Derisking Pension Plans Using Financial Solutions

Professor David Blake Director Pensions Institute Cass Business School d.blake@city.ac.uk

September 2011

Agenda

- Key risks in pension liabilities and derisking solutions
- **■** Longevity swaps
- **■** Examples of longevity swaps
- A case study
- **■** Conclusion

Key risks in pension liabilities and derisking solutions

Key risks in pension liabilities and derisking solutions

- Inflation risk
 - Hedged with inflation swaps, conditional indexation
- Interest rate risk
 - Hedged with interest rate or duration swaps
- **■** Longevity risk
 - Ideally, longevity should be hedged before these other risks
 - But only now is a new market for longevity hedging developing
 - Could become increasingly important if there is:
 - Covenant risk:
 - Danger of sponsor covenant weakening
 - Risk of plan actuary building in excessive improvements in life expectancy

Types of longevity derisking solutions

- **■** Buy-ins
 - Immediate and deferred annuities
- **■** Buy-outs
 - Pensions in payment with life insurer
 - Company needs sufficient assets to pay up-front costs
 - Will insurer still be around in 25 years to continue paying the pensioners?
- **■** Longevity swaps
 - Suitable for plans with liabilities > £500m
- DIY (or synthetic) buy-in combines longevity, inflation and interest rate swaps

Longevity swaps

Mechanics of longevity swaps

- Pension fund pays fixed leg equal to expected pension payments plus longevity risk premium
- Pension fund receives floating leg from counterparty equal to pension paid to plan member
- Term: fixed (e.g., 20 years) or until last member dies (run-off)
- Future cashflow payments from pensioner liabilities can be estimated more accurately than for deferred or active members, so most extant solutions have dealt only with pensions in payment

9

Cash flow v value swaps

■ Cash flow swap:

- Pension fund pays the fixed leg:
 - Pre-determined set of regular cash flows based on the projected survivorship of the plan members
- and receives the floating leg:
 - Cash flows equal to current pensions in payment
- Most common type of swap currently

■ Value swap:

- Pension fund pays the fixed leg:
- Present value of a pre-determined set of regular cash flows at the swap's maturity
- and receives the the floating leg:
- Present value of actual cash flows needed to pay pensions
- Most appropriate for smaller schemes and for hedging active and deferred members' pensions

Insurance v capital markets swaps

- ■Insurance based longevity risk transfer (indemnification):
 - Fixed leg paid as a premium to insurer
 - Illiquid and difficult to unwind
 - More expensive than capital market swaps due to regulatory capital requirements not faced by banks?
- Capital markets longevity swap:
 - Fixed leg paid to investment bank
 - Potentially much greater liquidity, since the swap can be traded
 - Must take off for longevity hedging market to succeed, since insurance capacity insufficient on global basis

11

Index v customized swaps

	Advantages	Disadvantages
Index swaps	 Cheaper than customized swaps Lower set-up/operational costs Shorter maturity, so lower counterparty credit exposure 	 Not a perfect hedge: Basis risk Roll risk
Customized swaps	 Exact hedge, so no residual basis risk Set-and-forget hedge, requires minimal monitoring 	 More expensive than index hedge High set-up and operational costs Poor liquidity Longer maturity, so larger counterparty credit exposure Less attractive to investors

π Pensions Institute

12

Examples of longevity swaps

Swiss Re - Friends' Provident longevity swap

- World's first publicly announced swap in April 2007
 - Pure longevity risk transfer
 - But insurance contract not capital market instrument
- Friends Provident's £1.7bn book of 78,000 of pension annuity contracts written between July 2001 December 2006
 - Retains administration of policies
- Swiss Re makes payments and assumes longevity risk
 - In exchange for undisclosed premium

JPMorgan – Canada Life longevity swap

- World's first capital market longevity swap in July 2008
- Canada Life hedged £500m of its annuity book:
 - 125,000 lives
 - 40-year swap customized to insurer's longevity exposure
 - But based on LifeMetrics Index improvements
- Longevity risk fully transferred to investors:
 - Hedge funds and ILS funds
- JPM acts as intermediary and assumes counter-party credit risk

15

Nine longevity swaps in 2008-11

Date	Hedger	Туре	Size (£m)	Term (yrs)	Format	Intermediary
Jan 2008	Lucida	Ins	N/A	10	Index-based hedge; exposure placed with capital market investors	JPMorgan
July 2008	Canada Life	Ins	500	40	Exposure placed with capital market investors	JPMorgan
Feb 2009	Abbey Life	Ins	1500	Run-off	Reinsurance contract	Deutsche Bank
Mar 2009	Aviva	Ins	475	10	Exposure placed with capital market investors & Partner RE	RBS
June 2009	Babcock	PF	500-750	50	Reinsurance contract with Pac Life Re	Credit Suisse
July 2009	RSA	Ins	1900	Run-off	Reinsurance contract with Rothesay Life; combined with inflation & interest rate swaps	Goldman Sachs
Dec 2009	Berkshire Council	PF	750	Run-off	Reinsurance contract	Swiss Re
Feb 2010	BMW	PF	3000	Run-off	Reinsurance contract	Deutsche Bank, Paternoster
Feb 2011	Pall (UK)	PF	70	10	Index-based hedge; exposure placed with capital market investors	JPMorgan

16

A case study

In January 2011 Pall (UK) Pension Trustees implemented a different approach to longevity hedging

