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Abstract: Thekey assumptionmade inmost real-world pricing systems is that the de-
mand and cost functions are known exactly for each customer. While thismakes the
“optimal pricing” problem tractable, it also introduces substantial statistical difficul-
ties. We demonstrate that under realistic assumptions on model uncertainty, the
economic value estimates for “optimal” pricing strategies obtained via traditional
methods can be overstated to a remarkable degree. We propose a new method
for unbiased estimation of value of arbitrary pricing strategies, inspired by recent
progress in the reinforcement learning.

Introduction

Tactical pricing of insurance products can often be effectively carried out adopting the so
called “semi-myopic” customermodel. Under thismodel customershaveprivatewillingness-
to-pay, drawn from a distribution potentially dependent on their observed characteris-
tics, and are taken to arrive at random. If customers’ willingness-to-pay exceeds the pro-
posed premium, they purchase the policy. The customers are not “strategic” in that they
do not attempt to anticipate future price changes — customer arrival is taken to be inde-
pendent of any pricing decisions.

A key assumption made in most real-world pricing systems is that the willingness-to-pay
distributions (or, equivalently, demand functions), as well as the cost of providing cover,
are known for each customer. While this makes the problemmore tractable and permits
to describe solutions qualitatively, it also introduces substantial statistical difficulties as
we will show in this paper.

The prevalent approach (Murphy et al., 2000; Krikler et al., 2004) follows along these
lines:

1. specify a demand model and a cost of cover model,

2. estimate their parameters using sales, exposure and claims cost data,

3. set up an optimal pricing problem using the above two models, with individual
contract prices as decision variables,

4. use the objective/constraints values corresponding to the solution as estimates of
the economic value of the resulting pricing strategy to the firm.

We demonstrate that the above framework is only adequate if both demand and risk cost
model estimates have minimal prediction uncertainty. Once realistic assumptions are
adopted, however, the economic value of resulting pricing strategies is overstated to a
considerable degree (inflation by factors between 1.2 and 5 is not uncommon).
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Figure 1: Left: Expected effects on conversions (x-axis) and margin (y-axis) as a result to ±10% per quote pre-
mium change, evaluated using a demandmodel. Black dot denotes the current portfolio position. Purple frontier
represents operating points achievable with a base rate change. Red frontier indicates the effect of moving pre-
miums towards a target loss ratio. Green frontier is a biased estimate derived using the traditional optimisation
procedure. Right: Same premium changes as in the previous plot but evaluated using the proposed unbiased es-
timator. Note that the order of the frontiers is reversed, the simpler profitability based adjustment is now expected
to outperform the “optimisation”.

Traditional tests for goodness of fit, predictive accuracy and calibration used to validate
risk cost and demandmodels are ultimately neither necessary nor sufficient to ensure cor-
rect estimation of the economic value. We propose a new family of unbiased evaluation
metrics for pricing procedures, inspired by work in uplift modeling and reinforcement
learning.

We compare results obtained using the traditional procedure and our proposed method
in a real-world pricing scenario for a motor portfolio in Figure 1. Reversal in the order
of frontiers suggests that the standard optimisation methods can result in strategies that
underperform simple baselines in practice.

The sociological considerations that have allowed the current practice to become widely
adopted despite its obvious shortcomings are left without comment.

Single period optimal pricing problem

We begin by reviewing a simple single period optimal pricing model. The aim is to max-
imise the total profit objective for a cohort ofnpolicies subject to a constraint on themin-
imum retention level q, where for the i-th policy with risk characteristics xi the proposed
premium is denoted pi, the demand is a random variableDi(pi) indexed by premium,Ci
is a random variable corresponding to the cost of claims and Ri(pi) = (pi − Ci)D(pi) a
random variable corresponding to realised underwriting profit.

Wecan further assumeaparametric form for the expectationswithE[Di(pi)] = d(pi,xi)1,
E[Ci] = c(xi) and E[Ri(pi)] = r(pi,xi), all taken to be known exactly. If Ci andDi are
independent, this yields:

maximise
p1,...,pn

n∑
i=1

(
pi − c(xi)

)
d(pi,xi) =

n∑
i=1

r(pi,xi) = r(p)

subject to
n∑
i=1

di(pi,xi) = q.

(1)

Here the decision variables are premiums pi ≥ 0. We will refer to the solution of this
problem as p∗, with optimal underwriting profit given by r(p).
1 As we are dealing with demand levels for individual policies, di can also be interpreted as a probability.
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In practice, we do not have access to the parametrised expectations of demand and cost
random variables and instead we are working with their estimates d̂(pi,xi) and ĉ(xi) re-
spectively. It is common practice to still use the optimisation problem of the same form
as (1):

maximise
p1,...,pn

n∑
i=1

(
pi − ĉ(xi)

)
d̂(pi,xi) =

n∑
i=1

r̂(pi,xi) = r̂(p)

subject to
n∑
i=1

d̂i(pi,xi) = q.

