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Abstract 
 We describe the age-period-cohort version of the Lee-Carter model and how it 
can be extended to incorporate heterogeneity through modeling of the scale parameter. In 
applications, it is important to be able to estimate measures of uncertainty – for example, 
prediction intervals. Risk measurement involving the repeated fitting of the age-period-
cohort parametric structure to mortality rates is not practical due to the slow rate of 
convergence of the iterative fitting algorithm.  We present some key findings from a 
comparative study of three such boot-strapping methods, which have been described in 
the literature and have been applied to the basic age-period Lee-Carter parametric 
structure.  We identify and correct for the limited prominence given to the simulation of 
the forecast error in the period component of the model structure, treated as a time series.  
We then discuss the implications of this correction for age-period-cohort modeling. In the 
talk, we will present several numerical examples in order to illustrate the main points. 
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Notation: 
 

Mortality data:- 
 ( ){ }1 2 1 2, : , ,..., , , ,...,xt xt n kd e t t t t x x x x= =  

  xtd  - reported deaths, age x, period t  
  xte  - matching exposure to risk of death 
  xtω - 0/1 (empty cell) indicator weights 
 
 Possible targets:- 
  xtμ  - force of mortality 
  xtq  - probability of death 
  xtφ  - dispersion parameter 
 
 
Modeling I: 
 

Target xtμ  
Response xtD  

( )xtE D  xt xte μ  

( )xtVar D  ( ){ }xt
xt

xt

V E D
φ

ω
 

Link ( )log xt xtE D η=  
Predictor log logxt xt xteη μ= +  
Structure : log xt x x tLC μ α β κ= +  

(0) (1): log xt x x t x x tM μ α β ι β κ−= + +
Offset : log xtLC e  

: log xt xM e α+  
 
 

Distribution Variance function Dispersion 
Poisson ( )V u u=  1  ( , )xt x tφ = ∀  

Negative binomial ( ) 2
xV u u uλ= +  1  ( , )xt x tφ = ∀  

Joint Poisson/gamma ( )V u u=  log xt xφ ς=  
Modeling II: 
 

Target xtq  
Response xtD  

( )xtE D  i
xt xte q  
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( )xtVar D  ( ){ }xt
xt

xt

V E D
φ

ω
 

Links comp. l-l: ( ){ }log log 1 xt xtq η− − =  

log-odds: log
1

xt
xt

xt

q
q

η
⎛ ⎞

=⎜ ⎟−⎝ ⎠
 

probit: ( )1
xt xtq η−Φ =  

Structure : xt x x tLC η α β κ= +  
(0) (1): xt x x t x x tM η α β ι β κ−= + +  

Offset : xM α  
 
 

Distribution Variance function Dispersion 
Binomial ( )( ) 1 i

xtV u u u e= − 1  ( , )xt x tφ = ∀  

Joint binomial/gamma ( )( ) 1 i
xtV u u u e= − log xt xφ ς=  

Comments: 
(i) The emphasis in this presentation is on the targeting of xtμ  rather than xtq . 
(ii) The use of the complementary log-log link would appear to be the natural 

choice in the context of mortality rate modeling, given the approximate 
relationship, ( )log 1 xt xtq μ− − ≈ , between xtq  and xtμ .  It has also played a 
prominent role in the construction of static life tables by the CMI Bureau.  

Findings: 
(i) Life expectancy projections using Poisson log-link modeling to target xtμ  

are found to be in close agreement with life expectancy projections using 
binomial complementary log-log link modeling to target xtq . 

 
 
 References: 
  Renshaw & Haberman (2008c); Forfar, McCutcheon & Wilkie (1988). 
 
 
Model Fitting: 
 By optimizing the model deviance or log-likelihood. 
 
 Define:- 
  xtr  - deviance residual 
 
 
Model Extrapolation: 
 By time series forecasting applied to the period (and cohort) model component(s). 
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Statistics of Interest: 
 These include 
  ( )xe t  - life expectancy 

  ( )xa t  - fixed rate annuity 
  requiring projected mortality rates 
  ( ) ( )1 exp  or log 1xt xt xt xtq qμ μ≈ − − ≈ − − . 

 
Computation is either by fixed cohort using 

 

  ( )
( ){ }

( )

1
2 ,

1

1x i x i t i
i

x
x

l t i q
e t

l t

+ + +
≥

+ −
=
∑

 

  

  ( )
( )

( )
1

i
x i

i
x

x

l t i
a t

l t

ν+
≥

+
=
∑

, ν  - discount factor 

 where 
  ( ) { } ( )1 1 1x xt xl t q l t+ + = − , 
 
 or by fixed period t. 
 
