

The Actuarial Profession making financial sense of the future

© 2011 The Actuarial Profession • www.actuaries.org.uk

GIRO Conference and Exhibition 2012

Triangle-free reserving *Pietro Parodi, Willis Ltd*

Agenda

- I. Preliminaries
- II. The triangle-free approach
- III. Performance comparison (triangle-free vs chain ladder)
- IV. Advantages/disadvantages of the triangle-free approach

I. PRELIMINARIES

riangle trick: aggregate losses by accident year and evelopment year, identify development trends, project to ultimate											
					Development	vear					
		0	1	2	. 3	4	5	6	7	8	9
	1	758,859	6,712,563	7,295,862	8,481,698	8,581,273	8,929,061	9,406,673	9,421,491	9,425,375	9,547,636
	2	588,009	1,786,021	2,187,149	2,365,737	2,474,465	2,842,739	2,842,739	2,882,701	3,398,944	
	3	514,089	1,532,487	2,331,175	8,377,877	8,954,659	9,117,566	9,138,301	9,147,275		
	4	419,422	2,882,030	4,009,785	4,413,923	4,468,089	4,616,335	4,823,964			
	5	261,482	2,089,735	3,050,709	3,684,369	4,130,221	5,036,548				
Accident year	6	893,053	2,121,944	4,368,448	4,546,849	6,942,262					
	7	481,366	954,766	2,026,609	2,481,851						
	8	696,678	1,505,950	2,283,808							
	9	4,336,497	5,355,547								
	10	433,625									

The main problem with development triangles: information compression

Size: 595 kB

Size: 16 kB

5,000 claims over 10 years

... compressed into

 $10 \times 11 / 2 = 55$ points

Based on 55 points we extract: (i) a point estimate; (ii) some measure of volatility; (iii) the full reserving distribution!!!

In pricing, we face a similar problem when using burning cost analysis

Burning cost is (roughly) the calculation of expected losses based on an average of the losses in the past few years, with an allowance for claims inflation, changes in exposure, and possibly IBNR

Burning cost may give us a fair idea of the mean and possibly some idea of volatility, but is not adequate to estimate the full distribution of future losses

II. THE TRIANGLE-FREE APPROACH

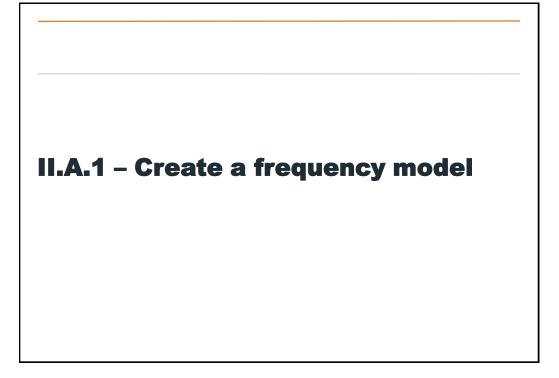
A different approach

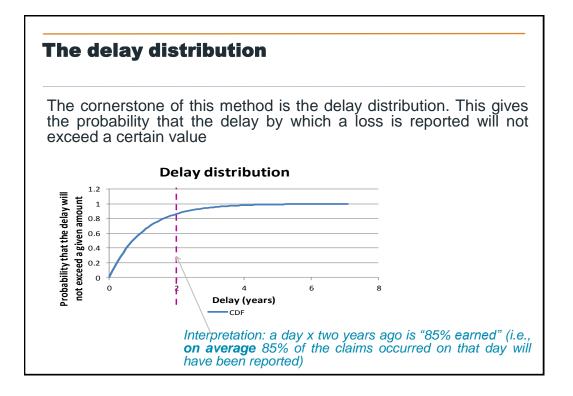
As in pricing, we intend to create a reserving distribution for IBNR based on

