

Differences in Target Customers

Fintech Lending: Big Data Small Credit

Traditional Banking: The enterprises or individuals with long and good credit history

Fintech: Small-middle enterprise (SME) and individuals without enough credit history. (Unbanked or underserved consumers)

Line of Credit

Traditional Banking: High and long term (years). Used for investment, mortgage etc.

Fintech: Small and short term (months). Used for daily consuming, supply chain finance of SME etc.

Info for Credit Evaluation

Traditional Banking: Credit history (Credit Score), cash flow records, account balance.

Fintech: utilities bill payments, digital footprints: social media behavior, platform consuming, even location.

Risk Process Method

Traditional Banking: Partially automated underwriting (time consuming and subjective) Fintech: Automated underwriting (quantitative

model based on multiple information sources, quick and objective)

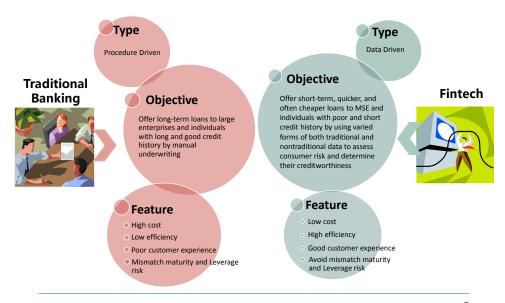
Differences in Financial Services

- "Static" products in Traditional banking.
- ✓ Product Homogeneity;
- ✓ Always Long Term;
- ✓ Single Mode of Repayment; ✓ Difficult to Be Diversified

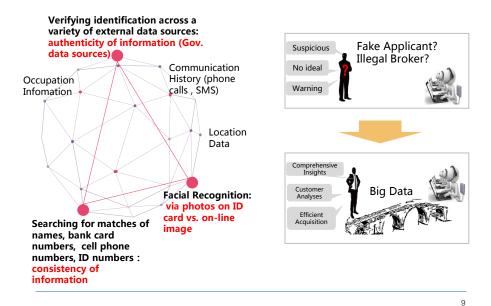
"Dynamic" products in Fintech.

- ✓ "Lower" Cost to Serve;
- ✓ Improved Customer Experience;
- ✓ Advanced Analytics;
- ✓ Customer-centric Approach
- ✓ Operational Efficiency;

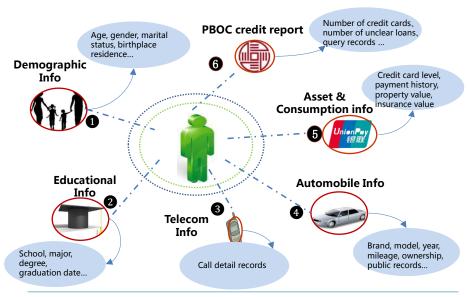
Differences in Business Driven Methods



Fraud Detection-Prove You Are Yourself



Evaluate Credit Risk-Prove You Are Credible



Customers' Credit Profile Mining

Risk Level

- Fraud Detection Model
 -Predict the fraud probability
- Credit Risk Model

 Predict credit risk of applicants

Financial Behavior

- Consumption Model

 Evaluate applicant's purchasing power
- Wealth Management

 Evaluate applicant's current status of possessing financial products and insurance policies

Payment Capacity

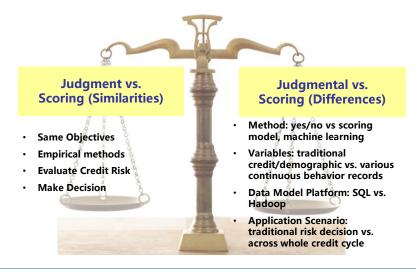
- Income prediction model
 -Predict applicant's income level
- Multiple asset sources
 -MPF, assets(car, house)...

