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Machine Learning in Perspective
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The ”teaching a kid math” analogy
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All about 

patterns!!!



The Roadmap
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Then performs operations on its own

All about patterns!!!

Computer systems learn
from data

We train system System learns from that Then performs operations on its own
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We train system System learns from that Then performs operations on its own

Training phase 1: data is 

fed into the algorithm, 

relevant fields and 

records sorted from data 

to retrieve active dataset

All about patterns!!!

Computer systems learn
from data



The Roadmap
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We train system System learns from that Then performs operations on its own

All about patterns!!!

Computer systems learn
from data

Training phase 2: Model Fitting –

algorithm decodes hidden patterns and 

relationships in the data



The Roadmap
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We train system System learns from that Then performs operations on its own

All about patterns!!!

Computer systems learn
from data

Testing phase: new data fed into system, 

algorithm uses patterns & relationships learnt 

during the training phase to predict new cases



Types of Algorithms
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Generalized Linear Models
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Classical linear model

Error function

𝑦𝑖 =  

𝑗= 1

𝑛

𝛼𝑗𝑥𝑖𝑗 + 𝜖𝑖

𝐷 = ∑ 𝑦 − 𝜇 2

Components of this model:

• Random component – Specifies distribution of target variable

• Systematic component – covariates (x’s) produce linear predictor (exp.1)

• Systematic component linked to random component

g(μ) = η → Link Function Exp. 1

𝜂 =  

𝑗=1

𝑛

𝛼𝑗𝑥𝑗



Poisson-Gamma GLM’s

• Claim frequency follows Poisson model with Log link

• Claim severity follows Gamma model with Log link
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Poisson model Gamma model



Tweedie Compound Poisson GLM’s

Standard GLM’s – Random Component comes from Exponential Family
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Distribution Variance

Gaussian 𝜙

Binomial
𝜇𝑖(1− 𝜇𝑖)

𝑛𝑖

Poisson 𝜇𝑖

Gamma 𝜙𝜇𝑖
2

Inverse Gaussian 𝜙𝜇𝑖
3



Tweedie Compound Poisson GLM’s

Tweedie models – Variance has a more general relation with expected value
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𝑉 𝜇 = 𝜇𝑝

𝑝 can take any value and is called the variance power parameter



Tweedie Compound Poisson GLM’s

Tweedie models – Variance has a more general relation with expected value

Compound Poisson – 𝑝 between 1 and 2 
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𝑉 𝜇 = 𝜇𝑝

𝑝 can take any value and is called the variance power parameter



Tweedie Compound Poisson GLM’s

Basic idea behind CP models in Ratemaking

• 𝑁𝑖 - observed claim count for ith category; 𝑍𝑖 - observed claim cost for that category (assuming 1 

exposure year)

• 𝑁𝑖 ~ Pois(𝜆𝑖) & 𝑍𝑖 ~ Gamma(𝜏𝑖, 𝛼)
• 𝑍𝑖| 𝑁𝑖 ~ Gamma w/mean 𝑁𝑖𝜏𝑖
• Tweedie approach assumes: 𝜇𝑖 = 𝐸 𝑌𝑖 = 𝜆𝑖𝜏𝑖 & 𝑉 𝑌𝑖 = 𝜙𝜇𝑖

𝑝
where

𝑝 =
𝛼 + 2

𝛼 + 1

• Since 𝛼 > 0, we must have 𝟏 < 𝒑 < 𝟐
• For 0 claims, distribution approximates to Poisson; for non-zero claims, approximates towards 

Gamma
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The Big Questions
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The Big Questions

• What if claims follow a fit different from Poisson-Gamma?
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The Big Questions

• What if claims follow a fit different from Poisson-Gamma?

• What if we didn’t have to look for a fit at all?
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The Big Questions

• What if claims follow a fit different from Poisson-Gamma?

• What if we didn’t have to look for a fit at all?