(2)

The solution to this surrogate problem is denoted as p̂∗ and the objective value as r̂(p̂∗).
We will later show that under realistic assumptions on model error it obtains that:

r(p̂∗) < r(p∗) < r̂(p̂∗), (3)

suggesting that the approximate optimisation procedure (2) not only leads to deteriora-
tion in performance relative to theoretically obtainable, but also provides a substantially
biased estimate of the attainable value of the objective.

Before examining the properties of the naive estimate of the objective value r̂(p̂∗), how-
ever, we further observe that the problem (1) can be rewritten using policydemand as the
decision variable, assuming one-to-one correspondence between premium and demand
p(di,xi) = d−1(di,xi):

maximise
d1,...,dn

n∑
i=1

(
p(di,xi) − c(xi)

)
di = r(d)

subject to
n∑
i=1

di = q,

(4)

We can then formulate the Lagrangian:

L(d1, . . . , dn, λ) =
n∑
i=1

(
p(di,xi) − c(xi)

)
di + λ

( n∑
i=1

di − q
)

and write the optimality conditions2 as:

∂L

∂di
= 0, 1 ≤ i ≤ n,

∂L

∂λ
= 0.

Note that:
∂L

∂di
= ∂r

∂di
+ λ

and therefore if the portfolio is priced optimally, marginal profit with respect to demand
for each policy is constant:

∂r

∂di
= −λ. (5)

This condition is intuitive — should ∂r
∂di

̸= ∂r
∂dj

for some i and j, we can reallocate de-

2 The solution does not need to be unique in general, however, for monotone demand functions from certain
parametric families e.g. logistic and probit, the optimisation problem is convex which would mean that the
solution is unique or solutions form a convex set.
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mand between contracts i and j in such a way as to increase total profit.

Effects of model uncertainty

We now demonstate that the surrogate optimisation problem (2) is subject to a facet
of the phenomenon that often causes overparametrised statistical models to “overfit” in
sample.

The effect of model uncertainty can be studiedmore easily if instead of (2) we consider a
local linearisation (i.e. first orderTaylor expansion) of the demandparametrisedproblem
(4) around demand vector d (0) instead:

maximise
w1,...,wn

n∑
i=1

(
r
(
d

(0)
i ,xi

)
+ ∂r

∂di
wi
)

= r(w)

subject to
n∑
i=1

(
d

(0)
i + wi

)
= q,

− 1 ≤ wi ≤ 1.

(6)

Omitting the constant term r(do) from the objective and observing that
∑n
i=1 d

(0)
i = q,

we can simplify the above as:

maximise
w1,...,wn

n∑
i=1

∂r

∂di
wi = r(w)

subject to
n∑
i=1

wi = 0,

− 1 ≤ wi ≤ 1.

(7)

It is intuitive that the solution w∗ is attained if we set w∗
i = 1 for those policies i where

∂r
∂di

is larger thanM , themedian entry of
(
∂r
∂d1

, . . . , ∂r
∂dn

)
, andw∗

i = −1 where it is smaller.
The objective value corresponsing to w∗ is then given by

∑n
i=1

∣∣ ∂r
∂di

− M
∣∣. It represents

improvement to profit r attainable by perturbing demand by no more than one unit for
each contract relative to the initial demand vector d(0).

Notice that if we substitute a noisy estimate of marginal profit ∂̂r
∂d = ∂r

∂d + ϵ, our view
of expected profit improvements can generally only go up. This means that any model
uncertainty will result in statistically biased estimates of expected profit.

Now we attempt to quantify this bias. This will require further assumptions:

ϵ ∼ N (0, σa),
∂R

∂d
∼ N (0, σb).

What is the degradation in true performance as we increase the noise σa?

For conciseness we will refer to ϵ as a, ∂R∂d as b and the corresponding probability density
functions as pσa(a) and pσb

(b) respectively.
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Figure 2: A numerical example showing the bias inherent in the traditional “optimal”
pricing procedures. The x axis corresponds to the quantiles of the truemarginal profit of
a policy and the y axis to the profit either achieved or estimated. The area under the blue
line represents the total profit improvement realisable if the true marginal profit with
respect to demand is known. The area under the green line shows the profit attained
if the noisy estimate of marginal profit is used to guide pricing decisions. Finally the
area under the red line is the biased estimate of profit that would be achieved. The gap
between red and green lines corresponds total bias in traditional optimal pricing.

True Estimator, True Metric

Decision and measure are based on the true marginal profit ∂R∂d . Note that w∗ here is a
step function over true marginal profit taking values of {−1, 1}, as characterised in the
previous section.

ER(w∗) =
∫ ∞

−∞
pσb

(b) sign(b)b db

= −
∫ 0

−∞
pσb

(b)b db+
∫ ∞

0
p(b)b db

= 2σb√
2π
.

