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Abstract 

Dynamic programming solutions for optimal portfolios in which the solu- 
tion for the portfollo vector of risky assets is constant were solved by Merton 
in continuous time and by Hakansson and others in discrete time. There is 
no case with a dosed form solution where this vector of risky asset holdings 
changes dynamically. This paper derives such solutions for the first time, 
and is thus a dynamic dynamic-programming solution as opposed to a static 
dynamic-programming solution for this vector. The solutiou is valid when 
there is a set of basis assets whose excess expected return iS linear in the state 
vector, whose variance-covariance matrix is time-dependent and for which the 
interest rate is a quadratic function of the state vector. 

Classification codes from Journal of Economic Literature: C61, G1l. 
Key words: dynamic programming, non-linear quadratic problem, IIn- 

ear risk premium, vector auto regression, multivariate quadratic interest rate 
modal. 

We consider the optimal portfolio problem for the case where the investment 
opportunity set is stochastic. We allow the state variables to follow a vector Gaussian 
process with linear dynamics among the state variables, and with time-dependent 
coefficients. WC assume that interest rates are quadratic in the state varia.bles. We 
allow the expected asset returns to be linear in the state vector, and the variance 
matrix to be time-dependent. We solve the case of power utility with no consumption 
during the horizon. We allow both the dimension of the state vector and the number 
of risky assets to be unrestricted. We solve cases with both complete and incomplete 
markets. 

‘Copyright @l994-95 All rights reserved Mark S. Tenney. 4313 Lawrence Street. Alexandria 
Virginia, 22309. Phone number 703 799 0518. 
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After this solution, we extend our solution to cover cases where the assets follow 
more general processes, but a transformation can be made to a basis that satisfies 
our assumptions. We show that this can happen quite generally with derivative 
securities, if the risk premia coefficients across assets are linear in the state vector. 
We give a specific treatment of the time-dependent case of Beaglehole and ‘Penney’s 
Multivariate Quadratic Interest Rate Model [1], [2]. The solution for the prices of 
bonds and the state price for this case of BT’s model was indicated to be possible in 
the footnotes of their paper. It was independently worked out by Eterovic [6] and 
by Tenney [15], who alsoconstructed a general equilibrium economy for this model. 
Jarnshidian [9] considerably simplified some of the integrals in the time-dependent 
case for evaluating derivative prices. 

Merton [1l], [12] developed a framework for solving continous time optimal con- 
sumption and portfolio problems. He solved a variety of problems which we summa- 
rize below. In discrete time, similar work was developed by Hakansson [7], actually 
considerably earlier than Merton and Samuelson, and by Samuelson [14], although 
not for the three more exotic cases solved by Merton and discussed below. Since 
then considerable progress has been made in solving his problem with the addition 
of non-negativity constraints on wealth and consumption to the constant investment 
problems considered by him, see Cox and Huang [3] and Karatzas et. al. [l0]. The 
methodology of Cox and Huang can be applied to additional problems once one 
solves for the joint density of asset prices and the value of the portfolio of a lognor- 
mal investor with on consumption. The COX Huang methodology requires complete 
markets. Merton [13] has developed an alternative approach, where one solves for 
the state price for this economy. So far, this more powerful methodology has been 
limited by the cases where the above joint distribution can be solved, which hereto- 
fore have been quite limited. The results of this paper, together with the results of 
Tenney [15] allow the determination of a related joint density, one that includes the 
above quantities and also the state vector in our different information structure. 

Cox, Ingersoll and Ross [4], [5] solved a dynamic programming problem with no 
risk free borrowing or lending in equilibrium, and in which a single stochastic factor 
iufluenced asset returns proportionately. In this case, the optimal holdings of the 
risky assets were constant, and the utility function was logarthmic. In addition, to 
the cases discussed previously, the case of power utility with one risky asset and no 
consumption during the horizon when the interest rate follows a one factor normal 
process with constant drift wag solved by Ingersoll [8]. 

