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Background

• We wished to use an internal model running in excess of one million 
scenariosscenarios
– Many different products
– And many different risk factors

• It was not feasible to evaluate liabilities accurately in every scenario
• Therefore the decision was taken to formula fit liability values

– Use polynomial approximation formulae
– Fitted to a limited number of evaluation points

• We need to capture all material risk dependenciesWe need to capture all material risk dependencies
– Each risk factor leads to a marginal risk function in one variable
– Non-linearity between risk factors leads to non linearity functions in 

two or more variables
– Marginal risk functions and non linearity functions are summed to 

give the final approximation formula.
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Outline of the problem and issues to consider
Requirements

• Repeatable process that is objective

• Measurable performance

• Risk management exercise, not just compliance
– We wish to model the full distribution

• Sufficient number of sample points for accuracy
– Implies more sample points

• Reasonable run times• Reasonable run times
– Implies fewer sample points

• Need to resolve the tension between the previous two 
points.

3



•15/11/2011

•3

Outline of the problem and issues to consider
Testing and Validation

• Measures of goodness of fit

– Least squares

– Maximum absolute error

– Error dependency

– Error Bias

• Out of sample testing

– How many to be statistically significant

• Analysis of change

• Understanding the results.
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Outline of the problem and issues to consider
Other considerations

• Determining the limits of the model

• Range for each risk factor

– Allow for movements in roll-forward

– Four standard deviations?

• What about plan B?

– Must distinguish between analysis phase and 
d ti hproduction phase

– What if goodness of fit fails once in production?
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LapsesLapses

The Solution
A simple example

• Consider the variation in 
liabilit al e ith respect
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liability value with respect 
to a single risk factor

• The least squares 
quadratic is fitted using all 
evaluation points

• Initial fit is reasonable but 
uses too many calculations
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uses too many calculations 
to be feasible for the 
production phase

• How do we reduce the 
number of fitting points?
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The Solution
The Error Curve

• The error curve is cubic Approximation Errors - All points

8

• Three roots at three points of 
intersection

• Those three points define a 
unique quadratic function

• Fit to the three points of 
intersection only
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Approximation Errors - Three points

6

8

intersection only
– same approximation function

– same error curve

• No loss in performance for 
greatly reduced effort.
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The Solution
Implications

• In general, we wish to approximate our unknown function 
by an (n-1)-order polynomial

• The least squares (n-1)-order polynomial approximation 
will intersect the unknown function n times

• If those n points of intersection can be determined, they 
provide the optimal fitting points, or “nodes” for our 
approximation functionpp

• We can achieve as good a fit using n nodes as using an 
infinite number of nodes

• Similarly, we can determine the points of maximum error
– Allows us to estimate maximum error

– more powerful than estimating maximum sample error. 8

The Solution
More points is not necessarily better

• What happens when we 
add points to try and 
improve the fit?

• The error curve changes
– Maximum error has 

increased

– Sum squared error is worse

Approximation Errors - Three points
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Approximation Errors - Five points
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• Adding more points has led 
to a deterioration in the fit

Why?
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The Solution
Rationale

• This is not a regression problem but an approximation 
problemproblem

• For a given order of polynomial approximation function 
there exists a unique optimal error curve, i.e. one that 
deviates least from zero in the least squares sense

• Identifying solutions to the optimum error curve allows us 
to use the absolute minimum number of nodes that are 
required to uniquely define the optimum approximationrequired to uniquely define the optimum approximation 
function

• Adding further nodes shifts the error curve and, by 
definition, results in a sub-optimal approximation.
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The Solution
Determining the fitting points

• We introduce a single assumption: our unknown function 
can be accurately represented by an n-order polynomial

• Powers of (n+1) and above are vanishingly small

• Under this assumption the n points of intersection depend 
only on the range, or “domain”, over which the least 
squares best fit is performed

• Similarly the turning points or points of maximum error• Similarly, the turning points, or points of maximum error, 
also depend only on the domain

• Usefully, all our points of interest are now independent of 
the unknown function and can be determined analytically.
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• We wish to approximate a liability 
function with a quadratic (n=3)

The Solution
An example

Quadratic fit to cubic

25000

function with a quadratic (n 3)

• Assuming powers of four and above are 
immaterial, we are attempting to 
approximate an unknown cubic

• the least squares quadratic best fit to 
any cubic, intersects that cubic at three 
points
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The Solution
More examples

Quadratic least squares fit using 1,200 points and the resulting error curves
Quadratic fit to cubic
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Points of intersection do not depend on the function.
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The Solution
Implications

• We can make an assumption about the order of polynomial 
fthat accurately represents the unknown function

