difference between bench-
marking sessions was numerically greatest for the control group
(Fig. 1, Table 1 and Table 2). These results suggest an equivalent

1MRC Cognition and Brain Sciences Unit, 15 Chaucer Road, Cambridge CB2 7EF, UK. 2King’s College London, Institute of Psychiatry, De Crespigny Park, London SE5 8AF, UK.
3University of Manchester and Manchester Academic Health Science Centre, Manchester M13 9PL, UK.

Table 1 | Changes between pre- and post-training benchmarking perform-
ance for each group

Test Measure Experimental group 1 Experimental group 2 Control group

Reasoning MD 1.73 1.97 0.90
Effect size 0.31 0.35 0.16
99% CI 0.26–0.36 0.29–0.41 0.09–0.23

VSTM MD 0.15 0.03 0.22
Effect size 0.16 0.03 0.21
99% CI 0.11–0.21 20.02–0.09 0.14–0.28

SWM MD 0.33 0.35 0.27
Effect size 0.24 0.27 0.19
99% CI 0.19–0.29 0.21–0.33 0.12–0.26

PAL MD 0.06 20.01 0.07
Effect size 0.10 0.01 0.11
99% CI 0.05–0.16 20.05–0.07 0.04–0.18

CI, confidence interval; PAL, paired-associates learning; SWM, spatial workingmemory; VSTM,
verbal short-term memory; MD, mean difference.

Table 2 | Comparisons of each group’s change in pre- and post-training
benchmarking performance

Test Measure Experimental group 1
versus experimental
group 2

Experimental group 1
versus control group

Experimental
group 2 versus
control group

Reasoning MD 20.231 0.831 1.062
Effect size 0.05 0.17 0.22
99% CI 20.01–0.1 0.1–0.23 0.15–0.28

VSTM MD 0.130 20.056 20.186
Effect size 0.13 0.05 0.18
99% CI 0.07–0.18 20.01–0.12 0.11–0.24

SWM MD 20.028 0.057 0.085
Effect size 0.02 0.04 0.06
99% CI 20.04–0.07 20.03–0.1 20.01–0.12

PAL MD 0.117 20.012 20.129
Effect size 0.10 0.01 0.11
99% CI 0.04–0.15 20.05–0.07 0.04–0.17

See Table 1 for definitions.
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and marginal test–retest practice effect in all groups across all four
tasks (Table 1). In contrast, the improvement on the tests that were
actually trained was convincing across all tasks for both experimental
groups. For example, for the tasks practised by experimental group 1,
differences were observed with large effect sizes of between 0.73 (99%
CI, 0.68–0.79) and 1.63 (99%CI, 1.57–1.7) (Table 3 and Fig. 2). Using
Cohen’s14 notion that 0.2 represents a small effect, 0.5 amedium effect
and 0.8 a large effect, even the smallest of these improvements would
be considered large. Similarly, for experimental group 2, large
improvements were observed on all training tasks, with effect sizes
of between 0.72 (99% CI, 0.67–0.78) and 0.97 (99% CI, 0.91–1.03)
(Table 3 and Fig. 2). Numerically, the control group also improved in
their ability to answer obscure knowledge questions, although the
effect size was small (0.33 (99% CI, 0.26–0.4)) (Table 3 and Fig. 2).
In all three groups, whether these improvements reflected the simple
effects of task repetition (that is, practise), the adoption of new task
strategies, or a combination of the two is unclear, but whatever the
process effecting change, it did not generalize to the untrained bench-
marking tests.

The relationship between the number of training sessions and
changes in benchmark performance was negligible in all groups for
all tests (largest Spearman’s r5 0.059; Supplementary Fig. 1). The
effect of age was also negligible (largest Spearman’s r520.073).
Only two tests showed a significant effect of gender (PAL in experi-
mental group 1 and VSTM in experimental group 2), but the effect
sizes were very small (0.09 (99% CI, 20.01–0.2) and 0.09 (99% CI,
20.03–0.2), respectively).