• What if there was a way to be able to automate pure premium modelling and 

potentially find a better fit at the same time?
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Artificial Neural Networks
Making computers think like we do!
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Artificial Neural Networks

Structured Sequential model
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Structured: A Neural Network has a defined structure that 

consists of 3 types of layers

Sequential: Information flows in a sequence from one 

layer to the next, undergoing operations at each layer –

almost like an assembly line 



How ANN’s work
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How ANN’s work

• Data in every neuron is transformed by an activation function:
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ℎ𝑘 𝑥 = 𝑔(𝛽0𝑘 + 

𝑖=1

𝑛

𝑥𝑖𝛽𝑖𝑘)

ℎ𝑘(𝑥) – kth neuron in a hidden layer
𝛽𝑖𝑘 - coefficient of the ith previous-layer neuron on 

above neuron



How ANN’s work

• Data in every neuron is transformed by an activation function:

• Activation function transforms the linear combination of inputs from one layer 

and sends it to the next layer.
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ℎ𝑘 𝑥 = 𝑔(𝛽0𝑘 + 

𝑖=1

𝑛

𝑥𝑖𝛽𝑖𝑘)

ℎ𝑘(𝑥) – kth neuron in a hidden layer
𝛽𝑖𝑘 - coefficient of the ith previous-layer neuron on 

above neuron



How ANN’s Learn

23 October 2018 32



How ANN’s Learn

• At first, each neuron is randomly assigned a weight – this measures the 

contribution of that neuron to the next layer.
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How ANN’s Learn
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How ANN’s Learn

• At first, each neuron is randomly assigned a weight – this measures the 

contribution of that neuron to the next layer.

• Data flows through network, predicted values calculated.

• Predictions are compared with actuals based on a loss function.

• Weights are updated to reduce value of loss function.
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Optimizing Neural Networks

23 October 2018 37



Optimizing Neural Networks

• Learning continues until the following is minimized:

23 October 2018 38



Optimizing Neural Networks

• Learning continues until the following is minimized:
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∇WL =
𝛿𝐿

𝛿𝑊
Gradient of the Loss function – measures change in 

loss function as model weights change



Optimizing Neural Networks

• Learning continues until the following is minimized:

• The above function is computed and a step is taken in the direction where it is 

minimized the most.
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∇WL =
𝛿𝐿

𝛿𝑊
Gradient of the Loss function – measures change in 

loss function as model weights change



Optimizing Neural Networks

• Learning continues until the following is minimized:

• The above function is computed and a step is taken in the direction where it is 

minimized the most.

• Size of this step is the learning rate.
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∇WL =
𝛿𝐿

𝛿𝑊
Gradient of the Loss function – measures change in 

loss function as model weights change



Optimizing Neural Networks

• Suppose for Neuron A and iteration t, the weight was found to be 𝑊𝐴𝑡
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Optimizing Neural Networks

• Suppose for Neuron A and iteration t, the weight was found to be 𝑊𝐴 𝑡

• Then, for iteration t + 1, weight is optimized to:
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𝑊𝐴 𝑡+1 = 𝑊𝐴 𝑡 − 𝜂∇𝑊𝐴 𝑡 𝐿

• 𝜼 – Learning Rate

• 𝜵𝑾𝑨 𝒕 𝑳 – Gradient of Loss Function w.r.t. weight 

of Neuron A at iteration t



Optimizing Neural Networks

• Vanilla approach: Compute gradient for entire training sample and 

update weights based on that
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Optimizing Neural Networks

• Vanilla approach: Compute gradient for entire training sample and 

update weights based on that

– No method to check if full convergence is achieved

– What if different parameters work differently and require different optimization rates?
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Optimizing Neural Networks

• Vanilla approach: Compute gradient for entire training sample and 

update weights based on that

– No method to check if full convergence is achieved

– What if different parameters work differently and require different optimization rates?

• Stochastic Gradient Descent: Compute gradient for each individual 

point in the training sample and update weights iteratively for every 

sample
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Optimizing Neural Networks

• Vanilla approach: Compute gradient for entire training sample and 

update weights based on that

– No method to check if full convergence is achieved

– What if different parameters work differently and require different optimization rates?

