

Estimating risk profiles for common diseases from environmental and genetic factors

Cathryn Lewis King's College London

Contents

- Introduction to genetic prediction
- Estimating disease risks
- Implications

Introduction to genetics: 1 DNA structure

James Watson and Francis Crick with their DNA model at the Cavendish Laboratories in 1953. Photograph copyright A. Barrington

www.onlineeducation.net/dna

Introduction to genetics: 2 DNA differences

Inherited genetic mutations

Single gene disorders

- Huntington's disease
- Cystic fibrosis
- Breast cancer genes: BRCA1, BRCA2

Examples: asthma, breast cancer, heart disease, autism, arthritis, migraine, obesity, diabetes, stroke

Most diseases that have a major economic, social and health burden

Genetic variation: Single nucleotide polymorphism (SNP)

....TGGACATGCA....TGGACCTGCA....

Alleles A and C are present in the population

Genotype : carried by an individual, on paternal and maternal inherited chromosomes

....TGGACATGCA....TGGACATGCA....TGGACCTGCA....TGGACATGCA....TGGACCTGCA....TGGACCTGCA....

Genotype: AA AC CC

Identifying SNPs that increase risk of disease

More AC and CC genotypes in cases than in controls Indicates that carrying C allele increases risk of disease

Genetic association studies

Breast cancer genetics

			Odds Ratio, by number of risk alleles			
	Gene	Risk				
Name of SNP	location	allele	0	1	2	
1rs2981579	FGFR2	А	1	1.35	1.82	

To combine relative risk across SNPs: multiply odds ratio for genotype

Product of odds ratios = $1 \times 1.28 \times 1.42 \times 1.31 \times 1 = 2.38$ Rescale so OR is compared to an 'average' member of the population

Distribution of genetic risk in the population

Research programme: Disease risk estimation for combining genetic and environmental risk factors

- Developed new statistical methodology
 - Combining genetic and environmental risk factors
 - Incorporating confidence intervals
- Issued software program REGENT
- Evaluated utility of risk prediction for common diseases

Risk modelling: genetic factors

- Risk SNP characterised by
 - Minor allele frequency (MAF), p
 - Odds ratio for each minor allele $(1, g, g^2)$

Frequency Severity

- Disease prevalence r
- Assume risks are multiplicative across SNPs
- *N* SNPs, with genotype $k_i = 0, 1, 2, i=1, ..., N$ $P(D | k_1, k_2, ..., k_N) = r \prod_{k=1}^N g_i^{k_i} / (1 + (g_i - 1)p_i)^2$

Risk modelling: environmental factors

- Environmental risk factors (M), each with
 - $OR h_i$
 - Confidence interval
 - Exposure prevalence, e[j] = 0,1

$$\prod_{j=1}^{M} h_j^{e[j]}$$

Model assume environmental risks are independent

Risk modelling: confidence intervals

Disease risk estimated using multiplicative model between Genetic risk factors Environmental risk factors

Calculate empiric confidence intervals for an individual genotype

Type 2 diabetes risk SNPs

SNP	Allele frequency	OR
rs5215	0.35	1.14
rs7901695	0.31	1.37
rs4430796	0.47	1.10

Frayling et al., 2007

Three SNPs	:	Type 2	2 Dial	betes
-------------------	---	--------	--------	-------