Social Behavior

- Living pattern tracking
- Social status connection

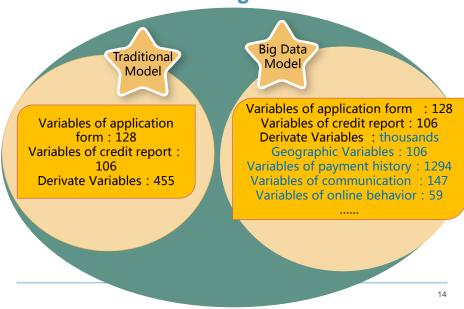
- 1

Model Development: Traditional Techniques vs. Big Data

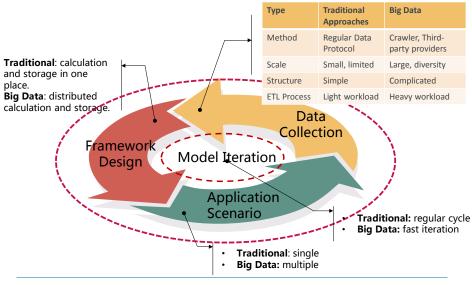


13

Variables Used in the Model: Traditional Model vs. Big Data Model

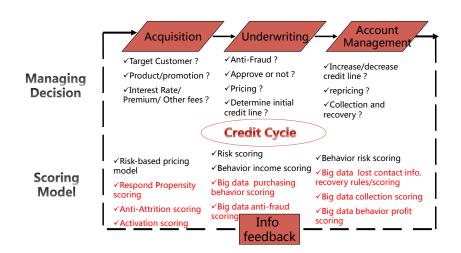


Model Development: Traditional Approaches vs. Big Data



15

The Advantages of Big Data in Credit Cycle Management

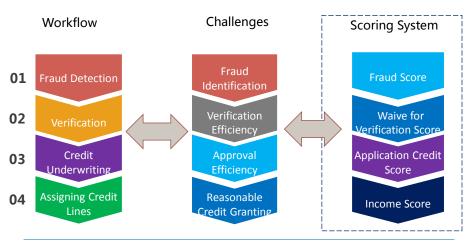


O20 Mode of Personal Finance

Acquiring tons of potential borrowers through a point of sales scenario. Assigning credit lines to people using big data techniques. The whole data Acquisition Lenders collect a variety of collection and decision data to better support the process is fully automated decision of acquisition which only takes few minutes. and origination Feedback Converting According to borrowers' credit and purchase/payment **Transaction** Retain history, lenders offer rewards and deals in order to satisfy and Borrowers can leverage their retain borrowers credit while shopping online.

Case 1:Credit Score Model for Consumption (POS-point of sales)

Four-Level Scoring System for Application



19

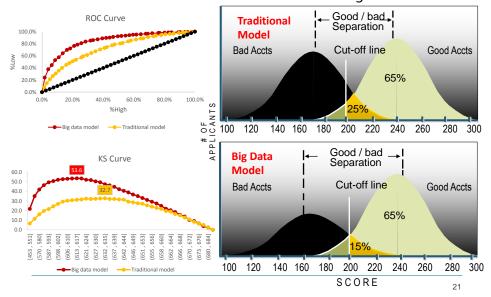
Case 1:Credit Score Model for Consumption

Example of Big Data Application Risk Models for Consumption

•	•						
Age	18 – < 21	21 – < 25	25 – < 30	30 – < 40	40 – < 50	50 – High	Incomplete
	5	10	20	30	35	45	5
Marital Status	Single	Married	Divorced	Other	Incomplete		
	15	20	5	15	5		
# of Dependants	0	1	2	3 – 4	4 – High	Incomplete	
	15	15	35	10	5	5	
Residential Status	Own	Rent	Parents	Company	Incomplete		
	40	20	20	25	15		
Time mobile # registered	<1	1-<3	3-<6	6 – < 10	10 – < 15	15 – High	Incomplete
	15	20	25	30	35	40	15
Occupation	Prof / Ret	Skilled	Office Staff	Unskilled	Self-Emp	Others	Incomplete
	35	30	30	15	10	30	10
Distance bet. Applicant location/ branch	< .5	.5 – < 2.5	2.5 – < 5	5 – < 8	8 – High	Incomplete	
	10	20	30	35	40	10	
Time spend on complete Application	<3	3_High	Incomplete				
	30	10	10				
Home Address Fuzzy Matching	<30	30_<50	50_<80	80_High	Incomplete		
	5	10	15	20	5		