Merton solved the general HARA utility with constant coefficients for an unre- 
stricted set of n assets with lognormal returns in a finite horizon in Merton [12] which 
is reproduced on page 139 of Merton [13], he then solves for the additional compli- 
cation of constant non-capital income. He then solves for a set of complications in 
the assumptions on the environment, when there is only one equity asset. The first 
set concern Poisson processes, and we shall not address those type of processes here. 
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He then considers three variations on the case where the equity asset follows 
a lognormal process, except that the expected return is linear in a state variable. 
In two of the examples, he allows for two specific forms of time-dependency in 
the cuefficicnts. In each case he solves for the case of exponential utility in an 
infinite horizon. His three cases have quite interesting interpretations. The first is 
where there is a long-run normal price to which market prices are converging on a 
proportional basis, so that the absolute level of prices can still fluctuate arbitrarily. 
The second case is where the expected return follows a mean reverting process. The 
third case is where an investor estimates the expected return based on a time-series 
of observations. 

We can summarize this area of work by stating that Merton developed a general 
framework for continuous time dynamic programming, but that closed form solutions 
were difficult to obtain. The solved problems were for the case that the investment 
opportunity set was not stochastic or contained only limited stochastic elements. 
Considerable work has been done since then on handling non-negativity constraints 
in the unconstrained problems with solutions, but little work has been done on ex- 
tending the problems that can be solved to. non-trivial dynamic environments. This 
paper provides solutions for the optimal portfolio problem for significant dynamic 
environments. 

1 Economic Framework 

We assume a variation of the information structure in the COX, Ingersoll and ROSS 
general equilibrium model [4]. In our formulation, we allow for the case that the 
primary assets form a dynamically complete market by themselves as well as the 
case that they do not dynamically complete the markat. This information structure 
together with our assumptions on asset returns are considered in Tenney [15], who 
shows that there is a general equilibrium economy in which these assumptions are 
realized. For our information structure, we assume that there is a k x 1 vector of 
state variables, that is govesned by dY = where 
b(t) + A(t)Y where S is k x p and a function of time t only, and dw is a p x 1 
vector of independent Wiener processes. There is an n x 1 vector of asset prices 
P(Y, t) 1, which evolve according to dP = Ipadt + IpGdw, where G is n x p, and 
Ip is a n x n diagonal matrix with diagonal elements Pi. We do not require that 
n + k = p as do Cox, Ingersoll and Ross. We have the equation for wealth, W 
dW = W[a’(a - r) + r]df + Wa’Gdw, where a is the n x 1 vector of asset holdings, 
and a = l- a’1 is the level of short term lending, or if negative borrowing. We 
alIow a to be positive or negative to reflect short selling. We assume no transaction 
costs. The investor maximizes J(W, Y, t) = E[U(W, T)], where U( W, T) = W7/y. 

1We shall sometimes use the CIR notation of n for P 
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2 Solving the Dynamic Programming Equation 
with Power Utility 

We now solve the dynamic programming problem for power utility with no consump- 
tion during the horizon for the case of an interest rate quadratic in the state vector, 
Y, for expected returns linear in Y, with time-dependent coefficients, and for the 
variance-covariance matrix of returns being only time-dependent. We actually solve 
a more general case than this, which is stated in the theorem, by specifying that 
certain coefficient functions be time-dependent, linear in Y with time-dependent co- 
efficients or quadratic in Y with time-dependent coefficients. After the theorem, we 
discuss the relation of this more abstract. set of assumptions to the more intuitive 
set discussed above. 

We define a small piece of notation for convenience. If V is a quadratic form, 
then we define and 

Theorem 1 Suppose an investor has no consumption over a period, and has utility 
of final wealth at then the solution for the indirect utility function J is 

where 
which is a function defined in Theorem 4 where is time-dependent only, 

(1) 

and is time-dependent only 

(2) 

and V is quadratic in Y, with time-dependent coefficients, 

(3) 

and is linear in Y with time-dependent coefficients, and for i = 0, 1, 2, we 
define where the operator Li acting on a quadratic form was defined 
previously, The optimul portfolio weights are 

(4) 

The level of short term lending, or borrowing is the scalar 

(5) 

where the n x 1 vector is 

and the n x 1 vector is 

(6) 

(7) 
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Proof. 

