Application of EVT to Risk Capital Estimation

Alexander J. McNeil¹ Steven Morrison²

¹Heriot-Watt University Edinburgh

²Barrie & Hibbert

Birmingham, November 2010

a.j.mcneil@hw.ac.uk
steven.morrison@barrhibb.com

Generalized Pareto Distribution

- The most widely used EVT models are the models for threshold exceedances using the GPD.
- The GPD is a two parameter distribution with df

$$G_{\xi,eta}(x) = egin{cases} 1-(1+\xi x/eta)^{-1/\xi} & \xi
eq 0 \ , \ 1-\exp(-x/eta) & \xi = 0 \ , \end{cases}$$

where $\beta > 0$, and the support is $x \ge 0$ when $\xi \ge 0$ and $0 \le x \le -\beta/\xi$ when $\xi < 0$.

• This subsumes:

 $\xi > 0$ Pareto (reparametrized version)

 $\xi = 0$ exponential

 ξ < 0 Pareto type II.

• Moments. For $\xi > 0$ distribution is heavy tailed. $E\left(X^{k}\right)$ does not exist for $k \geq 1/\xi$.

The Role of the GPD

- The GPD is a natural limiting model for excess losses over high thresholds.
- The excess distribution for a (high) threshold u is given by

$$F_u(x) = P(X - u \le x \mid X > u) = \frac{F(x + u) - F(u)}{1 - F(u)},$$

for $0 \le x < x_F - u$ where $x_F \le \infty$ is the right endpoint of F.

The mean excess function of a rv X is

$$e(u) = E(X - u \mid X > u).$$

It is the mean of the excess distribution above the threshold u expressed as a function of u.

Asymptotics of Excess Distribution

Theorem. [Balkema and de Haan, 1974, Pickands, 1975] We can find a function $\beta(u)$ such that

$$\lim_{u \to x_F} \sup_{0 \le x < x_F - u} \left| F_u(x) - G_{\xi,\beta(u)}(x) \right| = 0 \,,$$

if and only if $F \in MDA(H_{\xi})$, $\xi \in \mathbb{R}$.

- Thus there is a class of probability distributions $MDA(H_{\xi})$ whose excess distributions converge to generalized Pareto with shape parameter ξ .
- All the common continuous distributions used in risk management or insurance mathematics are in MDA(H_{ξ}) for some value of ξ .

Danish Fire Loss Data

The Danish data consist of 2167 losses exceeding one million Danish Krone from the years 1980 to 1990. A threshold at 10M gives 109 exceedances. ξ and β estimated by fitting GPD to the excess amounts, usually by maximum likelihood.

Estimating Excess df

Excesses Over Higher Thresholds

- If we assume $F_u(x) = G_{\xi,\beta}(x)$ we can infer a model for the excess distribution over any higher threshold. We have that $F_v(x) = G_{\xi,\beta+\xi(v-u)}(x)$ for $v \ge u$.
- The excess distribution over v remains GPD with the same ξ parameter but a scaling that grows linearly with v. Provided $\xi < 1$ the mean excess function is given by

$$e(v) = \frac{\beta + \xi(v - u)}{1 - \xi} = \frac{\xi v}{1 - \xi} + \frac{\beta - \xi u}{1 - \xi},$$
 (1)

where $u \le v < \infty$ if $0 \le \xi < 1$ and $u \le v \le u - \beta/\xi$ if $\xi < 0$.

 The linearity of the mean excess function in v is commonly used as a diagnostic for data admitting a GPD model for the excess distribution. It forms the basis for a simple graphical method for deciding on an appropriate threshold as follows.

Using Mean Excess Plot to Set a Threshold

• For positive valued loss data X_1, \ldots, X_n we define the sample mean excess function to be an empirical estimator of the mean excess function given by

$$e_n(v) = \frac{\sum_{i=1}^n (X_i - v) \mathbf{1}_{\{X_i > v\}}}{\sum_{i=1}^n \mathbf{1}_{\{X_i > v\}}}.$$

To view this function we generally construct the mean excess plot

$$\{(X_{i,n}, e_n(X_{i,n})) : 2 \le i \le n\},$$

where $X_{i,n}$ denotes the *i*th order statistic. If the data support a GPD model over a high threshold we would expect this plot to become linear in view of (1).