These results provide no evidence for any generalized improve-
ments in cognitive function following brain training in a large sample

of healthy adults. This was true for both the ‘general cognitive train-
ing’ group (experimental group 2) who practised tests of memory,
attention, visuospatial processing and mathematics similar to many
of those found in commercial brain trainers, and for a more focused
training group (experimental group 1) who practised tests of reason-
ing, planning and problem solving. Indeed, both groups provided
evidence that training-related improvements may not even generalize
to other tasks that use similar cognitive functions. For example, three
of the tests practised by experimental group 1 (reasoning 1, 2 and 3)
specifically emphasized abstract reasoning abilities, yet numerically
larger changes on the benchmarking test that also required abstract
reasoning were observed in experimental group 2, who were not
trained on any test that specifically emphasized reasoning. Similarly,
of all the trained tasks,memory 2 (based on the classic parlour game in
which players have to remember the locations of objects on cards) is
most closely related to the PAL benchmarking task (in which partici-
pants also have to remember the locations of objects), yet numerically,
PALperformance actually deteriorated in the experimental group that
trained on the memory 2 task (Fig. 1).

Could it be that no generalized effects of brain training were
observed because the wrong types of cognitive task were used? This
is unlikely because 12 different tests, covering a broad range of cogni-
tive functions, were trained in this study. In addition, the six training
tasks that emphasized abstract reasoning, planning and problem solv-
ingwere included specifically because such tasks are known to correlate
highly with measures of general fluid intelligence or ‘g’15–17, and were
thereforemost likely to produce an improvement in the general level of
cognitive functioning. Indeed, functional neuroimaging studies have
revealed clear overlap in frontal and parietal regions between similar
tests of reasoning and planning to those used here15,17–19 and tests that
are specifically designed to measure g15,20, whereas damage to the
frontal lobe impairs performance on both types of task10,16,21.

Is it possible that the benchmarking tests were insensitive to the
generalized effects of brain training? This is also unlikely because the
benchmarking tests were chosen for their known sensitivity to small
changes in cognitive function in disease or following low-dose neuro-
pharmacological interventions in healthy volunteers. For example, the
SWM task is sensitive to damage to the frontal cortex10,22 and impair-
ments are observed in patients with Parkinson’s disease23. On the other
hand, low-dose methylphenidate improves performance on the same
task in healthy volunteers8,9. Similarly, thePAL task is highly sensitive to
various neuropathological conditions, including Alzheimer’s disease11,
Parkinson’s disease13 and schizophrenia24, whereas the a2-agonists
guanfacine and clonidine improve performance in healthy volunteers25.
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Figure 1 | Benchmarking scores at baseline and after six weeks of training across the three groups of participants. PAL, paired-associates learning; SWM,
spatial working memory; VSTM, verbal short-term memory. Bars represent standard deviations.

Table 3 | Changes between first and last training scores for each group

Experimental group Test Mean difference Effect size 99% CI

Experimental group 1 Reasoning 1 33.96 1.63 1.57–1.70
Reasoning 2 13.45 1.03 0.98–1.09
Reasoning 3 11.45 1.25 1.19–1.31
Planning 1 15.17 1.28 1.23–1.34
Planning 2 14.42 1.10 1.05–1.16
Planning 3 10.41 0.73 0.68–0.79

Experimental group 2 Maths 18.15 0.90 0.84–0.96
Visuospatial 8.62 0.95 0.89–1.02
Attention 1 9.71 0.93 0.87–0.99
Attention 2 8.48 0.84 0.78–0.90
Memory 1 7.29 0.72 0.67–0.78
Memory 2 5.30 0.97 0.91–1.03

Control group Questions 3.62 0.33 0.26–0.40

For description of tests, see Methods.
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Collaboration with BBC’s 
“Bang Goes the Theory”
N = 11,430
Used ‘brain training’ for 
six weeks.



Background Summary

1. Overwhelming view among mathematicians and 
policy-makers is that studying mathematics 
causally develops general reasoning skills.

