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Difference between LSMC and 
Replicating Portfolios

Based on joint work with: Eric Beutner and Janina Schweizer at 
Maastricht University

Risk Calculations under Solvency II

• Price at t is calculated as conditional expectation under Q-
measure for a specific scenario x at t
– A scenario is a specific value for the relevant risk-drivers

• Mathematical notation: price(t,x) = EQ[ f(ST) | St=x ]
• How to compute this value?

– “Brute force”: simulation-in-simulation
– Alternative : fit a function at t=1 or t=T
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Outline

• Approximation of Functions
• Approximation in Higher Dimensions
• Replicating Portfolio vs Function Fitting
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Approximation - Distance

• Consider a random variable ST with a probability density 
function p(ST).
– The variable S is a risk-driver, e.g. stock-price or interest rate.

• Consider a (payoff) function f(ST)
– For example: f(ST) = max{ ST – K , 0 } or f(ST) = ln ST

• Consider another function g(ST).
• What is the “distance” between f and g?

– Distance = 0  f ≡ g
– Distance >0 for any f ≠ g
– Symmetry: d(f,g) = d(g,f)
– Triangle inequality: d(f,g) ≤ d(f,h) + d(h,g) for all f,g,h
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Approximation - Distance

• Use “root mean square error” as distance:

• Satisfies all properties
– Only for f ≡ g for all S do we get d(f,g)=0, otherwise d(f,g)>0
– Makes intuitive sense: give more weight to errors with high 

probability

• This choice is not unique. Other distance functions are 
also possible.
– For example: use different probability q(S) or error-power.
– “Norm equivalence”: convergence for one distance-function 

implies convergence in other norms as well.
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Approximation – Polynomials

• Approximate complicated payoff function f(S) with 
“simple” functions.
– Easy to compute market-price for the simple functions

• Example: choose polynomials Sk

• Approximate f(S) with ∑ ak (ST)k for k=0…K
– Make smart choice for coefficients ak

• Best choice: min d(f, ∑akSk ) = E[ (f - ∑akSk )2 ]
– Solve system of K+1 equations:
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Approximation – Polynomials

• Optimal solution:

• This is a least squares solution: a* = (X’X)-1(X’f)
– Implement this estimator for a finite sample
– Each column in X is Sk

– Each row in X and f is a draw from the random variable S
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Approximation - Example

• Examples of 
approximation of payoffs 
with polynomials
– Works very well for smooth 

functions
– Payoff with kink is difficult 

for polynomials

• Lesson: choose 
appropriate basis for 
payoff
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Approximation - Theory

• The collection of polynomials 1, S, S2, ... forms a basis for 
the space of payoff functions

• Every function (with E[ f2 ] < ∞) can be perfectly 
replicated with polynomials for K → ∞

• Every function f has a unique representation:
• The coefficients ak are deterministic (do not depend on S)
• Therefore we can compute (any measure Q and time t):

• Express price of complicated payoff as sum of simple 
payoffs.
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Approximation - Practice

• In practice we can only approximate a complicated f(S)
with a finite number of terms:

• We can only use a finite sample to estimate the ak
coefficients: 

• Two sources of error:
– Truncation error due to finite K, e.g. converge as O(K-g)
– Estimation error due to estimate for ak on sample of size N
– Study of converge (K,N)∞ by Beutner-Pelsser-Schweizer (2015)

• Choice of different basis will determine convergence rate 
g for a class of payoff functions
– Polynomials work very well for smooth functions
– Polynomials converge slow for kinked payoffs
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Approximation – Choice of Basis

• There are many possible choices for basis-functions
– Polynomials
– Sin(), Cos() functions (Fourier basis)
– Piecewise linear: max(S – Kk , 0) with Kk= P-1(dk)

• With dk are dyadic rationals

– Other, see “machine learning” literature

• Find “good” basis to approximate payoff f(S) with a few 
basis functions
– Also compute analytical price for each basis function
– Piecewise linear  call/put options.
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Approximation in Higher Dimensions

Higher Dimensions

• Realistic insurance products have a payoff that depends on 
multiple risk drivers