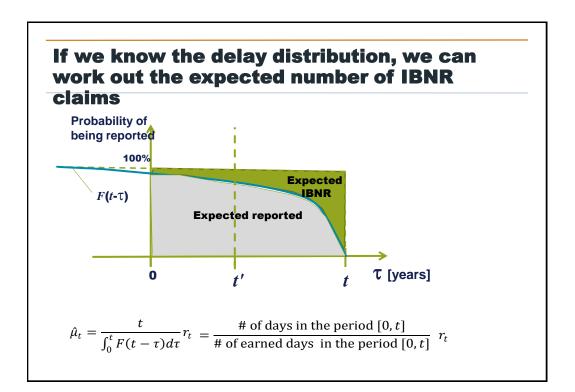
- the creation of a frequency model
- the creation of a severity model based on the individual severities
- the combination of the two with MC simulation or other methods

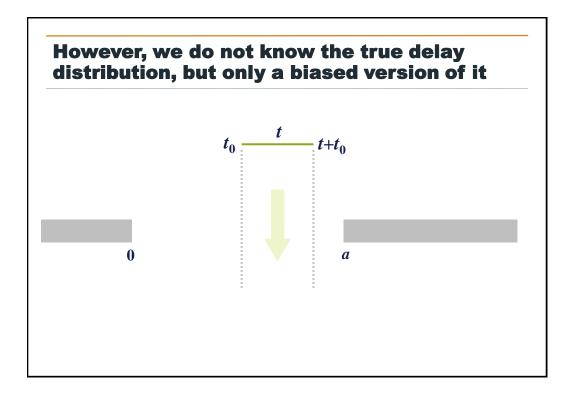
All this does not necessarily need to be done without triangles, but the method we propose here is triangle-free