Mean Excess Plot for Danish Data

Modelling Tails of Loss Distributions

Under our assumption that $F_u = G_{\xi,\beta}$ for some u, ξ and β we have, for $x \ge u$,

$$\overline{F}(x) = P(X > u)P(X > x \mid X > u)
= \overline{F}(u)P(X - u > x - u \mid X > u)
= \overline{F}(u)\overline{F}_{u}(x - u)
= \overline{F}(u)\left(1 + \xi \frac{x - u}{\beta}\right)^{-1/\xi},$$
(2)

which, if we know F(u), gives us a formula for tail probabilities. This formula may be used to derive formulas for risk measures like VaR and expected shortfall.

Calculating VaR and Expected Shortfall

For $\alpha \geq F(u)$ we have that VaR is equal to

$$VaR_{\alpha} = q_{\alpha}(F) = u + \frac{\beta}{\xi} \left(\left(\frac{1 - \alpha}{\overline{F}(u)} \right)^{-\xi} - 1 \right). \tag{3}$$

Assuming that ξ < 1 the associated expected shortfall can be calculated easily to be

$$\mathsf{ES}_{\alpha} = \frac{1}{1-\alpha} \int_{\alpha}^{1} q_{x}(F) dx = \frac{\mathsf{VaR}_{\alpha}}{1-\xi} + \frac{\beta - \xi u}{1-\xi}. \tag{4}$$

Estimating Tails and Risk Measures

- Tail probabilities, VaRs and expected shortfalls are all given by formulas of the form $g(\xi, \beta, \overline{F}(u))$. We estimate these quantities by replacing ξ and β by their estimates and replacing $\overline{F}(u)$ ny the simple empirical estimator N_u/n .
- For tail probabilities we the estimator of [Smith, 1987]

$$\widehat{\overline{F}}(x) = \frac{N_u}{n} \left(1 + \widehat{\xi} \frac{x - u}{\widehat{\beta}} \right)^{-1/\widehat{\xi}}, \tag{5}$$

which is valid for $x \ge u$. For $\alpha \ge 1 - N_u/n$ we obtain analogous point estimators of VaR_{α} and ES_{α} .

 Asymmetric confidence intervals can be constructed using profile likelihood method. [McNeil et al., 2005]

Estimating Tail of Underlying df

Estimate of 99.5% Quantile (VaR)

Estimate of 99.5% ES (or cVaR)

Accuracy of EVT Estimates?

Consider problem of estimating 0.995 quantile based on 1000 data.

- How does accuracy of estimate change with threshold?
- How does it compare with empirical quantile estimation?

Accuracy of the Confidence Interval?

- How good is the coverage of the estimated 95% confidence interval? Does it contain the true value 95% of the time?
- The following simulation results are for estimates of the 0.995 quantile based on samples of size 1000 and a threshold at the 90th percentile. 1000 replications.

Distribution	below	within	above
Student t	3.1%	92.7 %	4.2%
Lognormal	2.1%	94.2 %	3.7%

• Intervals very slightly too narrow (neglect error in estimating $\bar{F}(u)$).

For Further Reading

- Balkema, A. and de Haan, L. (1974). Residual life time at great age. *Ann. Probab.*, 2:792–804.
- McNeil, A., Frey, R., and Embrechts, P. (2005).

 Quantitative Risk Management: Concepts, Techniques and Tools.
 - Princeton University Press, Princeton.
- Pickands, J. (1975).
 Statistical inference using extreme order statistics. *Ann. Statist.*, 3:119–131.
- Smith, R. (1987).
 Estimating tails of probability distributions. *Ann. Statist.*, 15:1174–1207.