2. Overwhelming view among psychologists is that 
it does not (or, if you’re Nisbett, that it does not 
develop logical reasoning skills, but might 
develop other non-logical reasoning skills).

3. Very little direct empirical evidence either way.



Background Summary

• This situation is a bit of a mess.

• Clearly unsatisfactory that important 
educational policy decisions are being made 
on anecdotal evidence.

• Main goal of the Fellowship, funded by the 
Worshipful Company of Actuaries via the 
Royal Society, was to provide some 
compelling evidence either way.



Research Strategy

1. How can we measure reasoning performance?

2. Do mathematicians “reason differently” to non-
mathematicians?

3. Are such differences developmental?

4. Does the curriculum matter?



How can we measure 
reasoning performance?



Measuring Reasoning

• What reasoning skills do TFD proponents think 
studying mathematics develops?

• When asked, people say things like “logic, 
critical thinking, problem solving…” 

• But I wanted to pin them down to making 
specific predictions.

• First I conducted a literature review to identify 
tasks that seem to be related to the kinds of 
skills Plato and Vorderman talk about.



Measuring Reasoning
I interviewed a series of “stakeholders” to ask them 
their views:

• Presidents of learned societies;

• MPs associated with education;

• Mathematicians involved in influencing 
curriculum development;

I showed them a series of reasoning tasks and 
asked them to predict the extent to which studying 
mathematics would help.

I insisted they made specific predictions (1-5 scale).



Measuring Reasoning
Task Median

Argument Evaluation Task 4
Belief Bias Syllogism Task 5
Cognitive Reflection Task 4
Conditional Inference Task 5
Evaluation of Arguments 3.5

Interpretation of Arguments 4
Recognition of Assumptions 4

Estimation 4.5
Insight Problem Solving 2

Statistical Reasoning 4
Wason THOG Task (disjunctive reasoning) 4

Wason Selection Task (conditional reasoning) 5
Ravens’ Matrices (intelligence) 4
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Conditional Inference Task
Conditional inference and advanced mathematical study: further evidence

Fig. 1 A typical conditional inference task (for the rule ‘if ¬p then q’, for the inference MT and with
an explicitly negated premise ‘¬q’)

conclusion either follows or does not follow. Four different conditional statements of
the form ‘if p then q’ are possible by varying the presence of negated components.
Researchers have tended to focus on four different inferences, two of which are
valid—modus ponens (MP) and modus tollens (MT)—and two which are invalid—
denial of the antecedent (DA) and affirmation of the consequent (AC). The premises
and conclusions of these four inferences are shown, with their validity and inference-
type,2 for the four different conditional statements in Table 1.

Here, we concentrate on two main effects which have been found to interfere with
normative conditional reasoning behaviour, the negative conclusion effect and the
affirmative premise effect (Evans, 2007). The negative conclusion effect refers to the
observation that reasoners typically draw more inferences with negative conclusions
than inferences with affirmative conclusions. That is to say that the inference ‘if A
then 3; ¬3; therefore ¬A’3 is drawn more often than the inference ‘if ¬A then 3;
¬3; therefore A’, despite both being valid MT inferences (Evans, Clibbens, & Rood,
1995; Evans & Handley, 1999; Schroyens, Schaeken, Fias, & d’Ydewalle, 2000). This
is a robust effect on both denial inferences (DA and MT), but is only weakly observed
(if at all) on AC, and never on MP (Schroyens, Schaeken, & d’Ydewalle, 2001).

The affirmative premise effect refers to the finding that participants endorse more
inferences from affirmative premises than from negative premises. It is primarily
observed when those negative premises are represented implicitly. For example, the
inference ‘if ¬A then 3; A; therefore ¬3’ is made more often than the inference ‘if A
then 3; R; therefore ¬3’, even though they are both instances of drawing, invalidly,
the DA inference (Evans & Handley, 1999).