 
 
Simulating Prediction Intervals (PIs) 
 Context: Poisson LC modeling with random walk period component. 
 
 Algorithm A (semi-parametric bootstrap) 
  For simulations 1,2,...,m M=  

1.  ,x t∀  
simulate responses *

xtd  by sampling ˆ( )xtPoi d , 
preserving any empty data cells. 

2. Obtain estimates * * *
, , ,

ˆˆ , ,x m x m t mα β κ  by fitting *
,xt md , 

same structure. 
3. For 1,2,...,k K=  

set * *
,

ˆˆ
n nt k m t mkκ κ θ+ = + . 

      4. Compute statistics of interest. 
 
 Algorithm C (residual bootstrap) 
  As in A above, subject to the Stage 1 replacement with 

1.  ,x t∀  
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a. randomly sample *
,xt mr  from { }xtr  with replacements, 

preserving any empty data cells. 
         b. map * *

, ,xt m xt mr d . 
 
 Algorithm B (parametric Monte-Carlo) 

Define ( , , )T T T T
x x tψ α β κ= - a basis vector of parameters. Then as in A 

above, subject to the stage 1 and 2 replacement with 
1. Simulate a vector of N(0,1) errors *ε . 
2. Obtain estimates * ˆψ ψ= + φ *ϑε , where ϑ  - Cholesky 

factorization of the variance-covariance matrix. 
 
 
 
 
 
 

References: 
Brouhns, Denuit & Vermunt (2002); Brouhns, Denuit & van Keilegom 
(2005); Koissi, Shapiro & Hognas (2006); Renshaw & Haberman (2008a). 

 
 
 
 
 
 
 

Comments: 
(i) The algorithms adapt to other modeling distributions and time 

series models. 
(ii) It is not practical to adapt the simulation algorithms to age-period-

cohort structures M, because of the slow rate of convergence of the 
iterative model fitting algorithm.  

 
 

Findings: 
(i) PIs generated using Algorithm B, are shown to be highly 

dependent on the basis vector chosen, and the particular constraints 
used to ensure that the model is identifiable and hence are not 
considered further. 

(ii) Wider PIs are obtained by switching from the Poisson setting to a 
negative binomial or joint Poisson modeling setting. 

(iii) Life expectancy PIs generated by these methods, (random walk 
time series), are found to be appreciably narrower when compared 
with their theoretical counterparts (using Denuit (2007)). 
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(iv) The application of Stage 3 in Algorithm A is shown not to capture 
the full magnitude of the forecast error in the time series. 

 
 
 

References: 
Renshaw & Haberman (2008a); Li, Hardy & Tan (2006); Denuit (2007). 

 
 
 
 
 
 
 
 
 
Bootstrapping both aspects of the random walk 
 Recall the period component time series 

{ } { }1
: 1,2,..., nt

t n tt tκ κ= =   
 
 For the random walk with drift parameter θ  get 
  2

1 ,  ~ (0, ) ,  2,3,...,t t t t t nN iid t tκ κ κ θ ε ε σ−Δ = − = + = . 
 
 1) Estimates are 

  

2

1 22 2

ˆ
ˆ ˆ,  

1 1 1

n n

n

t t

t
tt t

n n n
= =

Δ −
= = =

− − −

∑ ∑κ εκ κ
θ σ  

 
 with residuals and adjusted residuals 

  2ˆˆ ˆ,  
1t t t t

nr
n

ε κ θ ε −= Δ − =
−

. 

 
 CIs for 2 and θ σ  based on theory follow.  To bootstrap CI’s use 
 
 Algorithm A1 

For simulations 1,2,...,m M=  
1. For 2,3,..., nt t=  

(a) randomly sample *
,t mr  from { }tr  with replacement 

(b) set * *
, ,

ˆ
t m t mrκ θΔ = +  

2.    Obtain estimates * 2*ˆ ˆ,  m mθ σ .  
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 2) Forecasting k periods-ahead get 

  2

1

,  ~ (0, ),  
n n n n

k

t k t t j t j
j

k N iidκ κ θ ε ε σ+ + +
=

= + +∑  

for which 
  { } { } 2

1 1
| ,  |n n

n n n

t t
t k t t t k tE k Var kκ κ κ θ κ κ σ+ +

⎡ ⎤ ⎡ ⎤= + =⎣ ⎦ ⎣ ⎦ . 