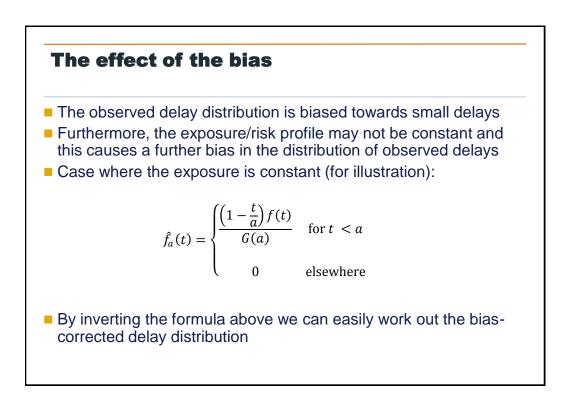
II. THE TRIANGLE-FREE APPROACH

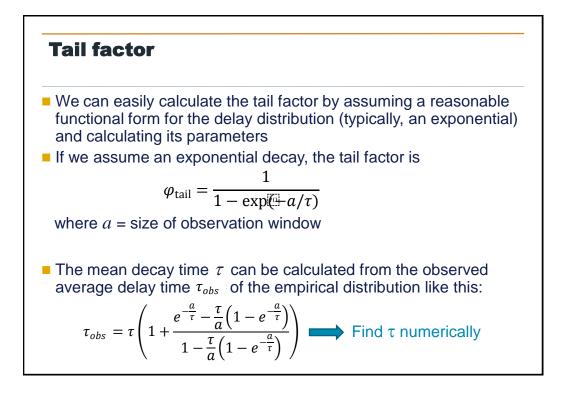

High-level methodology

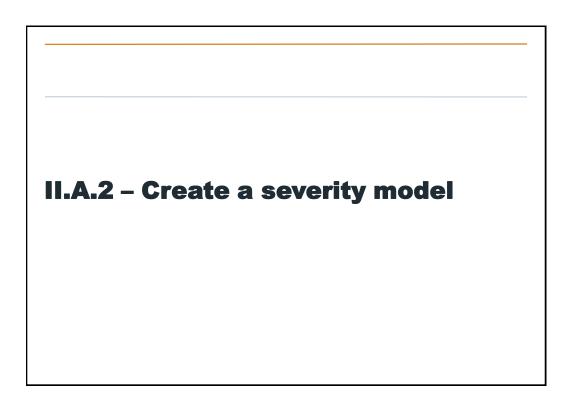

A. Estimate the IBNR distribution

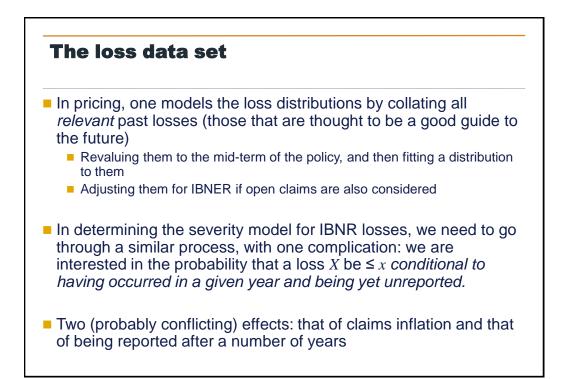

i. Estimate the reporting delay distribution


- ii. Use the reporting delay distribution to estimate the IBNR claim count distribution \rightarrow Output: frequency model
- iii. Estimate the severity distribution taking IBNER into account \rightarrow Output: severity model
- iv. Combine the frequency and severity model with e.g. MC simulation to produce an aggregate loss model for IBNR
- B. Estimate the IBNER distribution
 - i. Can be done by traditional CL projection methods or GLM
- C. Estimate the UPR distribution
 - i. A pricing exercise!
- D. Combine IBNR, IBNER and UPR to produce an overall aggregate loss model
 - i. Straightforward (e.g. using the outputs of the MC simulation) if independent





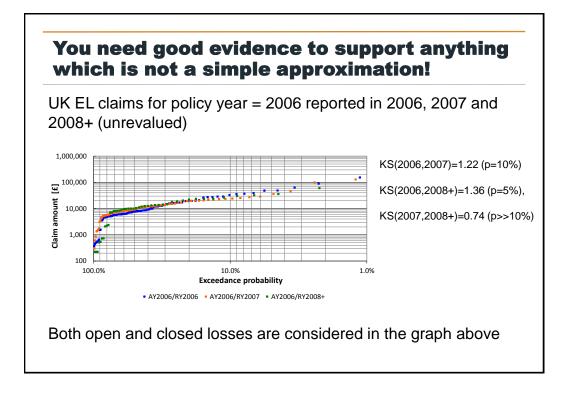


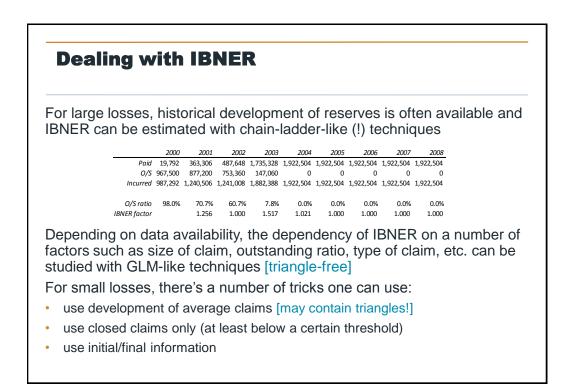


ROJECTION TO ULTIMATE ALL YEARS TOGETHER								
	Dave	Days Earned Factor to				Ultimate	Standard	
Period	elapsed			Exposure		losses	error	
	3.652.00	1.967.62	1.86	10.000	352		31.85	
ROJECT	TION TO U	LTIMATE -	YEAR BY	YEAR			μ	$h_t = \frac{\text{\# of days in the period } [0, t]}{\text{\# of earned days in the period } [0, t]}$
	Days		Factor to	_		Ultimate		
2001	elapsed 365	days 347.94	ultimate 1.05	Exposure 1.000	reported 56	58.75	3.16	
2001	365	347.94	1.05	1,000	59		5.16	
2002	365	275.29	1.21	· · · ·	43			
2005	366	254.25	1.44	-/	41			
	365	220.78	1.65		42	69.44	9.18	
2005		190.62	1.91	1,000	41	78.51	10.10	
	365			1.000	23	52.83	10.98	
2005 2006 2007	365	158.90	2.30	· · ·				
2005 2006 2007 2008	365 366	119.16	3.07	1,000	30		12.00	
2005 2006 2007 2008 2009	365 366 365	119.16 71.35	3.07 5.12	1,000 1,000	30 14	71.62	13.10	
2005 2006 2007 2008	365 366	119.16	3.07	1,000 1,000	30	71.62		
2005 2006 2007 2008 2009	365 366 365	119.16 71.35	3.07 5.12	1,000 1,000	30 14	71.62	13.10	