Evans and Handley’s (1999) two-hurdle account of conditional inference brought
together these two effects. They suggested that, in order to answer a conditional
inference task correctly, the reasoner must, first, avoid the affirmative premise effect,
i.e. they must see that the premise is relevant to the conditional statement (i.e. notice
that R or ¬A is relevant for the conditional ‘if ¬A then 3’). Second, they must avoid
the negative conclusion effect, i.e. be able to convert the statement ‘¬¬p’ into ‘p’. It
is only when both stages are hurdled successfully that an inference can be made.

2The inference-type of an inference is defined as either ‘affirmative’ or ‘denial’ depending on the
valence of the conclusion drawn from the non-negated conditional ‘if p then q’.
3The symbol ‘¬’ here should be read as ‘not’.

M. Inglis, A. Simpson

Table 1 The four conditional types and four inference types used in the study

Conditional MP DA AC MT
Pr Con Pr Con Pr Con Pr Con

if p then q p q ¬p ¬q q p ¬q ¬p
if p then ¬q p ¬q ¬p q ¬q p q ¬p
if ¬p then q ¬p q p ¬q q ¬p ¬q p
if ¬p then ¬q ¬p ¬q p q ¬q ¬p q p

Inference-type Affirmative Denial Affirmative Denial
Validity Valid Invalid Invalid Valid

Inglis and Simpson (2008) found three main effects when comparing the condi-
tional inferences drawn by a group of mathematics undergraduates and a group of
undergraduates studying for other degrees:

– Overall, the mathematics group made fewer incorrect responses than the com-
parison group.

– Both groups exhibited the negative conclusion effect to approximately the same
extent.

– There was a significant between-groups difference with respect to the affirma-
tive premise effect: the comparison group showed the standard effect, but the
mathematics group showed no effect.

Inglis and Simpson speculated that this difference may be the result of the mathemat-
ics undergraduates being better able to ‘see through’ opaque representations4 than
the comparison group (cf. Zazkis & Gadowsky, 2001; Zazkis & Liljedahl, 2004). An
important remaining question is: what is the cause of this between-groups difference?
The theory of formal discipline would suggest that it is caused by the study of
advanced mathematics. However, as discussed above, it may be that the two groups
differed in general intelligence, and that this difference lay behind the findings. The
main aim of our first study was to provide further evidence on this issue.

3 The comparative study

Thus, the primary goals of the first study reported in this paper were (1) to replicate
the findings reported by Inglis and Simpson (2008) and (2) to determine whether
these findings were consequences of different levels of general intelligence between
the mathematics and comparison groups.

3.1 Method

Participants were first-year undergraduate students studying at a highly ranked
UK university. Two groups were recruited: a group of 45 students studying for a
degree offered by the Department of Mathematics (studying either Mathematics or

4In the example above, ‘R’ is a more opaque representation of p than ‘¬A’, and so, it is harder to
see its relevance to the conditional ‘if ¬A then 3’.

Modus Ponens,  
Modus Tollens

Denial of the Antecedent,  
Affirmation of the Consequent



Conditional Inference Task
Conditional inference and advanced mathematical study: further evidence

Fig. 1 A typical conditional inference task (for the rule ‘if ¬p then q’, for the inference MT and with
an explicitly negated premise ‘¬q’)

conclusion either follows or does not follow. Four different conditional statements of
the form ‘if p then q’ are possible by varying the presence of negated components.
Researchers have tended to focus on four different inferences, two of which are
valid—modus ponens (MP) and modus tollens (MT)—and two which are invalid—
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and conclusions of these four inferences are shown, with their validity and inference-
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is a robust effect on both denial inferences (DA and MT), but is only weakly observed
(if at all) on AC, and never on MP (Schroyens, Schaeken, & d’Ydewalle, 2001).

The affirmative premise effect refers to the finding that participants endorse more
inferences from affirmative premises than from negative premises. It is primarily
observed when those negative premises are represented implicitly. For example, the
inference ‘if ¬A then 3; A; therefore ¬3’ is made more often than the inference ‘if A
then 3; R; therefore ¬3’, even though they are both instances of drawing, invalidly,
the DA inference (Evans & Handley, 1999).