• Stochastic Gradient Descent: Compute gradient for each individual 

point in the training sample and update weights iteratively for every 

sample

– Too slow – Might cause algorithm to crash or give up for extremely large datasets, thus 

potentially preventing full convergence
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Optimizing Neural Networks

• In theory, SGD is more accurate
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Optimizing Neural Networks

• In theory, SGD is more accurate

• Methods such as Momentum and the Nesterov Accelerated Gradient 

improve SGD and make it faster by optimizing learning rates internally
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Optimizing Neural Networks

• In theory, SGD is more accurate

• Methods such as Momentum and the Nesterov Accelerated Gradient 

improve SGD and make it faster by optimizing learning rates internally
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Think of it as a ball 

rolling down a hill



So what’s going on here?
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So what’s going on here?
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The ”teaching a kid math” analogy



With ANN’s, no need to…
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With ANN’s, no need to…

• …make assumptions about distributions
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With ANN’s, no need to…

• …make assumptions about distributions

• …worry about possible correlations between predictors

23 October 2018 55



With ANN’s, no need to…

• …make assumptions about distributions

• …worry about possible correlations between predictors

• …look for interactions between predictors
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Applications to Insurance Data
dataCar from R’s insuranceData package
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Data Description
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• Policyholder-level information on one-year vehicle insurance policies

• 67,856 records with following rating factors –

– Vehicle value in $10,000’s

– Vehicle body type (eg. Sedan, convertible, hatchback, bus & other levels)

– Vehicle age (Levels 1-4 w/1 being the newest & 4 being the oldest)

– Gender of driver

– Area

– Driver age category (Levels 1-6 w/1 being youngest & 6 being oldest)



Data Description

• Heavily skewed w/no-claim percentage of 93.2% 
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Distribution of Claims

• Heavily skewed w/no-claim percentage of 93.2% 
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Distribution of raw 

claims data



Distribution of Claims

• Heavily skewed w/no-claim percentage of 93.2% 
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Distribution of 

non-zero claims only



Distribution of Claims

• Heavily skewed w/no-claim percentage of 93.2% 
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Distribution of the 

logarithm of claims



Fitting Tweedie CP GLM

• Optimal variance power parameter tuned by MLE

• Range specified: 1.1 - 1.9 (all values between 1 & 2)

• Optimal value found to be 1.553
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Fitting Tweedie CP GLM
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Plot of log-likelihood values 

against p – values. Vertical 

blue line shows point of 

maximum likelihood, justifying 

choice of parameter



Fitting Neural Networks– Choice of Network 

Architecture
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Fitting Neural Networks– Choice of Network 

Architecture

• Fitted by 5-fold cross-validation

• Base network architectures were trained with the same set of 

hyperparameters chosen at random
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Fitting Neural Networks– Choice of Network 

Architecture

• Fitted by 5-fold cross-validation

• Base network architectures were trained with the same set of 

hyperparameters chosen at random

• Architectures chosen: (33-40-1), (33-80-1), (33-100-1), (33-120-1), (33-80-40-

1), (33-100-60-1), (33-120-60-1)
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Fitting Neural Networks– Choice of Network 

Architecture

• Fitted by 5-fold cross-validation

• Base network architectures were trained with the same set of 

hyperparameters chosen at random

• Architectures chosen: (33-40-1), (33-80-1), (33-100-1), (33-120-1), (33-80-40-

1), (33-100-60-1), (33-120-60-1)

• Best network architecture found to be (33-120-60-1) – this was chosen for 

further tuning

• In general, networks with 2 hidden layers fitted better than networks with 1 

hidden layer
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Fitting Neural Networks – Choosing Hyperparameters
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Fitting Neural Networks – Choosing Hyperparameters

• Learning rate and batch size tuned on architecture chosen from previous step 

• Tuning done by 5-fold cross-validation

• Following values were chosen to be tested:

– Learning rate – 0.001, 0.01, 0.05, 0.1

– Batch size – 3000, 8000, 10000
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Fitting Neural Networks – Choosing Hyperparameters

• Learning rate and batch size tuned on architecture chosen from previous step 

• Tuning done by 5-fold cross-validation

• Following values were chosen to be tested:

