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Theory

Generalized Pareto Distribution

@ The most widely used EVT models are the models for threshold
exceedances using the GPD.

@ The GPD is a two parameter distribution with df

1—(1+&x/B)7" €£0,
1 —exp(—x/p) £=0,

where 3 > 0, and the support is x > 0 when ¢ > 0 and
0<x<-—p/¢when¢ <0.
@ This subsumes:
¢ >0 Pareto (reparametrized version)
¢ =0 exponential
¢ <0 Pareto type Il.

@ Moments. For ¢ > 0 distribution is heavy tailed. E (X¥) does not
exist for k > 1/¢.

Gep(X) = {
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Theory

The Role of the GPD

@ The GPD is a natural limiting model for excess losses over high
thresholds.

@ The excess distribution for a (high) threshold u is given by

F(x +u)— F(u)
1—F) ~

Fux)=P(X—-u<x|X>u)=
for 0 < x < xF — u where xg < o is the right endpoint of F.
@ The mean excess function of arv X is
e(uy=EX—-ul| X >u).

It is the mean of the excess distribution above the threshold u
expressed as a function of u.
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Theory

Asymptotics of Excess Distribution

Theorem. [Balkema and de Haan, 1974, Pickands, 1975]
We can find a function §(u) such that

lim  sup |Fu(x) — Gepw)(x)| =0,
U=XF 0<x<xp—u
if and only if F € MDA (H;), £ € R.

@ Thus there is a class of probability distributions MDA(H;) whose
excess distributions converge to generalized Pareto with shape
parameter €.

@ All the common continuous distributions used in risk
management or insurance mathematics are in MDA(H) for
some value of &.
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Theory

Danish Fire Loss Data

The Danish data consist of 2167 losses exceeding one million Danish
Krone from the years 1980 to 1990. A threshold at 10M gives 109
exceedances. ¢ and ( estimated by fitting GPD to the excess
amounts, usually by maximum likelihood.
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Theory

Estimating Excess df

Estimate of Excess Distribution
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Theory

Excesses Over Higher Thresholds

@ If we assume Fy(x) = G¢ 3(x) we can infer a model for the
excess distribution over any higher threshold. We have that
Fv(x) = Ge prev—uy(x) for v > u.

@ The excess distribution over v remains GPD with the same ¢
parameter but a scaling that grows linearly with v. Provided
¢ < 1 the mean excess function is given by

_BHelvou) v p-gu
1-¢ 1-¢ 1-¢7
whereu<v<ooif0<é<tlandu<v<u-pg/€ifE <.
@ The linearity of the mean excess function in v is commonly used
as a diagnostic for data admitting a GPD model for the excess
distribution. It forms the basis for a simple graphical method for
deciding on an appropriate threshold as follows.
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Theory

Using Mean Excess Plot to Set a Threshold

@ For positive valued loss data Xj, ..., X, we define the sample
mean excess function to be an empirical estimator of the mean
excess function given by

_ 27:1 (Xi = V)1 x>v)

27:1 Tix>vy

@ To view this function we generally construct the mean excess plot

en(v)

{()(i,n, en()(i,n)) :2<i< n},

where X; , denotes the ith order statistic. If the data support a
GPD model over a high threshold we would expect this plot to
become linear in view of (1).
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Theory

Mean Excess Plot for Danish Data
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Theory

Modelling Tails of Loss Distributions

Under our assumption that F, = G¢ g for some u, £ and 5 we have,
for x > u,

F(x) = PX>uP(X>x|X>u)
= FWPX—-u>x—u|X>u)
= F(u)Fu(x —u)

— F) (1 X 3 “)1/5, )

which, if we know F(u), gives us a formula for tail probabilities. This
formula may be used to derive formulas for risk measures like VaR
and expected shortfall.
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Theory

Calculating VaR and Expected Shortfall

For o > F(u) we have that VaR is equal to

B o B((1=a\*
VaR, = . (F) = u+ 7 ((F(u)> 1). (3)

Assuming that £ < 1 the associated expected shortfall can be
calculated easily to be

Sa 1704

/ G (F VaR +6—§u. (@)
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Theory

Estimating Tails and Risk Measures

@ Tail probabilities, VaRs and expected shortfalls are all given by
formulas of the form g(¢, 3, F(u)). We estimate these quantities
by replacing ¢ and /3 by their estimates and replacing F(u) ny the
simple empirical estimator N, /n.

@ For tail probabilities we the estimator of [Smith, 1987]

~ v\ 1€
F(X)—N“<1+£XBU> , (5)

which is valid for x > u. For a > 1 — N,/n we obtain analogous
point estimators of VaR,, and ES,,.

@ Asymmetric confidence intervals can be constructed using profile
likelihood method. [McNeil et al., 2005]
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Theory

Estimating Tail of Underlying df
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Theory

Estimate of 99.5% Quantile (VaR)
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Theory

Estimate of 99.5% ES (or cVaR)
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Theory

Accuracy of EVT Estimates?

Consider problem of estimating 0.995 quantile based on 1000 data.
@ How does accuracy of estimate change with threshold?
@ How does it compare with empirical quantile estimation?

Lognormal Example
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Theory

Accuracy of the Confidence Interval?

@ How good is the coverage of the estimated 95% confidence
interval? Does it contain the true value 95% of the time?

@ The following simulation results are for estimates of the 0.995
quantile based on samples of size 1000 and a threshold at the
90th percentile. 1000 replications.

Distribution below within  above
Student t 31% 927% 4.2%
Lognormal 2.1% 942% 3.7%

@ Intervals very slightly too narrow (neglect error in estimating
F(u)).
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