The Bellman equation is 

subject to the boundary condition 

Assume a solution for J of the form 

(8) 

(9) 

We remind ourselves that a’1 need not be equal to 1, since we can have short term 
borrowing or lending. The Bellman equation becomes 

The equation for the optimal portfolio weights is 

(10) 

This simplifies to the following under our assumed solution for J 

We can solve for a, we drop the asterisk, 

(11) 

(12) 

We can write this as 

(13) 

(14) 

(15) 

We substitute this into the equation for f, to obtain the following equation for f that 
depends only on a, r, G and S, all of which are given functions. 

We can group terms to obtain 
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We define and V as in the theorem, and they are the coefficients 
off in the equation. We further define and as in the theorem. This 
equation is of the form of the quadratic non-linear problem, Theorem 4, if and 

are time-dependent only, is linear in Y with time-dependent coefficients 
and V is quadratic in Y with time-dependent coefficients. The solution for f is, from 
Theorem 4, 

In this case 

So the portfolio weights solution is 

We can solve for the weight of short term lending as 

(16) 

(17) 

(18) 

(19) 

QED. 

The conditions on a solution are expressed in terms of and which 
are not customary quantities. We can consider some non-exhaustive conditions that 
lead to these quantities necessary fulfilling the conditions imposed by the theorem. 
The theorem is satisfied, if the following conditions are met: is linear in Yi 
(2) is independent of is linear in Y (4) r is quadratic in Y. These 
in turn are achieved if (1) is linear in (2) G is independent of Y; (3) is 
independent of Y; (4) r is quadratic in Y. These conditions in turn are realized if G 
is time-dependent only, a - r is linear in Y, with time-dependent coefficients, and 

is linear in Y with time-dependent coefficients, and r is quadratic in Y with 
time-dependent coefficients. 

We can summarize our results as follows. We have solved for the case that a - r 
is linear in Y, G is time-dependent only, S is time-dependent only, and r is quadratic 
in Y. For this case, we solved for f, and then obtain the closed form solution for the 
optimal weights a, which is linear in Y, and obtained the amount in the risk free 
asset, which is also linear in Y. The joint density of the state vector Y, portfolio 
wealth W, and the values of the asset prices for portfolios which need not be optimal 
has already been solved for in Tenney [15]. That result applies to portfolios and asset 
environments of the type solved for here. 
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3 Basis transformations 

If we have a set of traded assets which does not solve the assumptions of ‘Theorem 1, 
then we can look for transformations to a new set of assets that do solve those as- 
sumptions, but which do not give up any of the trading opportunities available with 
the first set. We call such transformations, basis transformations. In our analysis, 
we assume no arbitrage, which means that there is no portfolio that is riskless that 
earns a rate of return that is different than that of the risk free rate, r. We consider 
theorems in this section and its subsections that show that if security returns satisfy 
some simple relationships, which are motivated by equilibrium and no-arbitrage re- 
sults, then the problem of finding a basis that satisfies the assumptions of Theorem 1 
is simplified. 

Let Then we have 

(20) 

We write G in the form 
(21) 

where depends on t only, and can depend on Y and t. In this equation 
and throughout the rest of the paper, we employ a summation convention in which 
repeated indices such as m in the previous equation are automatically summed over 
their range, in this case, the dimension of Y. 

A basis transformation consists of a set of portfolios of the retuns on the original 
assets that replicates the new returns. We form portfolios, indexed by i of the 
original assets, indexed by j=l ,...,m. We assume that the new basis is non-singular, 
i.e. has no redundant assets, but the origjnal basis can be singular. The weight of 
original asset j in portfolio i is given by Let dzj be the rate of return of the 
original asset j, and dyi be the rate of return of portfolio i over dt. The return to 
this portfolio is then given by 

(22) 

We shall say that a set of processes dy spans G dw, or equivalently spans dx if 
using the set dy, each element of dx can be replicated, i.e. form a process that is 
perfectly correlated over dt, whether with coefficients that are a non-linear function 
of Y or t or not. If the coefficients of the transformation from dx to dy are 
functions of t only, and if dy itself spans dx, then we call the transformation from 
dx to dy a non-stochastic basis transformation. For the transformed basis, we have 

and 

We assume that for each i=1,...,m. 