Evans and Handley’s (1999) two-hurdle account of conditional inference brought
together these two effects. They suggested that, in order to answer a conditional
inference task correctly, the reasoner must, first, avoid the affirmative premise effect,
i.e. they must see that the premise is relevant to the conditional statement (i.e. notice
that R or ¬A is relevant for the conditional ‘if ¬A then 3’). Second, they must avoid
the negative conclusion effect, i.e. be able to convert the statement ‘¬¬p’ into ‘p’. It
is only when both stages are hurdled successfully that an inference can be made.

2The inference-type of an inference is defined as either ‘affirmative’ or ‘denial’ depending on the
valence of the conclusion drawn from the non-negated conditional ‘if p then q’.
3The symbol ‘¬’ here should be read as ‘not’.

M. Inglis, A. Simpson

Table 1 The four conditional types and four inference types used in the study

Conditional MP DA AC MT
Pr Con Pr Con Pr Con Pr Con

if p then q p q ¬p ¬q q p ¬q ¬p
if p then ¬q p ¬q ¬p q ¬q p q ¬p
if ¬p then q ¬p q p ¬q q ¬p ¬q p
if ¬p then ¬q ¬p ¬q p q ¬q ¬p q p

Inference-type Affirmative Denial Affirmative Denial
Validity Valid Invalid Invalid Valid

Inglis and Simpson (2008) found three main effects when comparing the condi-
tional inferences drawn by a group of mathematics undergraduates and a group of
undergraduates studying for other degrees:

– Overall, the mathematics group made fewer incorrect responses than the com-
parison group.

– Both groups exhibited the negative conclusion effect to approximately the same
extent.

– There was a significant between-groups difference with respect to the affirma-
tive premise effect: the comparison group showed the standard effect, but the
mathematics group showed no effect.

Inglis and Simpson speculated that this difference may be the result of the mathemat-
ics undergraduates being better able to ‘see through’ opaque representations4 than
the comparison group (cf. Zazkis & Gadowsky, 2001; Zazkis & Liljedahl, 2004). An
important remaining question is: what is the cause of this between-groups difference?
The theory of formal discipline would suggest that it is caused by the study of
advanced mathematics. However, as discussed above, it may be that the two groups
differed in general intelligence, and that this difference lay behind the findings. The
main aim of our first study was to provide further evidence on this issue.

3 The comparative study

Thus, the primary goals of the first study reported in this paper were (1) to replicate
the findings reported by Inglis and Simpson (2008) and (2) to determine whether
these findings were consequences of different levels of general intelligence between
the mathematics and comparison groups.

3.1 Method

Participants were first-year undergraduate students studying at a highly ranked
UK university. Two groups were recruited: a group of 45 students studying for a
degree offered by the Department of Mathematics (studying either Mathematics or

4In the example above, ‘R’ is a more opaque representation of p than ‘¬A’, and so, it is harder to
see its relevance to the conditional ‘if ¬A then 3’.

Modus Ponens,  
Modus Tollens

Denial of the Antecedent,  
Affirmation of the Consequent

If you are a good lecturer 
then you will get good 

student feedback. 

Suppose I get good student 
feedback. 

Does this mean I am a good 
lecturer? 

Absolutely not, I might just be 
good at telling jokes, or 

setting easy examinations.



Conditional Inference Task

Four “typical” ways of interpreting an “if p then q” 
statement:

1. Material conditional (q or not-p)

2. Defective conditional (irrelevant unless p)

3. Biconditional (p if and only if q)

4. Conjunctive conditional (p and q)

Unfortunate terminology 
(from Peter Wason):
not a stupid way of 
thinking at all.

Normative model, as 
taught in logic courses



Material v Defective

• The difference between the material and 
defective conditionals is about the MT inference.