 
 PIs for 

nt kκ +  based on theory follow.  To bootstrap PIs, we try 
 
  

Algorithm A2 
For simulations 1,2,...,m M=  

1. For 1,2,...,k K=  
(a) randomly sample *

,k mz  from (0,1)N  

(b) set 
0

* *
, ,

ˆ ˆ
nt k m t k mk k zκ κ θ σ+ = + + . 

 
 The following is also of interest 
 
 Algorithm A3 

For simulations 1,2,...,m M=  
1. For 2,3,..., nt t=  

(a) randomly sample *
,t mr  from { }tr  with replacement 

         (b) set * *
, ,

ˆ
t m t mrκ θΔ = + . 

2. Obtain estimates * 2*ˆ ˆ,  m mθ σ . 
3. For 1,2,...,k K=  

set 
0

* *
,

ˆ
nt k m t mkκ κ θ+ = + . 

 
 

Comments: 
(i) In A2, it is sufficient, but not necessary to sample *

,k mz  once only 

for each m, in which case * *
,k m mz z= . 

(ii) The A2 approach to simulating predictions in { }1
nt

tκ differs from 
that used in Algorithms A, B, C, hence our interest in A3. 

 
Findings: 

(i) PIs generate using A2 are found to be in close agreement with their 
theoretical equivalents. 

(ii) PIs generated using A3 are found to understate the equivalent PIs 
generated under A2 (and theoretical PIs). 
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References: 
 Davison & Hinkley (2006); Renshaw & Haberman (2008b).  

 
 
 
 
 
 
Simulating PIs: Reformulation  
 Context: Poisson LC modeling with random walk period component 
 
 The following are of interest: 
 

Algorithm A4 
For simulations 1,2,...,m M=  

1. For 1,2,...,k K=  
(a) randomly sample *

mz  from (0,1)N  

(b) 
0

* *
,

ˆ ˆ
nt k m t mk k zκ κ θ σ+ = + + .  

   2. Compute statistics of interest. 
 
 
 Algorithm A5A  
  For simulations 1,2,...,m M=  

1.   ,x t∀  
Simulate responses *

xtd  by sampling ˆ( )xtPoi d , 
preserving any empty data cells. 

   2. Obtain estimates * * *
, , ,

ˆˆ , ,x m x m t mα β κ  by fitting *
,xt md , same structure. 

3. Obtain  * 2*ˆ ˆ,  m mθ σ  as in A1. 
For simulations 1,2,...,n N=  

4. Randomly sample * from (0,1)mnz N  

5. For 1,2,...,k K=  set 
0

* *
,

ˆ ˆ
nt k m t mnk k zκ κ θ σ+ = + +  

6. Compute statistics of interest.  
 
 
 Algorithm A5C  
  As for A5A above, subject to the appropriate change in Stage 1, 
  in accordance with Algorithm C. 
 
 
 

Comments: 
(i) Algorithm A4 merely replicates the forecast error in the period 

component (correctly) while preserving the fitted LC structure and 
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parameter estimates, consistent with the Denuit (2007) theoretical 
approach based on the distribution of random future life expectancies 
under the LC structure. 

(ii) In addition to correctly bootstrapping the prediction error in the time 
series, extra provision for bootstrapping the Poisson LC model error is 
included in Algorithms A5A and A5C. 

(iii) Here, (unlike Algorithm A2), it is necessary (as well as sufficient) that 
sampling from (0,1)N  is independent of k (Stage 1a- A4, Stage 4- 
A5A & A5C) when the statistics of interest are computed by fixed 
cohort.  

 
 Findings: 

(i) We provide empirical evidence of the close agreement of (matching) 
future life expectancy PIs, irrespective of the method of construction, 
using Algorithms A4, A5A, A5C and the Denuit (2007) theoretical 
approach. 

(ii) The close agreement between simulated and theoretical life expectancy 
PIs, lends plausibility to similarly constructed bootstrap PIs of other 
statistics of interest, such as fixed rate annuities, currently not 
otherwise available by theory. 

(iii) The close agreement between simulated PIs under A4 compared with 
A5A & A5C is indicative of the dominance of the forecast error over 
and above the model fitting error: a conclusion reached in the original 
Lee-Carter 1992 paper. 

(iv) The use of Algorithm A4 does not require the repeated fitting of the 
model structure and hence provides a practical means of constructing 
plausible PIs in the age-period-cohort structured model, where 
convergence of the fitting algorithm is notoriously slow.  We illustrate 
this. 

(v) We have generalized the random walk time series (Stage 1b- A4, Stage 
5- A5A & A5C) to an ARI time series, while further generalization to 
an ARIMA time series is possible. 

 
 
 

References: 
 Renshaw & Haberman (2008b); Denuit (2007); Lee & Carter (1992) 
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