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Proxy model
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• Proxy models approximate full models. 

• Quick evaluation.

• Purposes: SCR calculation, capital projection, what-if 
investigations.

• Types of proxy model method: Replicating portfolio, curve 
fitting, radial basis function.

• Most popular approach: curve fitting.

• A proxy model (curve fitting) example with two risk drivers 
up to quadratic terms:

, 	

Aims of validation
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• Good representation - depends on the use. 

• SCR calculation: distribution accuracy.

– Distribution of proxy values is same as distribution of actual 
values.

• Business purposes: scenario accuracy. 

– Individual proxy values are the same as individual actual values.

• Challenges:

– Worst points unknown.

– Run budget.

Level of validation should be specific to purpose.
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Out of sample (OOS) testing
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• Points not used for calibration. 
Impossible to test all.

• Two main questions:

– How many points do we 
need?

– How do we pick these 
points?

• Random OOS – Not enough 
coverage.

• Targeted OOS.
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Least squares vs minimax
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• Minimax fit is not too bad in least squares measure.

• But least square fit may not be a good minimax fit.

Least squares Minimax

Objective Minimise root 
mean square error

Minimise 
maximum 
absolute error

Implementation Easier to 
implement

Harder to 
implement

Minimax: Fitting in 1-D
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• Suppose the proxy model is a polynomial of order n (i.e. 
n+1 basis function).

• Fitting error is a n+1 order polynomial.

• These n+1 zeroes partition the fitting range into n+2 
intervals.



28/11/2014

6

Minimax: Fitting in 1-D

11 November 2014 11

-600

-400

-200

0

200

400

600

800

2000 4000 6000 8000 10000

Fitting error

Error (1st fit)

-1000

-500

0

500

1000

1500

2000

2500

2000 4000 6000 8000 10000

Put option price against spot

Black-Scholes

Fit line

Achilles set
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• Achilles set, Ω.

– A set of points which gives maximum errors.

• Two Achilles subsets: Ω- and Ω+.

– Ω+ : Largest positive fitting error.

– Ω- : Largest negative fitting error.
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Find minimax fit
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• So how do we attain a 
minimax fit?

• Look at intervals where the 
absolute error is largest. 

• Reduce error by adjusting the 
roots.

• But this increases errors in 
other areas.

• Adjustments are made until 
the maximum errors in each 
interval are equal.
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Find minimax fit
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• Does a minimax fit exist?

• How many unknowns?

– internal points where the fitting errors are the worst.

– +1 coefficient for the proxy model.

– Minimax error m.
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Find minimax fit
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• Say is a point where it as the worst fitting error at an 
interval.

• So we have n+2 equations:

– 	 1 	; 0 	 1

• Also for the internal points, these are turning points. 
Hence we have n equations:

– 	 	; 1	 	

• So we have 2n+2 equations. 

• A solution is plausible.

Minimax fit
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Sufficient conditions for minimax
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• But how do we verify a claimed optimal minimax fit?

• ..when it meets the sufficient condition as set out below:

– Non-empty Ω+ and Ω-. 

– There are two probability measures, ℚ+ on Ω+ and ℚ-

on Ω-, which give the same expectation of the basis 
function.

Sufficient conditions for minimax
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• Using the example,

Ω 	 3000, 10000

Ω 	 5842

ℚ 	 0.5940, 0.4060

ℚ 	 1

 	
1 3000
1 5842
1 10000

⇒	 = (X)

Therefore optimal minimax fit achieved.
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Least Squares

• Established theory based on 
Legendre polynomial roots for 
calibration.

• Turning points of error curve can 
be analytically estimated in 
advance.

• Constrained (non-Legendre) 
solutions can be derived.

• Maximum error usually found at 
extremes of domain and greater 
than minimax error.

11 November 2014 19
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Scenario accuracy vs. distribution 
accuracy
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• Proxy models can be very 
inaccurate.

• Despite large scenario 
errors, distribution of 
values may be the same.

• Capital errors can be 
considerably less than 
scenario errors.

• SCR estimate may remain 
accurate despite scenario 
inaccuracy!

CoG Error, 100 in sample, 20000 out of sample tests
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NB. These results are drawn from an artificial 
model to illustrate a concept

Distribution accuracy
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• Scenario accuracy remains the gold standard, but…

• …If scenario accuracy is not achieved, validation fails?

Poor Scenario Accuracy does not invalidate the SCR!

• So how can we validate the SCR?

Scenario Accuracy Distribution Accuracy

Hard to achieve Easier to achieve

Easy to test Hard to test

Hard to validate Easier to validate?
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Error distribution

• Want distributions of proxy values and actual values the 
same.

• Can infer conditions for error distribution:

Want E(Actual) = E(Proxy)

But Actual = Proxy – Error

Therefore E(Proxy – Error) = E(Proxy)

Implies E(Error) = 0

• Similarly, it can be shown:

Var(Error) = 2Cov(Proxy, Error)

Skew(Error) = 0

11 November 2014 23

Implications

• Symmetrical errors desirable.

• If errors are non-zero and uncorrelated to proxy values 
then variance of proxy capital distribution is different from 
variance of actual capital distribution.

• Distribution accuracy relies on re-ranking scenario results.

• Successive scenario results must be close enough to 
allow re-ranking.

• The more extreme the percentile, the greater the number 
of scenarios required to smooth capital estimate volatility 
due to proxy errors.

11 November 2014 24
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Testing distribution accuracy

• Problem remains of picking sufficient points to cover 
whole risk distribution.

• Multi-dimensional risk distribution leads to a one-
dimensional capital distribution.