• ‘if p then q’ interpreted materially allows you to 
conclude not-p from not-q.

• ‘if p then q’ interpreted defectively does not allow 
this (as there is no p, the conditional is irrelevant, 
so the only premise you have is not-q).
(Although: it is possible to draw MT if you have a defective conditional 
and sufficient Working Memory capacity to construct a mini contradiction 
proof: evidence suggests few people in this category).



Material v Defective

• The difference between the material and 
defective conditionals is about the MT inference.

• ‘if p then q’ interpreted materially allows you to 
conclude not-p from not-q.

• ‘if p then q’ interpreted defectively does not allow 
this (as there is no p, the conditional is irrelevant, 
so the only premise you have is not-q).
(Although: it is possible to draw MT if you have a defective conditional 
and sufficient Working Memory capacity to construct a mini contradiction 
proof: evidence suggests few people in this category).

Defective Conditional: 

“If good lecturer then good 
student feedback” only adds 
information if we know I’m a 

good lecturer. 

In the case where I’m not, 
the conditional adds no 

extra information. 

Material Conditional: 

“Bad feedback” and “if good 
lecturer then good 

feedback” allows us to 
directly conclude “not good 

lecturer”



Conditional Inference Task

Conditional MP DA AC MT

Material Valid Invalid Invalid Valid

Defective Valid Invalid Invalid Invalid*

Biconditional Valid Valid Valid Valid

Conjunctive Valid Invalid Valid Invalid

The conditional you adopt influences the validity of

the four inferences:



Conditional Inference Task

Conditional MP DA AC MT

Material Valid Invalid Invalid Valid

Defective Valid Invalid Invalid Invalid*

Biconditional Valid Valid Valid Valid

Conjunctive Valid Invalid Valid Invalid

The conditional you adopt influences the validity of

the four inferences:

By looking at which inferences are 
endorsed, you can work out which 
interpretation the person adopts



Research Strategy

1. How can we measure reasoning performance?

2. Do mathematicians “reason differently” to non-
mathematicians?

3. Are such differences developmental?

4. Does the curriculum matter?



Study 1



Study 1

• Cross-sectional comparison of first year 
mathematics undergraduates (N = 44) and first 
year arts undergraduates (N = 33) at “highly rated” 
UK university (high IQ sample);

• Took place in Week 1 of u/g study (no lectures yet);

• Groups matched for IQ (AH5 test);

• Used Evans’s Abstract Conditional Inference Task 
(Evans et al., 1996);

• Thirty two item test of abstract conditional 
inference.
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Summary
• Maths students show an advantage on the 

conditional inference task prior to any 
undergraduate study;

• Not the result of differences in intelligence 
(groups were matched on AH5 scores);

• Advantage was uneven: came from advantage 
at rejecting DA and AC inferences, not from 
increased acceptance of MP or MT (move 
from biconditional to material/defective?).

• (Sort of) Consistent with predictions of Plato/
Vorderman. But is it developmental?



Research Strategy

1. How can we measure reasoning performance?

2. Do mathematicians “reason differently” to non-
mathematicians?

3. Are such differences developmental?

4. Does the curriculum matter?



Study 2



Study 2
• Were the differences in Study 1 the result of 

filtering or development?

• Can’t be filtering on intelligence (unless AH5 
is a poor measure), so maybe on thinking 
disposition?

• Longitudinal quasi-experimental design, 
tracking students across AS level 
mathematics and AS level English literature.

• Two test points: start and end of year of 
study.



Study 2

Covariates:

• Raven’s Intelligence Test;

• Frederick’s Cognitive Reflection Test 
(measure of thinking disposition).



Raven’s IQ Measure



Cognitive Reflection Test

recognize that the difference between $1.00 and 10 cents is only 90 cents, not $1.00
as the problem stipulates. In this case, catching that error is tantamount to solving
the problem, since nearly everyone who does not respond “10 cents” does, in fact,
give the correct response: “5 cents.”

