

Pension Design and Risk Sharing: New Mix Solutions between DB and DC

Professor Pierre DEVOLDER
University of Louvain (UCL) Belgium

Joint research with Dr.Sébastien de Valeriola (UCL)

1. Motivation

2. Automatic Adjustment and Risk Sharing

3. Numerical illustration

4. Stochastic model

1. Motivation

- Problems of financial viability of classical Pay As You Go (PAYG) social security pension schemes
- Most of them using a Defined Benefit (DB) structure
- Important risk factors :
 - Ageing
 - Volatility of the financial markets
 - 0% interest rates

- Parametric reforms (retirement age, early retirement , indexation,...)
- Move from DB schemes to DC schemes (Notional Accounts , NDC)
- Introduction of Automatic Balance
 Mechanisms as an answer to risk
 exposure (DB and DC) to avoid any form of
 "Pension Populism"

- ...But Pension reform is not just a matter of financial stability
- Mission of the social security: social sustainability
- Fairness between generations and between categories of workers
- How to develop Social Security Pension Schemes in PAYG with fair risk sharing between contributors and retirees?

2. Automatic Adjustment and Risk Sharing

Equilibrium Equation in PAYG

Incomes:

A(t) = number of contributors at time t

W(t) = mean wage

 $\pi(t)$ = contribution rate

$$IN(t) = A(t).\pi(t).W(t)$$

Equilibrium Equation in PAYG

Outcomes:

B(t) = number of retirees at time t

P(t) = mean pension

 $\delta(t)$ = replacement rate

$$OUT(t) = B(t).P(t) = B(t).\delta(t).W(t)$$

Equilibrium Equation in PAYG

Actuarial equilibrium:

$$IN(t) = OUT(t)$$

$$A(t).\pi(t).W(t) = B(t).P(t)$$

$$\pi(t) = \frac{B(t)}{A(t)} \cdot \frac{P(t)}{W(t)}$$

$$D(t) = \frac{B(t)}{A(t)} = \text{dependence ratio}$$

Automatic Adjustment

$$\pi(t) = \frac{B(t)}{A(t)} \cdot \frac{P(t)}{W(t)} = D(t) \cdot \frac{P(t)}{W(t)} = D(t) \cdot \delta(t)$$

Risk factor

Automatic Adjustment:

How to maintain automatically this equilibrium in case of change of D(t) (! Increase !)

Automatic Adjustment

$$\pi(t) = \frac{B(t)}{A(t)} \cdot \frac{P(t)}{W(t)} = D(t) \cdot \frac{P(t)}{W(t)} = D(t) \cdot \delta(t)$$

$$\text{Constant in pure DC}$$

$$\text{Constant in pure DB}$$

$$\text{Adjustment of } \delta$$

$$\text{Adjustment of } \pi$$

$$\text{Social threat}$$

$$\text{Institute and Faculty of Actuaries}$$

of Actuaries

Risk Sharing in a deterministic model

$$\pi(t) = D(t) \cdot \frac{P(t)}{W(t)}$$

$$\ln(\pi(t)) = \ln(D(t)) + \ln(P(t)) - \ln(W(t))$$

$$\frac{d\pi(t)}{\pi(t)} = \left(\frac{dP(t)}{P(t)} - \frac{dW(t)}{W(t)}\right) + \frac{dD(t)}{D(t)} = \frac{d\delta(t)}{\delta(t)} + \frac{dD(t)}{D(t)}$$

Spread of dynamic evolution between pension and wage

Ageing Effect

Risk Sharing

$$\frac{d\pi(t)}{\pi(t)} = \left(\frac{dP(t)}{P(t)} - \frac{dW(t)}{W(t)}\right) + \frac{dD(t)}{D(t)}$$

CASE 1 : DB / Defined Benefit

$$\frac{dP(t)}{P(t)} = \frac{dW(t)}{W(t)}$$

$$\frac{\mathrm{d}\pi(t)}{\pi(t)} = \frac{\mathrm{d}\mathrm{D}(t)}{\mathrm{D}(t)}$$

Full indexation of pensions on wages

Full impact of the Ageing effect on the active generation

Risk Sharing

$$\frac{d\pi(t)}{\pi(t)} = \left(\frac{dP(t)}{P(t)} - \frac{dW(t)}{W(t)}\right) + \frac{dD(t)}{D(t)}$$