• Given this assumption, the nodes that give optimum least 
squares fit can be determined without any prior analysis or 
knowledge of the unknown function

• Goodness of fit tests will fail for one of two reasons

– a good enough fit is not possible ora good enough fit is not possible, or 

– the initial assumption is invalid

• In either case. simply revise the assumption and try again

• As long as the initial assumption holds, once identified, the 
fitting nodes and points of maximum error remain fixed.
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Theoretical Justification

• Weierstrauss Approximation Theorem - Any continuous function on a 
closed and bounded interval can be approximated on that interval by 
polynomials to any degree of accuracy

• The optimum nodes can be shown 
to correspond to the roots of the 
Legendre polynomials for all n

• Properties of Legendre polynomials

– Orthogonal

– Series convergence on [a, b]

p y y g y

– Minimum deviation from zero

15

• We effectively use a truncated Legendre series

• Forces the error curve to be the n-order Legendre polynomial.
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Further Considerations
Non Linearity

• The same theory can be 
extended and applied to non

Lapses
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linearity functions in two or more 
variables

• Construct a combined risk 
surface by adding marginal risk 
functions

• Compare with actual combined 
risk surface to evaluate non 
li it
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linearity

• If there is no non linearity 
between two risk factors then 
there should be no cross terms 
in the approximation formula.
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Further Considerations
Non Linearity

• Non-linearity is the difference 
between the combined impact of

60

Non linearity surface

between the combined impact of 
two or more risk factor and the 
sum of those same risk factors.

• Using a combination of terms in 
xy, x2y, xy2 and x2y2, we can 
construct a two factor 2nd order 
polynomial approximation
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• Least squares fit found from 
14,641 nodes.
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Error SurfaceError Surface

Further Considerations
Non Linearity

• Optimal fitting points are given 
by the intersection of the non
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• No unique solution

• It can be shown that the 
intersection of the one factor 
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the two factor problem

• Same approximation function 
results from fitting to four nodes 
as from fitting to 14,641 nodes.
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Further Considerations
Non Linearity

• Can show that the roots to the Legendre polynomials 
provide optimum nodes single factor polynomials of any 
order

• Can also show that the intersection of the single factor 
solutions provide optimum nodes to the following: 

– Two factor 2nd order polynomials

– Three factor 2nd order polynomialsThree factor 2 order polynomials

– Two factor 3rd order polynomials

• Attempts at a general proof for multifactor polynomials 
have so far been unsuccessful.
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Further Considerations
Constrained solutions

Errors

1500

• Consider a quadratic least squares fit over a non-symmetrical domain
Quadratic fit to cubic
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• Resulting fit is optimal given the constraint.
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Further Considerations
What about Plan B?

• Minimise the maximum 
C

0

5000

10000

-80 -60 -40 -20 0 20 40 60 80 -2000

-1500

-1000

-500

0

-80 -60 -40 -20 0 20 40 60 80

0

5000

10000

-80 -60 -40 -20 0 20 40 60 80 -2000

-1500

-1000

-500

0

-80 -60 -40 -20 0 20 40 60 80

0

5000

10000

-80 -60 -40 -20 0 20 40 60 80 -2000

-1500

-1000

-500

0

-80 -60 -40 -20 0 20 40 60 80

0

5000

10000

-80 -60 -40 -20 0 20 40 60 80 -2000

-1500

-1000

-500

0

-80 -60 -40 -20 0 20 40 60 80error using Chebyshev 
nodes

• Adjust the domain to use 
nested and coincident 
nodes

• Use a Dampening function

Same domain
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p g
– Error curve is next term in 

Legendre series

– Coefficient is the error at the 
extreme.

21

3rd Order Legendre3rd Order Legendre 4th Order Legendre



•15/11/2011

•12

Practical Issues

• Stochastic values
– Approximation error must be minimised

– Take the average of two results close to, and equidistant from, 
each node 

– Similarly for each test point

• Error accumulation
– The errors in marginal risk functions combine to form an error 

fsurface

– These errors may accumulate to exceed materiality limits

– Lower materiality limits in the marginal risk functions

• Fit to the true non linearity surface
– Adjust for marginal errors in non linearity before fitting.
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Outcome

• Efficiency maximised
– Fit exactly n points for n formula coefficients

• Process is repeatable and objective
– Based on theories widely accepted and used in engineering, 

physics and animation

• Less reliance on samples for performance measurement
– Maximum error is targeted and measuredg

– Model limitations can be determined with some confidence

• Better understanding of results
– Fitting errors are predictable and explainable

• Greater confidence in the internal model results.
23
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Questions or comments?

Expressions of individual views by 
members of The Actuarial Profession 
and its staff are encouraged.

The views expressed in this presentation 
are those of the presenter.
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