re	que	enc	y m	ode	el							
												he year-
					ce d	ecide	e whi	ch	freq	uency	/ mode	el to adop
(e.g	. Poi	sson	I, INE)								
PRO JEC'	TION TO U	LTIMATE -	- ALL YEA	RS TOGET	HER							
	Days		Factor to			Ultimate S						
	elapsed 3,652.00	days 1,967.62	ultimate 1.86	Exposure 10,000	reported 352	653.33	31.85					
	TION TO U	LTIMATE -	- YEAR B	YEAR								
PROJEC.												
PROJEC	Days	Earned	Factor to		Latest	Ultimate S	tandard					
	Days elapsed			Exposure		Ultimate S losses	tandard error					
				Exposure 1,000								
Year 2001 2002	elapsed 365 365	days 347.94 302.13	ultimate 1.05 1.21	1,000 1,000	reported 56 59	105585 58.75 71.28	3.16 6.06					
Year 2001 2002 2003	elapsed 365 365 365	days 347.94 302.13 275.29	ultimate 1.05 1.21 1.33	1,000 1,000 1,000	reported 56 59 43	58.75 71.28 57.01	3.16 6.06 7.24					
Year 2001 2002	elapsed 365 365	days 347.94 302.13	ultimate 1.05 1.21	1,000 1,000	reported 56 59	105585 58.75 71.28	3.16 6.06					
Year 2001 2002 2003	elapsed 365 365 365	days 347.94 302.13 275.29	ultimate 1.05 1.21 1.33	1,000 1,000 1,000	reported 56 59 43	58.75 71.28 57.01	3.16 6.06 7.24					
Year 2001 2002 2003 2004	elapsed 365 365 365 365 365	days 347.94 302.13 275.29 254.25	ultimate 1.05 1.21 1.33 1.44	1,000 1,000 1,000 1,000	reported 56 59 43 41	58.75 71.28 57.01 59.02	3.16 6.06 7.24 8.07					
Year 2001 2002 2003 2004 2005	elapsed 365 365 365 366 365 365	days 347.94 302.13 275.29 254.25 220.78	ultimate 1.05 1.21 1.33 1.44 1.65	1,000 1,000 1,000 1,000 1,000	reported 56 59 43 41 42	58.75 71.28 57.01 59.02 69.44	3.16 6.06 7.24 8.07 9.18					
Year 2001 2002 2003 2004 2005 2006	elapsed 365 365 365 366 365 365 365	days 347.94 302.13 275.29 254.25 220.78 190.62	ultimate 1.05 1.21 1.33 1.44 1.65 1.91	1,000 1,000 1,000 1,000 1,000 1,000	reported 56 59 43 41 42 41	58.75 71.28 57.01 59.02 69.44 78.51	error 3.16 6.06 7.24 8.07 9.18 10.10					
Year 2001 2002 2003 2004 2005 2006 2007	elapsed 365 365 365 366 365 365 365 365	days 347.94 302.13 275.29 254.25 220.78 190.62 158.90	ultimate 1.05 1.21 1.33 1.44 1.65 1.91 2.30	1,000 1,000 1,000 1,000 1,000 1,000 1,000	reported 56 59 43 41 42 41 23	105565 58.75 71.28 57.01 59.02 69.44 78.51 52.83	error 3.16 6.06 7.24 8.07 9.18 10.10 10.98					
Year 2001 2002 2003 2004 2005 2006 2007 2008	elapsed 365 365 365 366 365 365 365 365	days 347.94 302.13 275.29 254.25 220.78 190.62 158.90 119.16	ultimate 1.05 1.21 1.33 1.44 1.65 1.91 2.30 3.07	1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000	reported 56 59 43 41 42 41 23 30	losses 58.75 71.28 57.01 59.02 69.44 78.51 52.83 92.15	3.16 6.06 7.24 8.07 9.18 10.10 10.98 12.00					
Year 2001 2002 2003 2004 2005 2006 2007 2008 2009	elapsed 365 365 365 365 365 365 365 365	days 347.94 302.13 275.29 254.25 220.78 190.62 158.90 119.16 71.35	ultimate 1.05 1.21 1.33 1.44 1.65 1.91 2.30 3.07 5.12	1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000	reported 56 59 43 41 42 41 23 300 14 3	Iosses 58.75 71.28 57.01 59.02 69.44 78.51 52.83 92.15 71.62 40.27	error 3.16 6.06 7.24 8.07 9.18 10.10 10.98 12.00 13.10					
Year 2001 2002 2003 2004 2005 2006 2007 2008 2009	elapsed 365 365 365 365 365 365 365 365	days 347.94 302.13 275.29 254.25 220.78 190.62 158.90 119.16 71.35	ultimate 1.05 1.21 1.33 1.44 1.65 1.91 2.30 3.07 5.12	1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000	reported 56 59 43 41 42 41 23 30 14 3 Mean	losses 58.75 71.28 57.01 59.02 69.44 78.51 52.83 92.15 71.62	error 3.16 6.06 7.24 8.07 9.18 10.10 10.98 12.00 13.10					