Combination	SN	P Num	ber	Population	Rel. risk	Rel. Risk	Quartiles	Risk
Number	1	2	3	Frequency	(Rebased)	2.50%	97.50%	Category
1	0	0	0	0.0565	0.6636	0.5649	0.7802	Low
2	0	0	1	0.1002	0.7299	0.6395	0.8361	Low
3	1	0	0	0.0609	0.7565	0.6482	0.8807	Low
4	0	0	2	0.0444	0.8029	0.6607	0.9810	Average
5	1	0	1	0.1079	0.8321	0.7385	0.9370	Average
6	2	0	0	0.0164	0.8624	0.7010	1.0566	Average
7	0	1	0	0.0508	0.9091	0.7809	1.0565	Average
8	1	0	2	0.0479	0.9153	0.7579	1.1064	Average
9	2	0	1	0.0291	0.9486	0.7886	1.1414	Average
10	0	1	1	0.0900	1.0000	0.8876	1.1280	Average
11	1	1	0	0.0547	1.0364	0.9026	1.1887	Average
12	2	0	2	0.0129	1.0435	0.8297	1.3171	Average
13	0	1	2	0.0399	1.1000	0.9112	1.3256	Average
14	1	1	1	0.0970	1.1400	1.0288	1.2621	Average
15	2	1	0	0.0147	1.1815	0.9738	1.4377	Average
16	0	2	0	0.0114	1.2455	1.0094	1.5375	Average
17	1	1	2	0.0430	1.2540	1.0509	1.5008	Average
18	2	1	1	0.0261	1.2996	1.0950	1.5469	Average
19	0	2	1	0.0202	1.3700	1.1394	1.6540	Moderate
20	1	2	0	0.0123	1.4198	1.1634	1.7311	Moderate
21	2	1	2	0.0116	1.4296	1.1452	1.7899	Moderate
22	0	2	2	0.0090	1.5070	1.1937	1.9128	Moderate
23	1	2	1	0.0218	1.5618	1.3149	1.8695	Moderate
24	2	2	0	0.0033	1.6186	1.2709	2.0696	Moderate
25	1	2	2	0.0097	1.7180	1.3723	2.1595	Moderate
26	2	2	1	0.0059	1.7805	1.4225	2.2348	Moderate
27	2	2	2	0.0026	1.9585	1.4956	2.5690	Moderate

Different Risk Categories

Crohn's disease risk estimation

REGENT software

- R package
 - <u>http://cran.r-project.org/web/packages/REGENT/</u>
- Population distribution of disease risk and risk categories
- Individual-level risk assessment
- Genetic risk factors (SNP genotypes) and environmental risk factors (multilevel)

European Journal of Homan Genetics (2013) 121 c. 2013 Microlina Patricken Linker. All rights on www.statum.com/ship	1, 109-111 onew 1013-401313
SHORT REPORT REGENT: a risk assessment and classifica	
algorithm for genetic and environmental for Daniel JM Crouch ¹ , Graham HM Goddard ¹ and Cathryn M Lewis ^{*,1,2}	ELECTION Content list available at Software Somodified Concer Epidemiology The International Journal of Cancer Epidemiology, Detection, and Prevention Journal homospage: www.cancerspidemiology.net
	Incorporating non-genetic risk factors and behavioural modifications into risk prediction models for colorectal cancer
	Jane M. Yarnall ² , Daniel J.M. Crouch ² , Cathryn M. Lewis ^{2,2,4} ¹ Orbini of <i>Genetic and Modular Medice</i> , Dayl Code, Under Daglan ¹ MMC Sociel Genetic and Development Physically Control. Institute of Physical Active Codep Lender, Under Digdom

Genetic risk profile

- Case studies of three adult-onset disorders :
 - Coronary artery disease
 - Colorectal cancer
 - Type 2 diabetes
- Identified SNPs most strongly associated with disease
- Modelled genetic profiles in the population through simulation
- Assessed ability of model to identify individuals at high risk of disease

Receiver operating characteristic curve

Disease	No. SNPs modelled	Area under curve	Proportion of population at increased risk		Lifetime risks	
			OR > 2	OR > 3		
Coronary artery disease	25	0.60	1.5%	0.0%	6.0%	
Colorectal cancer	10	0.59	0.7%	0.0%	6.2%	
Type 2 diabetes	19	0.60	1.7%	0.0%	4.0%	

Genetic risk assessment

Odds ratios: genetic v. conventional risk factors

Disease	Top 5% of genetic risk	Family history (affected sibling)	Epidemiological & risk factors		
Coronary artery disease	1.7	3.2	Total cholesterol Smoking	3.1 1.9	
Colorectal cancer	1.6	5.1	Smoking Obesity	1.3 1.5	
Type 2 diabetes	1.7	3.5	Obesity	2.5	

Summary

- *Scientific* strides in identifying the inherited genetic variants that affect disease risk
- Very limited prediction available from current findings
 - Incomplete knowledge of polygenic component of disease
 - Causal genetic variants are unknown
- Better prediction comes from
 - Family history
 - Environmental risk factors (smoking, body mass index)
 - Pre-clinical factors (blood pressure, cholesterol levels)

Acknowledgements

King's College London

- Graham Goddard
- Daniel Crouch
- Jane Yarnall

Funding

Niels Bohr

Institute and Faculty of Actuaries