(23) 

(24) 
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Theorem 2 If for j=l,...,n, and is linear in Y, and 
and can depend on Y and t, then if there is a non-stochastic basis transformation 
from the original assets dx, to a basis dy, given by aij, such that is 
independent of Y, then is linear in Y, and if r is quadratic in Y, 
we con solve the optimal portfolio optimization problem for power utility in the new 
basis. For an optimal portfolio b;,= l,...,m in the new basis, the holdings in the 
original basis are 

Proof 

We can write in component form 

We can write 

(25) 

(26) 
and substituting for G 

(27) 

One chooses such that 

(28) 
for each i and m, but such that 

(29) 
and such that the resulting set of assets spans the space of Gdw with a resulting 
variance-covariance matrix in the new basis that is not singular. The variance 
covariance matrix is given by We can simply require that 

in order to insure non-singularity. 

For our new basis, we have 

(30) 

since by virtue of for all k, which follow from 
Equation 28 We thus have a new basis with that is linear in Y, 
and The solutions for the are time-dependent if the G matrix 
has time-dependent coefficients. However, if the G coefficients are independent of 
time, then we can choose a coefficients that are as well. In either case, we obtain 
a basis which satisfies the assumptions of the problem for which we have a closed 
form solution. 

QED. 

Thus, if the are not systematically related to the and the initial set of 
assets is sufficiently large, with no systematic relationship among the and if 

are polynomials in Y with time-dependent coefficients, then we can choose a 
set that satisfies our requirements. 
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3.1 Beaglehole and Tenney’s Multivariate Quadratic In- 
terest Rate Model 

When the asset returns are generated by a no-arbitrage pricing model, or equilibrium 
pricing model, then we can consider a special basis transformation. We now consider 
the application of this approach to Beaglehole and Tenney’s Multivariate Quadratic 
Interest Rate Model [l], which we shall refer to as BT. In Tenney [15] it is shown 
that this model obtains in a general equilibrium economy, and that in that economy 
the risk premia are linear in Y. That paper also obtains the solution for a zero 
coupon bond price B with time-dependent coefficients. That solution is of the form 

where , and are time-dependent functions dependent 
on t and T, but not Y. This is the same form as obtained in the original solution by 
BT. BT had indicated in their footnotes that a solution for time-dependent b and A 
was possible but did not derive it. An independent solution of the time-dependent 
case of BT’s model was obtained by Eterovic [6]. 

There are two main issues to applying our solution methodology to a set of bond 
prices governed by this model, together with a set of equity assets. The first is that 
the transformation that changes G from linear in Y to time-dependent only, also 
simultaneously reduces the expected return on zero coupon bonds from non-linear 
in Y to linear in Y, if the risk premia coefficients are themselves linear in Y. The 
second is that we can look for a transformation based on all possible zero coupon 
bonds that might exist, not merely those that are actually traded. We can then 
construct a basis for the theoretical zero coupon bonds used to solve the optimal 
portfolio problem with any traded securities, including coupon bonds, futures and 
options and other instruments- 

Theorem 3 If out of all possible zero coupon bonds that could exist, there is a 
basis for a transformation of the type in Theorem 2 for these zero coupon bon& 
together with the available equity assets, that preserves the space spanned by the 
original equities plus all possible zero coupon bonds, then under that transformation, 
the optimal portfolio problem can be solved if the risk premia coefficients for bond 
pricing are linear in the state vector Y. Furthermore, if the set of traded bonds plus 
equities spans the space of the equities and all possible bonds, then the plan can be 
implemented with traded assets only. 

Proof. 

Under no arbitrage, the return of the ith bond, or other derivative, is given by 

(31) 

where ’ is independent of i, and is a common risk premia coefficient across assets. 
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This in turn becomes 

(32) 

In the BT model, we have for zero coupon bonds, where ri 
and yi depend on t, the maturity date, the process parameters and the risk premia 
time-dependent coefficients. We thus have 

(33) 

We choose such that which follows by our assumption that a 
transformation of the previous form is possible. Thus we obtain 

(34) 

where the include bonds and equities. If now is linear in Y, then we obtain 
the linear return, time-dependent variance form that we need. This linear form of 
the risk premium has been shown to occur in the multivariate quadratic production 
economy, which is a general equilibrium economy in which the multivariate quadratic 
interest rate model is realized, see Tenney [15]. Because the ri and yi form a contin- 
uum of quantities, the requirement of a basis transformation is a weaker condition 
than for a fixed set of zero coupon bonds, such as those traded. 