- £70 million hedge
- Deferred members
- Based on a longevity index

FINANCIAL NEWS

It's a longevity hedge ... but not as we know it
Mark Cobley
01 Feb 2011

The Pall longevity hedge is different because:

- Hedges longevity risk of deferred / non-retired members only
- Objective of hedge: To hedge of the value of the liability
- Maturity of hedge: 10 years
- Hedging instrument:
 - · Mortality forward rate derivative or "q-forward"
 - · Based on the LifeMetrics Longevity Index
 - · Not an exact hedge
- Flexibility of hedge:
 - · Size of hedge can be adjusted at any time
 - · An alternative hedging solution can be implemented at any time

Source: Mercer press release and various publications

Approach is closely aligned with how other pension risks are managed

T Pensions Institute

19

Key parties involved in the Pall longevity hedge

- · Mercer:
 - · Consultant to the Trustees
 - · Provided advice and due diligence
 - Transaction broker
- Barlow Lyde & Gilbert LLP
 - · Legal advice to the Trustees
- · Schroders:
 - Asset manager
 - · Execution and management of transaction
- · J.P. Morgan:
 - · Hedge provider
 - · Custodian services for collateral

How does the hedge work?

- No upfront payment
- Exchange of payments only at maturity
- The hedge was calibrated to pay an amount that compensates for any increase in the value of the liability
- Collateral is posted as security

21

The hedge protects the funding level of the pension fund

- If mortality rates in 2020 are lower than expected
 - Longevity will be higher than expected
 - Value of the liability will be larger than expected

Index hedges are well suited to hedge longevity risk of younger, pre-retirement deferred pension members

- Customised (indemnity) hedges generally not available
- Longevity risk prior to retirement is all "valuation" risk
 - No cash flow risk
 - Most risk lies in mortality improvement forecasts
- Longevity exposure of deferreds is not well defined
 - Lump sum commutation options
 - Early retirement options
 - Options to exchange spouse & member benefits (where relevant)
 - → Not efficient or desirable to hedge all the longevity risk

Deferreds have more longevity risk than pensioners

23

Using index-based longevity hedges requires three kinds of analysis

(A) Basis risk analysis

- Pension longevity vs. Index longevity
 - Long-term relationships in mortality experience

(B)

Calibration of hedging instrument

- Optimal hedge ratio
 - To maximise effectiveness of the hedge

(C)

Hedge effectiveness assessment

■ How much does the hedge reduce risk?

A systematic framework for these has been developed only recently

Characteristics of the Pall hedge

- **■** Pension members
 - UK males aged 55 deferred pensioners pre-retirement
 - Retirement age 65
 - Mortality same as that for UK males with life assurance
 - Higher socio-economic group than national population

■ Hedge

- Hedge liability value over 10-year horizon
- Longevity Index hedge linked to National Population data
 - LifeMetrics England & Wales Male longevity index

25

Pension member demographics same as UK males who own life assurance: "Assured population"

- Assured population is an affluent subset of the national population
 - Data collected by the CMI
- Assured population has:
 - Lower mortality rates
 - Higher mortality improvements
 - Higher life expectancy
- But very noisy data:
 - Very few lives at high ages
 - Number of lives vary each year
 - Contributors vary

At face value basis risk relative to national population is "high"

But basis risk analysis reveals common trends and other long-term relationships

- Ratios calculated as Assured population divided by National population
- Use as input into hedge effectiveness analysis

27

Hedge effectiveness

- Assessment of hedge effectiveness based on historical data 1961-2005
- ■Use of historical data → model-independent approach

	Correlation* between liability & hedging instrument	Hedge effectiveness (Risk Reduction)	
Historical scenarios	0.98	82.4%	

Source: Coughlan, Khalaf Allah, Ye, Kumar, Cairns, Blake & Dowd (2010)

*Correlation of value at the hedging horizon

- This is not a special case
- Similar results obtained for other cases

Conclusion

Conclusion

- Longevity risk has been treated differently from other risks
 - Eliminating the risk with exact, customised hedges is not always the best approach
- A risk management approach can be more appropriate
 - Similar to the way in which inflation and interest rate risks are managed
- This presentation has:
 - Demonstrated that this new approach can be implemented in practice, as evidenced with the Pall longevity index hedge
 - Proposed a practical framework for assessing the effectiveness of longevity hedges
 - Demonstrated that basis risk between an index hedge and a pension fund can be managed

Thank you!

Longevity 8:

Eighth International Longevity Risk and Capital Markets Solutions Conference

September 2012

Waterloo, Ontario, Canada

http://www.longevity-risk.org/

References

- The Pall longevity hedge is described in:
 - Mercer Press Release 1 February 2011:
 - "World's first longevity hedge for non-retired pension plan members completed". [http://uk.mercer.com/press-releases/1406520]
 - Professional Pensions 1 February 2011:
 - "Pall scheme completes world's first longevity hedge for non-retired members," Jonathan Stapleton. [http://www.professionalpensions.com/professional-pensions/news/2017540/pall-scheme-completes-world-s-longevity-hedge-retired]
- The hedge effectiveness framework and example analysis are described in more detail in the following publication:

"Longevity Hedging 101: A Framework for Longevity Basis Risk Analysis and Hedge Effectiveness," Guy Coughlan, Marwa Khalaf-Allah, Yijing Ye, Sumit Kumar, Andrew Cairns, David Blake & Kevin Dowd (2010). [pensions-institute.org/workingpapers/wp1013.pdf]