Case 1:Application Credit Score Model

Model Performance: Traditional model VS Big data model



Case 1:Application Credit Score Model

Approval Strategies: Revenue & Risk

Case 1:Application Credit Score Model

Simplified Example of Initial Credit Line

Credit Score	Income Score					
Credit Score	Low	Medium	High			
Low	Decline	Minimum credit line	Minimum credit line			
Medium	Minimum credit line	Regular credit line	Regular credit line			
High	Regular credit line	High credit line	High credit line			

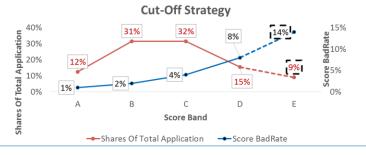
		Approval Rate	Bad Debt Rate	Revenue (A)	Credit Loss per Year (B)	profit Lift
Traditional	I	60%	4%	F(# app,60%, line, 4%)	=# app×60%×4%×10000×100%=480 mln	/
Big Data	II	60%	2%	F(# app., 60%, line, 2%)	=# app×60%×2%×8000×100%=200 mln	280 mln
	Ш	85%	4%	F(# app, 85%,line, 4%)	=# app×85%×4%×8000×100%=600 mln	Rev. 55% vs Loss 25%

23

Case 2: Lending Strategy based on scoring

- □ Lending Product : Cash Loan Tenor : 12 mon. Sales Channel : off-line
- New Score Model Implement: March, 2016
- □ Cut-off Strategy: Cut-Off score band、add-on differentiate manual verification、credit line
- Performance: one year outcome period, approval rate, bad rate, underwriting cost, time-spend on underwriting

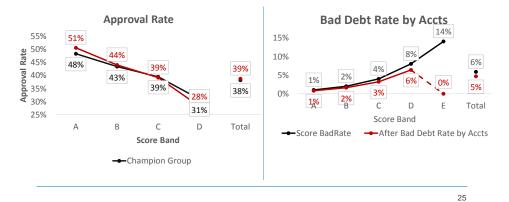
Improve Underwriting efficiency, reduce operating cost by automatically declining E score band around 3,600 app per mon., operating cost \$80 per app., in sum, reduce operating cost in 3.5 million.



Case 2: Lending Strategy based on scoring

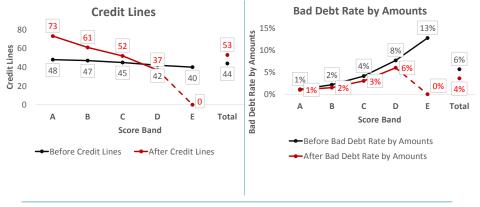
Improve approval by rules-based differentiation critical in each score band, which can increase 1% approval rate and reduce 1% account bad rate simultaneously

The strategy simulation is using champion vs. challenge groups in the manual underwriting process to see the impact on approval rate and bad rate.



Case 2: Lending Strategy based on scoring

In addition, to assign credit line based on the theory of lower risk band with higher credit line assigned, to ensure the final total outstanding weighted more one low risk account. The score-based line assignment strategy will reduce 2% bad rate finally.



The Direction of Integrating Big Data into Fintech

Technology Driven

- Guarantee the diversity of Decision Data;
- Enhance advanced technique in data architecture, mining, modeling;
- Optimize algorithms and analysis methodology and techniques

Business Driven

- Enhance the application of whole cycle in Risk Control Models and Strategy;
 Expand business application
- Expand business application scenarios by various loan products/customer profile, etc.