– Learning rate – 0.001, 0.01, 0.05, 0.1

– Batch size – 3000, 8000, 10000

• Best hyperparameters found to be

– Learning rate – 0.1

– Batch size – 3000 
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Model Comparison
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Model Comparison

• 3 approaches taken

– Test data predictive accuracy – Test RMSE

– Resampling Error on Training dataset – 5-fold Cross Validation MSE

– Goodness-of-fit test – AIC
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Test RMSE
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Model Test RMSE (× 𝟏𝟎𝟑)

Poisson-Gamma GLM 1.25

Tweedie Compound Poisson GLM 1.25

Artificial Neural Network 1.27



5-Fold Cross-Validation Error
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Model CV MSE

Poisson-Gamma GLM 1.69 × 106

Tweedie Compound Poisson GLM 1.70 × 106

Artificial Neural Network 19.98



AIC
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AIC

• Stands for Akaike Information Criterion

• Gives a measure of distance between true and predicted trends
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AIC
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Model AIC (× 𝟏𝟎𝟓)

Poisson-Gamma GLM 5.72

Tweedie Compound Poisson GLM 5.73

Artificial Neural Network 5.73



Building and Training Neural Networks
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TensorFlow in R



TensorFlow
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TensorFlow

• Developed by Google Brain

• Released in 2015
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TensorFlow

• Developed by Google Brain

• Released in 2015

• Can be implemented in 

– Python: TF, Keras

– R: Keras, Estimator, TF API
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Building Neural Networks

• Surprisingly easy to build neural networks in R using Keras
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Building Neural Networks

• Surprisingly easy to build neural networks in R using Keras

• Models initialized as sequential objects and layers added as nested 

commands
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Building Neural Networks

• Surprisingly easy to build neural networks in R using Keras

• Models initialized as sequential objects and layers added as nested 

commands

• Once model is constructed, it can be called on a dataset
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The Keras Roadmap
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Model 

Initialization
Layer definition Compilation & Fitting



The Keras Roadmap
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Model 

Initialization
Layer definition Compilation & Fitting

An empty neural network is 

initialized using 

keras_model_sequential(): 

Layers can then be added 

sequentially to the model



The Keras Roadmap
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Model 

Initialization
Layer definition Compilation & Fitting

Hidden layers are added and their structure 

is defined using the command

layer_dense(): Activation function, # of 

neurons specified



The Keras Roadmap
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Model 

Initialization
Layer definition Compilation & Fitting

After model architecture is fixed, 

hyperparameters, optimizer and loss function 

are set and using the command compile(). 

Following this, model is trained using the 

command fit().



Try it out!!!

23 October 2018 90



Key Takeaways & Conclusions
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AI: The Good and the Not-so-good
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AI: The Good and the Not-so-good
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• The Good:

– Allows for complete automation

– No need to assume anything about the data, both in terms of rating factors and claim 

distributions



AI: The Good and the Not-so-good
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• The Good:

– Allows for complete automation

– No need to assume anything about the data, both in terms of rating factors and claim 

distributions

• The Not-so-good:

– Computationally intensive – requires hardware such as GPU’s and fast/powerful 

processors to run efficiently

– Interpretability  



Conclusions
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Conclusions

• Machine Learning and AI are powerful tools, can aid actuaries in decision-

making

• AI should definitely be explored and experimented with in addition to using 

GLM’s
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Conclusions

• Machine Learning and AI are powerful tools, can aid actuaries in decision-

making

• AI should definitely be explored and experimented with in addition to using 

GLM’s

• No one “right” model – best predictions can come from ensemble models

• Further research being done to improve interpretability of AI, applications of 

Machine Learning in the actuarial realm
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The views expressed in this presentation are those of invited contributors and not necessarily those of the IFoA. The IFoA do not endorse any of the views 

stated, nor any claims or representations made in this presentation and accept no responsibility or liability to any person for loss or damage suffered as a 

consequence of their placing reliance upon any view, claim or representation made in this presentation. 

The information and expressions of opinion contained in this publication are not intended to be a comprehensive study, nor to provide actuarial advice or advice 

of any nature and should not be treated as a substitute for specific advice concerning individual situations. On no account may any part of this presentation be 

reproduced without the written permission of the author.
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