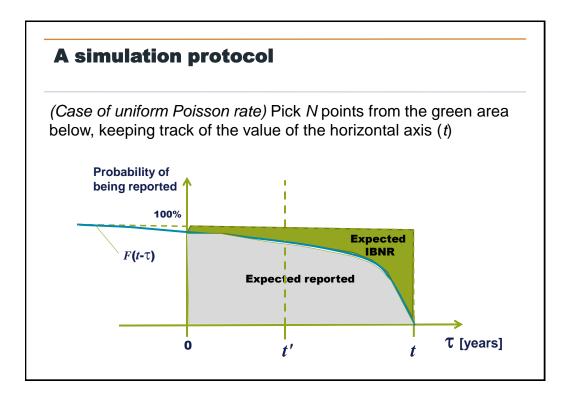
A possible approximation


Estimate the **kernel distribution** by fitting it to the claims from all years, after revaluing them to current term (much in the same way we do in pricing)


$$X \sim F_X(x)$$

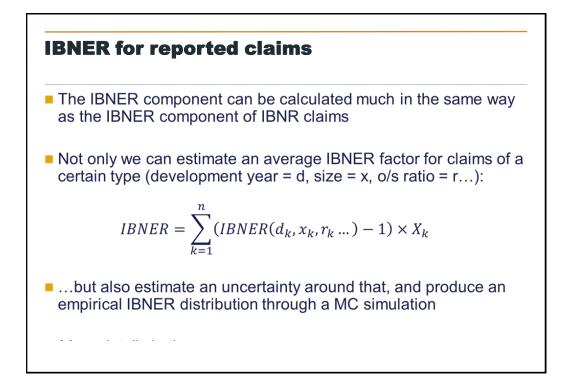
Assume that the severity distribution of the IBNR claims is the same for all years except for an inflation/deflation factor that applies homogeneously to all claims:

X(reported after δ years, occurred at year t_0)~ $F_X\left(\frac{(1+r)^{t-t_0}}{(1+s)^{\delta}}x\right)$


You need evidence or very good judgment to support any method that is not a simple approximation!

Overall method for creating	a severity model
for IBNR claims	-

Step 1 <i>IBNER</i>	Adjust invididual past losses for IBNER
Step 2 <i>Revaluation</i>	Revalue the individual past losses to current terms
Step 3 <i>Kernel severity model</i>	Model the severity distribution in current terms, obtaining the <i>kernel severity distribution</i> , from which the distribution for different years can be obtained
Step 4 <i>Modify severity model</i>	Estimate the severity distribution for losses that occurred at a given time and that will reported at another given time