• Same risk driver at different points in time
– Path dependent payoff, such as profit-sharing

• Different risk drivers
– Unit-linked: mortality and financial
– Interest rates and inflation

• General theory outlined before still works
• Use more elaborate basis to encompass all relevant risks
• Choice of good basis is even more important
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Higher dimension – 2d example

• Consider a path-dependent payoff max(ST – St , 0) with t<T
– Only pay out positive return of S between t and T.
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Higher dimension – 2d basis

• Consider the following basis
• Poly’s up to degree 4
• 15 terms in total
• Need cross-terms

– Uni terms do not form basis!
– Eur options do not form basis!

• Curse of dimensionality for dim d: truncation error O(K-g/d)
– General result for product basis
– Really important to find “optimal” basis
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Higher dimension – 2d example

• Draw 200 random values from lognormal process 
– dS=(4%)Sdt + (16%)SdW
– Fit payoff max(S10 – S5 ,0) on the 15-term basis
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Higher dimension – 2d example

• Target vs Fitted function
– Huge errors for S5 high and S10 low...
– But nearly perfect scatter plot!

• What went wrong?
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Higher dimension – 2d example

• What went wrong?
• Realistic training scenarios do not cover the whole space

– They only cover “realistic” outcomes
– Out-of-sample simulation from same model will cover same region

• Need to cover whole space
– Increase volatility in model
– At 32%
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Higher dimension – 2d example

• Target vs Fitted function
– Training sample with sig = 32%

• Much improved fit
– Still errors for S5 high and S10 low
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Higher dimension – Price at t=1

• Calculate price at t=1 of payoff under Q
– Using realistic training sample

– Using sig=32% training sample
– Same blue line in both graphs!

• Note: decoupling of training
and pricing measure
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Replicating Portfolio vs Function Fitting
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Calculate prices at t

• Price at t is calculated as conditional expectation under Q-
measure for a specific scenario x at t
– A scenario is a specific value for the relevant risk-drivers

• Mathematical notation: price(t,x) = EQ[ f(ST) | St=x ]

• How to compute this value?
• “Brute force”: simulation-in-simulation

t=0 t=1 t=T
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x3
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Calculate price at t

• Alternative methods to calculate prices at t
• Replicating portfolio:

– First fit payoff on basis at T, then calculate expectation at t
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Calculate price at t

• Alternative methods to calculate prices at t
• Function fitting:

– Calculate price at t by regressing payoff at T on basis at t
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Example for 2d payoff

• Replio fit (training sig=32%, Q-sig=16%)

• Function fit (Q-sig=16%)

Function Fit:
• Regress payoff at T=10 on 

basis functions at t=1
• Low R2 by construction
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Replicating Portfolio vs Function Fitting

• Replicating portfolio / 
Regress Later

• First fits the payoff 
function

• Compute cond.expectation
of basis analytically

• Harder for path-dep payoff
• Test quality of fit
• Is model-independent: 

changing the pricing Q-
measure does not affect 
the coefficients ak

• Function Fitting / LSMC / 
Regress Now

• Directly fits the pricing 
function

• Applies a smoothing during 
estimation

• Easy for path-dep payoff
• Cannot test quality of fit
• Is model-dependent: 

calculated price depends 
on simulated sample under 
Q-measure
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Contact

Kleynen Consultants BV

St. Franciscusweg 21
6411 GH  HEERLEN

T 045 – 571 47 83
E a.pelsser@kleynen-consultants.nl
I    www.kleynen-consultants.nl

DISCLAIMER
 
Any views or opinions presented are solely those of the author and do not necessarily represent those of Kleynen Consultants 
B.V. If you are not the intended recipient, be advised that you have received this presentation in error and that any use, 
dissemination, forwarding, printing or copying of this presentation is strictly prohibited. If you have received this presentation in 
error please contact Kleynen Consultants B.V.. Kleynen Consultants B.V. cannot be held responsible or liable in any way 
whatsoever for/and or in connection with any consequences and/or damage resulting from the proper and complete dispatch 
and receipt of the content of this  presentation.
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