In a study conducted at Princeton, which measured time preferences using
both real and hypothetical rewards, those answering “10 cents” were found to be
significantly less patient than those answering “5 cents.”2 Motivated by this result,
two other problems found to yield impulsive erroneous responses were included
with the “bat and ball” problem to form a simple, three-item “Cognitive Reflection
Test” (CRT), shown in Figure 1. The three items on the CRT are “easy” in the sense
that their solution is easily understood when explained, yet reaching the correct
answer often requires the suppression of an erroneous answer that springs “impul-
sively” to mind.

The proposition that the three CRT problems generate an incorrect “intuitive”
answer is supported by several facts. First, among all the possible wrong answers
people could give, the posited intuitive answers (10, 100 and 24) dominate. Second,
even among those responding correctly, the wrong answer was often considered
first, as is apparent from introspection, verbal reports and scribbles in the margin
(for example, 10 cents was often crossed out next to 5 cents, but never the other
way around). Third, when asked to judge problem difficulty (by estimating the
proportion of other respondents who would correctly solve them), respondents who
missed the problems thought they were easier than the respondents who solved
them. For example, those who answered 10 cents to the “bat and ball” problem
estimated that 92 percent of people would correctly solve it, whereas those who
answered “5 cents” estimated that “only” 62 percent would. (Both were consider-
able overestimates.) Presumably, the “5 cents” people had mentally crossed out
10 cents and knew that not everyone would do this, whereas the “10 cents” people

2 The “bat and ball” problem was subsequently used by Nagin and Pogarsky (2003) in a laboratory
experiment on cheating. When respondents could obtain a $20 reward for correctly answering six trivia
questions, those answering 10 cents were significantly more likely to defy the experimenter’s request to
complete the task without looking at the answers.

Figure 1
The Cognitive Reflection Test (CRT)

(1) A bat and a ball cost $1.10 in total. The bat costs $1.00 more than the ball. 
How much does the ball cost?  _____ cents

(2) If it takes 5 machines 5 minutes to make 5 widgets, how long would it take 
100 machines to make 100 widgets?  _____ minutes

(3) In a lake, there is a patch of  lily pads. Every day, the patch doubles in size. 
If it takes 48 days for the patch to cover the entire lake, how long would it 
take for the patch to cover half of  the lake?  _____ days

Shane Frederick 27

Considered to be a performance (as opposed to self-report) measure of thinking 
disposition.

Surprisingly good predictor of performance on many reasoning tasks over and 
above intelligence (Toplak et al., 2011).

We mixed items within a simple arithmetic test to minimise cross-session learning.



Study 2

Manipulation Check:

• Maths Test

10. Evaluate:

8 2
-4 1

11.
Z 3

1
3x

2
dx =

12. tanq = 1
sinq =

13. When expressing
x

(x+1)2(x2 +2)
in partial fractions, the appropriate form is

(a)
A

x+1
+

Bx+C

x

2 +2

(b)
A

x+1
+

B

x

2 +2

(c)
A

(x+1)2 +
B

x+1
+

C

x

2 +2

(d)
A

(x+1)2 +
B

x+1
+

Cx+D

x

2 +2

14.
Z

xe

x

dxis

(a) x

2
e

x + c

(b) xe

x � e

x + c

(c)
x

2

2
e

x + c

(d)
x

2

2
e

x+1 + c

v.C1a.1 36



Study 2

Dependent Measure:

• Evans’s Conditional Inference TaskIf you think the conclusion necessarily follows please tick YES, otherwise tick NO. Do not return to a
problem once you have finished and moved on to another. Answer all questions.

1. If the letter is U then the number is not 9.
The number is 9.
Conclusion: The letter is not U.

� YES

� NO 08

2. If the letter is not F then the number is not 3.
The letter is not F.
Conclusion: The number is not 3.

� YES

� NO 13

3. If the letter is D then the number is 4.
The number is not 4.
Conclusion: The letter is not D.

� YES

� NO 04

4. If the letter is not A then the number is 6.
The letter is A.
Conclusion: The number is not 6.

� YES

� NO 26

5. If the letter is not E then the number is 2.
The letter is R.
Conclusion: The number is 2.

� YES

� NO 25

v.C1a.1 22



Study 2 Results
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Significant Time by Inference-Type by Group 
Interaction, F(3,207) = 7.78, p < .001
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Causes?