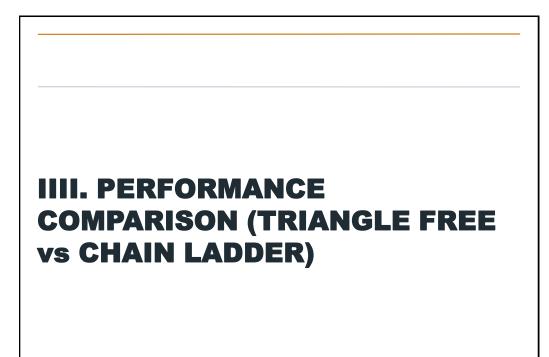

A typical output of the IBNR simulation process

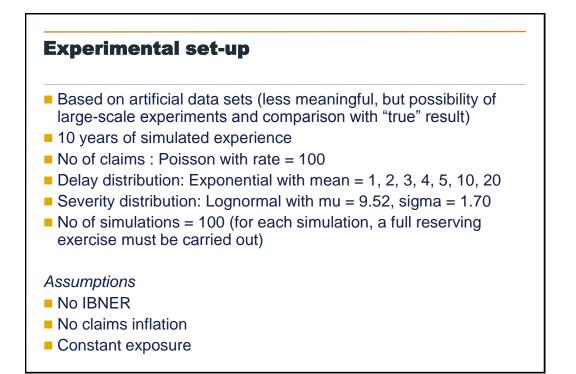
The typical output of the simulation process is similar to the output of a total gross loss model for pricing

Return Period (Years)	Percentile	Total Loss	Total Number
1 in 1.33	25%	14,205,625	230
1 in 2	50%	16,630,426	245
1 in 4	75%	19,631,593	260
1 in 5	80%	20,369,140	264
1 in 10	90%	22,627,203	274
1 in 20	95%	25,143,560	283
1 in 50	98.0%	29,441,708	292
1 in 100	99.0%	32,382,767	298
1 in 200	99.5%	35,057,817	304
1 in 500	99.8%	64,920,594	311
1 in 1000	99.9%	66,937,322	318
	Mean	17,363,917	245.1
	Std Dev	4 948 653	22.2

Future losses: a pricing problem Finding the distribution of future losses is, quite simply, a pricing problem, and it can be solved by the usual tools of pricing When the aggregate loss distribution is based on past losses: The frequency model is basically the same as that which describes the past years... ... and the severity model is the kernel model, revalued to the relevant point of the policy year

II. THE TRIANGLE-FREE APPROACH

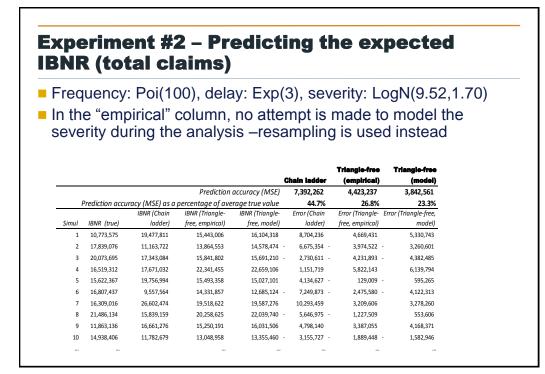

D. OVERALL RESERVES

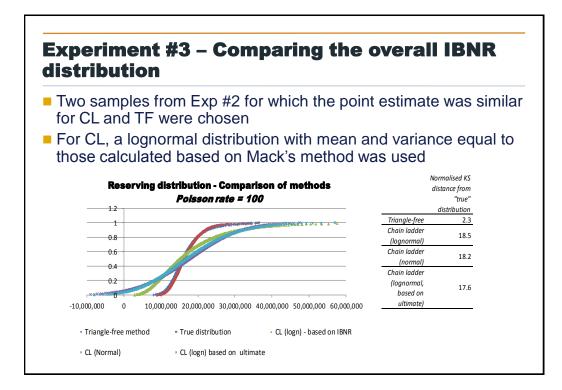

Combining IBNR, IBNER, UPR

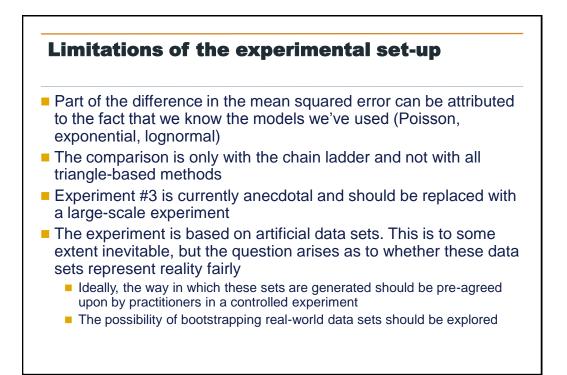
Overall reserves = (Pure) IBNR + IBNER + UPR