• Start from capital distribution and work back to risk 
scenarios.

– Rank the N proxy results from full proxy model run.

– Take every nth scenario to give every (100 x n/N) percentile 
scenario across whole distribution.

– Run the selected scenarios through heavy model and test.

11 November 2014 25

Practical implementation 
(Real World Example)

11 November 2014
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Key steps in process
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1. Use risk factor distributions to set limits of domain, e.g. 1 in 2000.

2. Identify calibration nodes and OOS test points for scenario 
accuracy.

3. Perform heavy model calculations (1st drop).

4. Calibrate proxy model.

5. Test scenario accuracy.

6. Repeat steps 2 to 5 as required.

7. Run proxy model and identify OOS test points for distribution 
accuracy.

8. Perform heavy model calculations (final drop).

9. Test distribution accuracy.

Identifying fitting and test points

• For each risk factor identify 2nd

and 3rd order nodes from 
predicted error curves.

• Total 12 points per risk.

– 5 calibration

– 7 validation

• Optional to include 1 in 200 as 
additional validation points.

• Analysis extended to risk 
interactions and multivariate 
non-linearity functions.

11 November 2014 28
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Calibrate and test scenario accuracy

• For each risk factor plot 
actual error curves.

• Compare to predicted error 
curves from previous step.

• Refine calibration as 
required.

– 4th order

– Minimax

• Select order of calibration for 
each risk component.

11 November 2014 29

Additional Scenario testing

• Supplement targeted testing with random 
testing and real-world scenarios.

• 337 random (uncorrelated) scenarios, all 
assets & liabilities, all risks.

11 November 2014 30

Metric Assets Liabilities

Average error 0.01% (0.01%)

StdDev. Error 0.03% 0.02%

Max error 0.13% 0.09%

Min error (0.11%) (0.16%)

MSE 0.58% 0.46%

R2 99.998% 99.999%
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Scenario Actual Proxy Error

250 116,877,674-       124,792,951-       7,915,277-           

500 110,942,144-       113,696,369-       2,754,224-           

750 110,836,964-       107,627,093-       3,209,871           

| | | |

\/ \/ \/ \/

49500 164,049,043       178,141,616       14,092,573         

49750 212,021,731       201,283,494       10,738,237-         

50000 424,210,220       386,176,744       38,033,476-         

Scenario Actual Proxy Error
1 141,665,741-       255,338,487-       113,672,746-       
2 141,120,356-       198,928,837-       57,808,482-         
3 159,664,503-       187,052,466-       27,387,963-         
| | | |
\/ \/ \/ \/

49998 376,298,206       346,215,023       30,083,183-         
49999 331,774,782       361,937,328       30,162,547         
50000 424,210,220       386,176,744       38,033,476-         

Testing distribution accuracy

• 50,000 Scenarios.

• Poor scenario accuracy by 
any measure, validation fails.

• Rank proxy results and read 
off every 0.5th percentile 
scenario.

• Evaluate test scenarios in 
heavy model.

• Perform statistical analysis 
on implied distributions.

11 November 2014 31

NB. These results are drawn from an artificial 
model to illustrate a concept

200 Scenarios

50,000 Scenarios

Initial Distribution Results

• Good distribution 
accuracy confirmed.

• 50,000 actual values 
not available in reality.

• Statistical analysis 
possible on the two 
capital distributions.

• How can we show 
SCR is valid despite 
scenario inaccuracy?

11 November 2014 32

200 Proxy 200 Actual 50,000 Proxy 50,000 Actual

Implied SCR 201.3 212.0 201.2 204.2
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Final distribution results

• 20 scenarios around 
99.5th percentile 
tested.

• Use ranked results to 
refine 200 ‘actual’ at 
the tail.  

• ‘Actual’ SCR estimate 
improved.

• Proxy SCR validated!

11 November 2014 33

200 Proxy
200 Actual
(Refined)

50,000 Proxy 50,000 Actual

Implied SCR 201.3 204.7 201.2 204.2

Market survey

11 November 2014



28/11/2014

18

Market survey
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• 9 participants for the survey.

• Calibrates and tests ahead of year-end then roll forward.

• Annual calibrations with some having more regular small 
refinements.

Market survey
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Total number of multi-risk out-of-sample testing
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• More effort at calibration date 
than valuation date due to 
time constraints.

• The median:

– 50 tests at calibration 
date.

– 10 tests at valuation date.

• The maximum number of 
tests performed at the 
calibration date is 1000.
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Market survey
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At calibration date

• Observations:

– Majority around 99.5th

percentile.

– Random OOS not common.

– One: 650 random 
scenarios.

Market survey
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At valuation date

• Observations:

– 1st : smoothed scenarios.

– 2nd: around 99.5th

percentile.
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Conclusion

11 November 2014

Conclusion

• Minimax fit has bounded least square errors.

• Can validate SCR without scenario accuracy.

• Efficiency of calibration and validation is vital.

• Out of sample scenarios:

– Achilles set.

– Smoothed scenarios and scenarios around 99.5th percentiles.

– Real-world scenarios.

– Scenarios across whole capital distribution.

• Targeted out of sample scenarios are a powerful 
validation tool.

11 November 2014 40
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Questions and Comments

For further information please email:

yyong@deloitte.co.uk

chris.hursey@justretirement.com

References:

• Smith, A. Minimax proxy models

• The Proxy Model Working Party. Heavy 
models, Light models and Proxy models
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Expressions of individual views by members of the Institute and Faculty of 
Actuaries and its staff are encouraged.

The views expressed in this presentation are those of the presenter.