If studying A Level mathematics is associated 
with a development towards the defective 
conditional interpretation, is this due to domain 
general changes (intelligence or thinking 
disposition), or domain specific experience 
(mathematical study)?

Ran a regression including change scores.



R 2 Predictors Beta

.713** Initial Defective Conditional Index 0.745**

Initial RAPM (intelligence) 0.065

Initial CRT (thinking disposition) 0.116

Prior academic attainment -0.006

RAPM (intelligence) change 0.143

CRT (thinking disposition) change 0.088

Group (0 = lit, 1 = maths) 0.195*

RAPM change x Group 0.023

CRT change x Group -0.091



Causes?
Apparently not due to general changes in intelligence or 
thinking disposition, but rather specific to mathematical 
study.

Obvious question: Were they simply taught how to solve 
such tasks during their A Level studies?

No. Two sources of evidence:

1. Not uniform “improvement” across all inference types.

2. Conditional inference is not on the syllabus, and is not 
examined: of 929 A Level mathematics examination 
questions set between 2009 and 2011, only one 
contained an explicit “if...then” sentence, and there 
were no mentions of “modus ponens”, “modus tollens” 
or “conditional”.



Summary

• There is an association between post-compulsory 
mathematical study and the development of 
conditional reasoning skills.

• But this appears to be towards a defective 
conditional interpretation rather than the normatively 
correct material conditional.

• You can think about this as being increased 
scepticism of deductions: does studying 
mathematics make you better at spotting flaws in 
arguments?

• Not caused by development in intelligence or 
thinking disposition, or by explicit curriculum content.
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Research Strategy

1. How can we measure reasoning performance?

2. Do mathematicians “reason differently” to non-
mathematicians?

3. Are such differences developmental?

4. Does the curriculum matter?



Cypriot Comparison
• To investigate the curriculum question, I 

needed to look at the same issues in a 
different context.

• Repeated this study in Cyprus.

• Were able to run the study over two years.

• Cypriots can study “high intensity” or “low 
intensity” mathematics from 16-18.

• In this sense it is a more typical country than 
England (Hodgen et al., 2011).
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Significant correlation, even when controlling 
for intelligence and thinking disposition



Summary

• It seems that studying mathematics may be 
associated with the development of a 
defective conditional, at least for abstract “if 
p then q” statements, and the reduced 
influence of the biconditional.

• Good news for Plato/Vorderman: 
inconsistent with Thorndike, Piaget, Newell 
etc.



Summary
There is an fundamental (but under-debated) disagreement 
between people who claim that studying mathematics 
develops reasoning skills, and those who don’t.

v

Plato, John Locke, 
Isaac Watts, Adrian Smith

Edward Thorndike, Jean Piaget, 
Alan Newell, William James



• These data are consistent with the suggestion 
that mathematics is associated with the 
development of conditional reasoning skills.

• Using modern psychology of reasoning 
measures allows for a more sensitive design 
than Thorndike’s (1924) study.

• However: the development appears not to be 
towards the normative model of the conditional, 
but towards the defective conditional.

• Can conceptualise this as a tendency to be more 
sceptical of deductions than the general 
population.

Summary



Was Plato right? 

I think so: but it’s a bit more nuanced than he 
thought.

Summary
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illustrate the complexity of longevity risk and the scale of the resulting financial 
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For those who wish to claim CPD credit, a register of attendance will be taken 
 
The Worshipful Company of Actuaries (WCA) is a Livery Company of the City of London. 
Established in 1979, the WCA supports and promotes the actuarial profession. Through its 
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mathematics. The WCA has broad links with several universities in the United Kingdom, and 
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