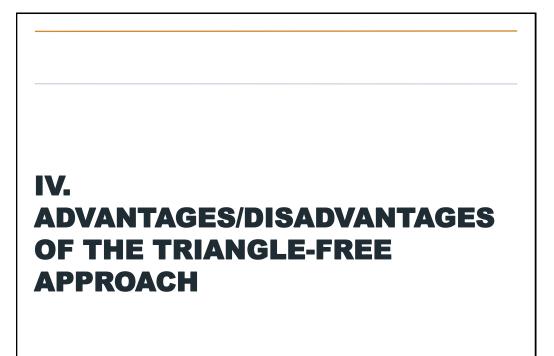
If IBNR, IBNER and UPR can be considered roughly independent, it is straightforward to find the overall reserve distribution, e.g.

- by MC simulation (add the results of the individual simulations)
- by Fourier transform (the FT of the overall reserves is the product of FT of IBNR, IBNER and UPR)






Experiment #1 – Predicting ultimate claim count


- Frequency: Poi(100), Delay: Exp(various)
- Tail factor: the same for CL and TF (that calculated with TF, as there is no unique agreed-on way to calculate it for the CL)

Erro	CL mean	TF mean	Average	Error	CL mean	TF mean	Average
reduction	squared error	squared error	delay [y]	reduction	squared error	squared error	delay [y] s
30%	5.48	3.83	1	31%	0.55	0.38	1
41%	9.58	5.65	2	36%	10.89	6.93	2
28%	13.56	9.82	3	32%	14.86	10.14	3
36%	17.33	11.15	4	28%	21.96	15.83	4
23%	19.24	14.81	5	22%	28.94	22.51	5
33%	32.86	22.14	10	12%	177.44	156.11	10
54%	58.34	26.99	20	21%	188.56	148.12	20

Advantages of this approach

No loss of information!

The output is the full reserves distribution

• We can account for parameter, data and model uncertainty

Deals properly with the tail factor in claims count

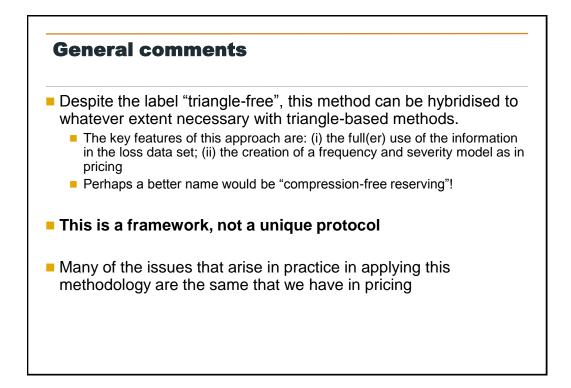
Deals properly with calendar-year effects (changes in the severity distribution, in the reporting speed)

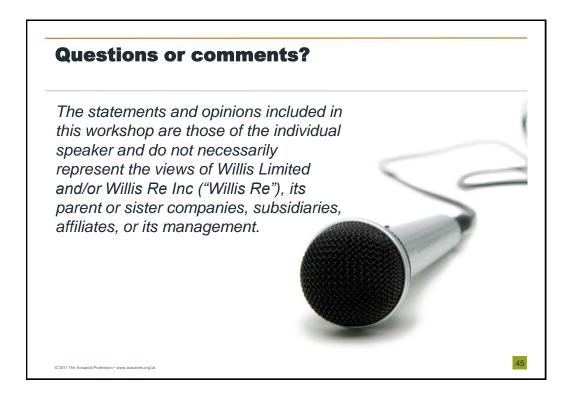
Deals properly with large losses

• The modelling of large losses is as good as the modelling of the severity distribution and can use extreme value theory, market severity curves, etc.

Can work when historical triangles are not available

The reserving stochastic model is fully aligned to the pricing model


Disadvantages of this approach


Increased complexity: the additional pain is roughly the same as that of going from *burning cost analysis* to *frequency/severity analysis* in pricing

Increased data requirements: a total claims triangle is not sufficient

Lack of good visualisation: the method doesn't have the at-a-glance feel that triangles have

- The reason of course is that the information is not compressed before doing the analysis
- However, one can visualise the delay distribution, the frequency distribution, the severity distribution, etc.
- Triangles can *still* be used to visualise the results and also can be run for comparison purposes