CASE 2: DC / Defined Contribution

$$\frac{\mathrm{d}\pi(t)}{\pi(t)} = 0$$

Full stability of the cost

$$\frac{dP(t)}{P(t)} = \frac{dW(t)}{W(t)} - \frac{dD(t)}{D(t)}$$

Full impact of the Ageing effect on the retirees

Risk Sharing

$$\frac{d\pi(t)}{\pi(t)} - \left(\frac{dP(t)}{P(t)} - \frac{dW(t)}{W(t)}\right) = \frac{dD(t)}{D(t)}$$

Fair risk sharing between generations:

$$\frac{d\pi(t)}{\pi(t)} = (1 - \alpha(t)).\frac{dD(t)}{D(t)}$$

$$\frac{dP(t)}{P(t)} = \frac{dW(t)}{W(t)} - \alpha(t) \cdot \frac{dD(t)}{D(t)}$$

Ageing impact on the contribution rate

Ageing impact on the benefits

 $0 \le \alpha(t) \le 1$: automatic adjuster

Replacement rate

$$\frac{\mathrm{d}\pi(t)}{\pi(t)} = \frac{\mathrm{d}\delta(t)}{\delta(t)} + \frac{\mathrm{d}D(t)}{D(t)}$$

DB

$$\frac{d\delta(t) = 0}{d\pi(t)} = \frac{dD(t)}{D(t)}$$

$$\alpha(t) = 0$$

DC

$$\frac{d\delta(t)}{\delta(t)} = -\frac{dD(t)}{D(t)}$$
$$d\pi(t) = 0$$

$$\alpha(t) = 1$$

Risk Sharing

$$\frac{d\delta(t)}{\delta(t)} = -\alpha(t) \cdot \frac{dD(t)}{D(t)}$$
$$\frac{d\pi(t)}{\pi(t)} = (1 - \alpha(t)) \cdot \frac{dD(t)}{D(t)}$$

Example 1: the Musgrave rule

$$\frac{d\pi(t)}{\pi(t)} - \left(\frac{dP(t)}{P(t)} - \frac{dW(t)}{W(t)}\right) = \frac{dD(t)}{D(t)}$$

EXAMPLE: MUSGRAVE rule

Goal:

To keep constant the replacement rate but net of contributions

$$\delta(t) = \frac{P(t)}{W(t)} \qquad \longrightarrow \qquad M = \frac{P(t)}{W(t).(1-\pi(t))}$$

Example 1: the Musgrave rule

$$M = \frac{P(t)}{W(t).(1-\pi(t))} = \frac{\delta(t)}{1-\pi(t)}$$

Musgrave Condition
$$\frac{dP(t)}{P(t)} = \frac{dW(t)}{W(t)} + \frac{d(1-\pi(t))}{1-\pi(t)} = \frac{dW(t)}{W(t)} - \frac{\pi(t)}{1-\pi(t)} \cdot \frac{d\pi(t)}{\pi(t)}$$

Equilibrium Condition

$$\frac{d\pi(t)}{\pi(t)} = \left(\frac{dP(t)}{P(t)} - \frac{dW(t)}{W(t)}\right) + \frac{dD(t)}{D(t)}$$

$$\frac{d\pi(t)}{\pi(t)} = (1 - \pi(t)).\frac{dD(t)}{D(t)} \longrightarrow \boxed{\alpha(t) = \pi(t)}$$

$$\alpha(t) = \pi(t)$$

Example 1: the Musgrave rule

$$\frac{d\pi(t)}{\pi(t)} = \frac{d\delta(t)}{\delta(t)} + \frac{dD(t)}{D(t)}$$

Musgrave

$$\frac{d\pi(t)}{\pi(t)} = (1 - \pi(t)) \cdot \frac{dD(t)}{D(t)}$$
$$\frac{d\delta(t)}{\delta(t)} = -\pi(t) \cdot \frac{dD(t)}{D(t)}$$

Solution:

$$\pi(t) = \frac{K.D(t)}{1 + K.D(t)}$$
$$\delta(t) = \frac{K}{1 + K.D(t)}$$

Example 2: the constant proportion

Constant risk sharing between generations:

$$\alpha(t) = \alpha \text{ (with } 0 < \alpha < 1)$$

$$\frac{d\pi(t)}{\pi(t)} = (1 - \alpha) \cdot \frac{dD(t)}{D(t)}$$

$$\frac{d\delta(t)}{\delta(t)} = -\alpha \cdot \frac{dD(t)}{D(t)}$$

Solution:

$$\pi(t) = A.D(t)^{1-\alpha}$$
$$\delta(t) = A.D(t)^{-\alpha}$$

$$\delta(t) = A.D(t)^{-\alpha}$$

Summary

	DB	Musgrave	Constant proportion	DC
Replacement Rate	$\delta(t) = \delta_0$	$\delta(t) = \frac{K}{1 + K.D(t)}$	$\delta(t) = A.D(t)^{-\alpha}$	$\delta(t) = \pi_0.D(t)^{-1}$
Contribution Rate	$\pi(t) = \delta_0.D(t)$	$\pi(t) = \frac{K.D(t)}{1 + K.D(t)}$	$\pi(t) = A.D(t)^{1-\alpha}$	$\pi(t) = \pi_0$

