Estimating risk profiles for common diseases from environmental and genetic factors

Cathryn Lewis
King's College London

Contents

- Introduction to genetic prediction
- Estimating disease risks
- Implications

Introduction to genetics: 1

DNA structure

www.onlineeducation.net/dna

Introduction to genetics: 2 DNA differences

Inherited genetic mutations

Single gene disorders

- Huntington's disease
- Cystic fibrosis
- Breast cancer genes: BRCA1, BRCA2

Genetic
 Mutation

Disease

Complex disease: contributions from genetic and environmental factors

Examples: asthma, breast cancer, heart disease, autism, arthritis, migraine, obesity, diabetes, stroke

Most diseases that have a major economic, social and health burden

Genetic variation:
 Single nucleotide polymorphism (SNP)

....TGGACATGCA....
....TGGACCTGCA...

Alleles A and C are present in the population

Genotype : carried by an individual, on paternal and maternal inherited chromosomes
....TGGACATGCA....TGGACATGCA....TGGACCTGCA....TGGACATGCA....TGGACCTGCA....TGGACCTGCA....

Genotype: AA
AC
CC

Identifying SNPs that increase risk of disease

Genotype SNP with A, C alleles:

Cases - affected with disease
Controls - not affected with disease

More AC and CC genotypes in cases than in controls Indicates that carrying C allele increases risk of disease

Genetic association studies

Breast cancer genetics

			Odds Ratio, by number of risk alleles		
Name of SNP	Gene location	Risk allele		0	1

To combine relative risk across SNPs: multiply odds ratio for genotype

Product of odds ratios $=1 \times 1.28 \times 1.42 \times 1.31 \times 1=2.38$
Rescale so OR is compared to an 'average' member of the population

Distribution of genetic risk in the population

How useful is this information?

Research programme:
 Disease risk estimation for combining genetic and environmental risk factors

- Developed new statistical methodology
- Combining genetic and environmental risk factors
- Incorporating confidence intervals
- Issued software program REGENT
- Evaluated utility of risk prediction for common diseases

Risk modelling: genetic factors

- Risk SNP characterised by
- Minor allele frequency (MAF), p
- Odds ratio for each minor allele ($1, g, g^{2}$)
- Disease prevalence r
- Assume risks are multiplicative across SNPs
- N SNPs, with genotype $k_{i}=0,1,2, i=1, \ldots N$

$$
P\left(D \mid k_{1}, k_{2}, \ldots, k_{N}\right)=r \prod_{k=1}^{N} g_{i}^{k_{i}} /\left(1+\left(g_{i}-1\right) p_{i}\right)^{2}
$$

Risk modelling: environmental factors

- Environmental risk factors (M), each with
- OR h_{j}
- Confidence interval
- Exposure prevalence, $e[j]=0,1$
- Risk component relative to individual with no exposure is:

$$
\prod_{j=1}^{M} h_{j}^{e[j]}
$$

Model assume environmental risks are independent

Risk modelling: confidence intervals
Disease risk estimated using multiplicative model between

Genetic risk factors
Environmental risk factors

Calculate empiric confidence intervals for an individual genotype

Type 2 diabetes risk SNPs

SNP	Allele frequency	OR
rs5215	0.35	1.14
rs7901695	0.31	1.37
rs4430796	0.47	1.10

Three SNPs : Type 2 Diabetes

Combination	SNP Number			Population	Rel. risk	Rel. Risk Quartiles		Risk
Number	1	2	3	Frequency	(Rebased)	2.50%	97.50%	Category
1	0	0	0	0.0565	0.6636	0.5649	0.7802	Low
2	0	0	1	0.1002	0.7299	0.6395	0.8361	Low
3	1	0	0	0.0609	0.7565	0.6482	0.8807	Low
4	0	0	2	0.0444	0.8029	0.6607	0.9810	Average
5	1	0	1	0.1079	0.8321	0.7385	0.9370	Average
6	2	0	0	0.0164	0.8624	0.7010	1.0566	Average
7	0	1	0	0.0508	0.9091	0.7809	1.0565	Average
8	1	0	2	0.0479	0.9153	0.7579	1.1064	Average
9	2	0	1	0.0291	0.9486	0.7886	1.1414	Average
10	0	1	1	0.0900	1.0000	0.8876	1.1280	Average
11	1	1	0	0.0547	1.0364	0.9026	1.1887	Average
12	2	0	2	0.0129	1.0435	0.8297	1.3171	Average
13	0	1	2	0.0399	1.1000	0.9112	1.3256	Average
14	1	1	1	0.0970	1.1400	1.0288	1.2621	Average
15	2	1	0	0.0147	1.1815	0.9738	1.4377	Average
16	0	2	0	0.0114	1.2455	1.0094	1.5375	Average
17	1	1	2	0.0430	1.2540	1.0509	1.5008	Average
18	2	1	1	0.0261	1.2996	1.0950	1.5469	Average
19	0	2	1	0.0202	1.3700	1.1394	1.6540	Moderate
20	1	2	0	0.0123	1.4198	1.1634	1.7311	Moderate
21	2	1	2	0.0116	1.4296	1.1452	1.7899	Moderate
22	0	2	2	0.0090	1.5070	1.1937	1.9128	Moderate
23	1	2	1	0.0218	1.5618	1.3149	1.8695	Moderate
24	2	2	0	0.0033	1.6186	1.2709	2.0696	Moderate
25	1	2	2	0.0097	1.7180	1.3723	2.1595	Moderate
26	2	2	1	0.0059	1.7805	1.4225	2.2348	Moderate
27	2	2	2	0.0026	1.9585	1.4956	2.5690	Moderate

No high risk genotypes

Different
Risk
Categories

Crohn's disease risk estimation

REGENT software

- R package
- http://cran.r-project.org/web/packages/REGENT/
- Population distribution of disease risk and risk categories
- Individual-level risk assessment
- Genetic risk factors (SNP genotypes) and environmental risk factors (multilevel)

Genetic risk profile

- Case studies of three adult-onset disorders :
- Coronary artery disease
- Colorectal cancer
- Type 2 diabetes
- Identified SNPs most strongly associated with disease
- Modelled genetic profiles in the population through simulation
- Assessed ability of model to identify individuals at high risk of disease

Receiver operating characteristic curve

Genetic risk assessment

Disease	No. SNPs modelled	Area under curve	Proportion of population at increased risk	Lifetime risks	
OR >2	OR > 3				
Coronary artery disease	25	0.60	1.5%	0.0%	6.0%
Colorectal cancer	10	0.59	0.7%	0.0%	6.2%
Type 2 diabetes	19	0.60	1.7%	0.0%	4.0%

Odds ratios:
genetic \mathbf{v}. conventional risk factors

Disease	Top 5\% of genetic risk	Family history (affected sibling)	Epidemiological \& risk factors	
Coronary artery disease	1.7	3.2	Total cholesterol Smoking	3.1 1.9
Colorectal cancer	1.6	5.1	Smoking Obesity	1.3 Type 2 diabetes
1.7	3.5	Obesity	2.5	

Summary

- Scientific strides in identifying the inherited genetic variants that affect disease risk
- Very limited prediction available from current findings
- Incomplete knowledge of polygenic component of disease
- Causal genetic variants are unknown
- Better prediction comes from
- Family history
- Environmental risk factors (smoking, body mass index)
- Pre-clinical factors (blood pressure, cholesterol levels)

Acknowledgements

King's College London

- Graham Goddard
- Daniel Crouch
- Jane Yarnall

Funding

"Prediction is very difficult, especially about the future"

Niels Bohr

Institute
and Faculty
of Actuaries