However, we do not need a continuum of traded assets to exist. Whatever starting 
basis we arrive at by picking from the continuum, we only need to have a set of traded 
securities that are a basis for that set. This latter basis, need not even be a basis 
of zero coupon bonds, but can be any set of derivative contracts including coupon 
bonds, and exchange traded futures and options. 

QED. 

The approach applied to the BT model can be generalized for general derivative 
contracts, both within their model or within another derivative pricing model that 
is based on no arbitrage. We note that the result obtained was a consequence 
of the risk premium being linear in Y and proportional to the elasticity vector, 
, Y follwing a vector autoregression diffusion with S(t) being time-dependent 
only, the risk premia coefficient being linear in Y, and the elasticity vector being 
linear in Y. However, as indicated in the comments after Theorem 1, we can apply 
the basis transformation, even when the G matrix is non-linear. We see that the 
cancellation of terms in Y, that occurs in the transformed G term, also occur in the 
transformed a term, even for non-linear in Y terms. As a consequence, if we can 
make this transformation to simplify G to a time-dependent coefficient, then we will 
simultaneously eliminate the Y dependence in due to the Y dependence in the 
elasticity, This leaves the Y dependence in . If this function is linear in Y, then 
we obtain a basis that is tractable for our methodology. This includes a very wide 
variety of models. 
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Furthermore, as in the theorem, we do not require that all possible derivatives 
be traded, only that the traded set be a basis for the derivatives used to make the 
transformation to the new basis. In this way, in making this transformation, we 
can consider a continuum of derivatives to choose from to make the transformation, 
if the traded basis spans the space of Gdw. Because of this, the condition on the 
transformation requires only finding a finite set of points in this continuum that 
satisfy the necessary conditions of the transformation. 

4 Conclusion 

What we have done is to greatly expand the application of dynamic programming 
in portfolio problems. We have expanded what can be solved for from problems 
in which very little is changing, to ones in which the state vector can follow a 
vector autoregressive markov diffusion with time-dependent coefficients, in which 
the expected return vector in some basis is linear in Y, and the variance-covariance 
matrix is time-dependent. 

We have shown that such a basis can be constructed for derivatives priced under 
no-arbitrage when the risk premia coefficient is linear in Y, and Y follows a vector 
autoregression diffusion. Such a risk premium occurs in the general equilibrium 
economy developed by Tenney for problems with the information structure assumed 
here. The most notable application is to the multivariate quadratic interest rate 
model of Beaglehole and Tenney. 

Furthermore, this approach works for empirically based expected return and 
variance-covariance functions for equity returns which are linear in the state vari- 
able for the expected return and quadratic in the variance-covariance matrix. This 
framework is therefore sufficient for solving the optimal portfolio problem with power 
utility for fairly general and realistic assumptions on stochastic returns and variance- 
covariances for equities and a stochastic interest rate model with a closed form so- 
lution, namely BT, for bonds that is of arbitrary dimension and has a number of 
desirable properties. 

The problems solved here are examples of the original goal of dynamic program- 
ming applied to portfolio problems, namely developing a dynamic optimal strategy 
for non-trivial dynamic securities markets where the interest rate was stochastic and 
bond and equity returns had stochastically varying expected returns and variance- 
covariance matrices. Furthermore the solution methods are sufficiently robust that 
derivative contracts can be added to the mix, and the optimal strategies obtained 
making use of those contracts. 
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A Non-Linear Quadratic Problem 

The following problem was solved in Tenney [15]. 

Theorem 4 (Non-linear Quadratic Problem) We consider the non-linear dif- 
ferential equation, 

(35) 

are symmetric. The 
solution, subject to the boundary condition B(y,T) = 1 is given by 

(36) 

where is symmetric, and where 

(37) 

(38) 

(39) 

This theorem can be verified by direct substitution of the proposed solution 
in the partial differential equation for f, and then observing that this equation is 
trivially satisfied as a consequence of the 3 final equations listed in the theorem. 
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