3. Numerical illustration

Example

Mean reverting dependence ratio

$$D(t) = D_0 \cdot e^{-\beta t} + \overline{D} \cdot (1 - e^{-\beta t}) \qquad (D_0 < \overline{D})$$

$$\delta(0) = \delta_0$$

$$\pi(0) = \pi_0 = D_0 \cdot \delta_0$$

$$D_0 = 40\%$$
 $\overline{D} = 66\%$ $\beta = 5\%$ $\delta(0) = 50\%$ $\alpha = 50\%$ $\pi(0) = 20\%$

Numerical illustration

18 May 2016 25

Numerical illustration

18 May 2016 26

4. Stochastic Model

Log normal model

Geometric Brownian Motion for the replacement rate

$$dD(t) = \gamma(t).D(t)dt + \sigma(t).D(t)dw(t)$$

w(.) = standard Brownian motionWith:

 $\gamma(.)$ and $\sigma(.)$ = deterministic functions

Adjustment:

$$d \ln \pi(t) = (1 - \alpha(t)) d \ln D(t)$$

$$d \ln \delta(t) = -\alpha(t) d \ln D(t)$$

$$\alpha(.) = adapted process$$

$$d \ln \delta(t) = -\alpha(t) d \ln D(t)$$

$$\alpha(.)$$
 = adapted process

Log normal model / constant proportion

Geometric Brownian Motion for the replacement rate

$$dD(t) = \gamma .D(t) dt + \sigma .D(t) dw(t)$$

Adjustment:

$$d \ln \pi(t) = (1 - \alpha) d \ln D(t)$$

$$d \ln \delta(t) = -\alpha d \ln D(t)$$

Solution: contribution and replacement = log normal

$$\pi(t) = \pi(0) \cdot \exp((1-\alpha) \cdot ((\gamma - \sigma^2 / 2)t + \sigma \cdot w(t)))$$

$$\delta(t) = \delta(0) \cdot \exp(-\alpha \cdot ((\gamma - \sigma^2 / 2)t + \sigma \cdot w(t)))$$

Next steps

- Risk analysis / stochastic demography
 (D = stochastic process)
- Optimal choice for the risk sharing parameter
 (? Optimal process α(t)?)
- NDC with risk sharing

18 May 2016 30

REFERENCES

Borsch-Supan, A., A.Reil-Held and C.B.Wilke (2003) How to make a defined benefit system sustainable: the sustainability factor in the German Benefit Indexation formula. Discussion paper 37/2003, Mannheim Institute for the Economics of Aging

Commission 2020-2040 (2014) *Un contrat social performant et fiable*, http://pension2040.belgium.be/fr/

Devolder, P. (2010) Perspectives pour nos régimes de pension légale. Revue Belge de Sécurité sociale »,4 ,p.597-614

European Commission (2014) The 2015 Ageing Report, European Economy 8/2014

Holzmann, R., E. Palmer and D. Robalino (2012) *Non-financial Defined Contribution Pension schemes in a changing Pension world*, Vol 1., Washington D.C., World Bank

Knell M. (2010) How automatic adjustment factors affect the internal rate of return of PAYG pension systems. *Journal of Pension Economics and Finance*, **9**(1),1-23

Musgrave, R. (1981) A reappraisal of social security finance. *Social Security financing*, Cambridge, MIT, p. 89–127.

Questions

Comments

and Faculty of Actuaries

The views expressed in this [publication/presentation] are those of invited contributors and not necessarily those of the IFoA. The IFoA do not endorse any of the views stated, nor any claims or representations made in this [publication/presentation] and accept no responsibility or liability to any person for loss or damage suffered as a consequence of their placing reliance upon any view, claim or representation made in this [publication/presentation].

The information and expressions of opinion contained in this publication are not intended to be a comprehensive study, nor to provide actuarial advice or advice of any nature and should not be treated as a substitute for specific advice concerning individual situations. On no account may any part of this [publication/presentation] be reproduced without the written permission of the IFoA [or authors, in the case of non-IFoA research].

18 May 2016 32