(8)

Noisy Estimator, True Metric

Decision is based on a noisy estimator ∂R∂d + ϵ, but we measure the profit using the true
metric (∂R∂d ). Here ŵ∗ is a step function over taking values of {−1, 1}over the noisy values
of marginal profit ∂R∂d + ϵ.
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ER(ŵ∗) =
∫ ∞

−∞

∫ ∞

−∞
pσa(a)pσb

(b) sign(a+ b)b db da

=
∫ ∞

−∞
pσa(a)

(∫ ∞

−∞
pσb

(b) sign(a+ b)b db
)
da

= −A1 +A2,

where

A1 =
∫ ∞

−∞
pσa(a)

(∫ −a

−∞
pσb

(b)b db
)
da

= − σb√
2π

∫ ∞

−∞
pσa(a)e− a2

2σb
2 da

= − 1√
2π

σb
2√

σa2 + σb2

A2 =
∫ ∞

−∞
pσa(a)

(∫ ∞

−a
pσb

(b)b db
)
da

= σb√
2π

∫ ∞

−∞
pσa(a)e− a

2σb
2 da

= 1√
2π

σb
2√

σa2 + σb2

and so

ER(ŵ∗) = 2√
2π

σb
2√

σa2 + σb2
. (9)

Noisy Estimator, Noisy Metric

Decision and profit estimates are both based on the noisy estimator ∂R∂d + ϵ.

ER̂(ŵ∗) =
∫ ∞

−∞

∫ ∞

−∞
pσa(a)pσb

(b) sign(a+ b)(a+ b) db da

=
∫ ∞

−∞
pσa(a)

(∫ ∞

−∞
pσb

(b) sign(a+ b)(a+ b) db
)
da

= −B1 +B2,

where
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B1 =
∫ ∞

−∞
pσa(a)

(∫ −a

−∞
pσb

(b)(a+ b) db
)
da

= 1
2

∫ ∞

−∞
pσa(a)a erfc

(
a√
2σb2

)
da− σb√

2π

∫ ∞

−∞
pσa(a)e− a2

2σb
2 da

= − 1√
2π

σa
2

√
σa2 + σa2 − 1√

2π
σ2
b√

σa2 + σb2

= −
√
σa2 + σa2

√
2π

B2 =
∫ ∞

−∞
pσa(a)

(∫ ∞

−a
pσb

(b)(a+ b) db
)
da

=
∫ ∞

−∞
pσa(a)

(∫ ∞

−a
pσb

(b)a db
)
da+

∫ ∞

−∞
pσa(a)

(∫ ∞

−a
pσb

(b)b db
)
da

= 1
2

∫ ∞

−∞
pσa(a)a erf

(
a√
2σb2

+ 1
)

+ σb√
2π

∫ ∞

−∞
pσa(a)e− a

2σb
2 da

=
√
σa2 + σa2

√
2π

and so

ER̂(ŵ∗) = 2√
2π

√
σa2 + σb2. (10)

This provides the following decomposition:

ER̂(ŵ∗) = 2√
2π

noise on metric estimation︷︸︸︷
σa

2 +σb2√
σa

2︸︷︷︸
noise on decision

+σb2
. (11)

We observe that when σa = 0 we recover (8), adding noise to the decision criterion
reduces the expected value of profitR and adding noise to the evaluationmetric increases
it, yielding:

ER(ŵ∗) ≤ ER(w∗) ≤ ER̂(ŵ∗).
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Unbiased estimation

We can construct an unbiased estimator of expected profit if we conduct validation “out
of sample”.

Assume we have history of sales and claims data in the form S = {(xi, pi, di, ci, ψi)}Ni=1,
where ψi is the propensity estimate of charging premium pi for risk xi. In the ideal
scenario these propensities are based on active randomisation with known probabili-
ties.

This history has not been used directly to parametrise either demand or claims cost mod-
els (and so we can assume individual realisations to be independent of prediction error).
Once we obtain a vector p̂ of proposed prices for each policy using a procedure such as
(2), an unbiased estimate of profit is given by the so called inverse probability weighted
estimator (Horvitz and Thompson, 1952; Dudik et al., 2014):

r̂IPW(p̂∗) = 1
N

N∑
i=1

(pi − ci)di
I(pi = p̂∗

i )
ψi

.

The IPW estimate can be somewhat noisy on small samples. The variance is magnified
by the ratio of at least 1

argmax
i

ψi
:

Var[r̂IPW(p̂∗)] = 1
N

N∑
i=1

(
(pi − ci)di

I(pi = p̂∗
i )

ψi

)2
− r̂IPW(p̂∗)2.

To be used successfully, it is essential that the randomisation of pi is carried out over
the same small set of values in relation to some reference price p0

i as that used in the
optimisation procedure to derive p̂∗

i . In some cases it may also be necessary to substitute
ci with model based value ĉ(xi).

Wenote that repalcing I(pi = p̂∗
i )with a kernelκ(pi, p̂∗

i ) satisfying certain propertiesmay
substantially reduce this variance while the resulting estimator remains unbiased under
only mild assumptions. This will be explored in future work.

Using IPWE for the evaluation of pricing decisions is conceptually equivalent to out of
sample testing of predictive models.

Conclusion

We have highlighted a substantial statistical issue with the standard approaches to opti-
mal pricing of insurance contracts and have propose an alternativemethod of evaluation.
Several questions that have not been addressed in this note are:

• extending IPS todealwith continuous action space (fine grainedprice adjustments);

• finding optimal pricing strategies in the reinforcement learning framework.
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