Imposing Structure by Prior Knowledge in Semiparametric Analysis

Stefan Sperlich

Département des sciences économiques
Université de Genève

April 14, 2011

Overview

- Pros and Cons for non- and semiparametric methods
- Powerful data-analytic tools
- Problems: Curse of dimensionality, bandwidth, boundary, bias
- Justified doubts, e. g. concerning forecasting performance
- Hypothesis: With suitable incorporation of prior knowledge in the statistical modeling process these methods can improve in many (economic) fields
- Will consider
- Prediction of American stock returns by parametric priors
- Prediction of Danish stock returns with generated regressors
- Marshallian demand analysis with (parametric) restrictions
- Hicksian demand anal. with generated regressors and par. restrictions
- Will concentrate on kernel based local-polynomial regression

Motivation

- Propose different ways to include prior knowledge in semiparametrics
- Idea: economic theory should directly guide the modeling process
- Statistical advantages: dimension, variance or bias reduction by importing more structure
- Typical examples: PLM, SIM, additivity (GAM), monotonicity (for regression), symmetry (for densities), ...
- But still, in econometric-theory literature the general tendency in the literature is to relax functional forms, not vice verse.

First Thoughts

- However, on the one hand we know already for parametric forecasting that it improves if weak restrictions on the signs of coefficients and return forecasts are imposed, see However, Campbell, Thompson (2008)
- or that incorporating information about the order of integration can result in large efficiency gains, see Lewellen (2004); Torous, Valkanov, Yan (2004); Campbell, Yogo (2006).
- and on the other hand for many economic model like consumer demand systems plenty of model restrictions have to be imposed to guarantee reasonable and interpretable outcomes
- take symmetry and non-negativity of the Slutsky matrix, adding-up for the equations and homogeneity of the functions which automatically causes dimension reduction

Four Case studies as for illustration

Nonparametric Prediction of Stock Returns

- Preliminaries:
- A validated R^{2}, a measure for the quality of prediction
- A bootstrap test for significant forecast power
- Improved prediction through parametric prior smoothing
- Prediction with predicted bonds

Semiparametric Analysis of Consumer Demand

- Preliminaries:
- A system of preferences and demand
- Integrability conditions
- Estimating the indirect utility under constraints
- Simplifications by use of generated regressors

Predicting Stock Index and Returns

using prior knowledge
for implicit modeling

A performance measure: the validated R^{2}

What is an appropriate performance measure for prediction purposes?

- The classical and adjusted $R^{2} \mathrm{~s}$ are good for in-sample, bad for out-sample prediction
- as still very popular in finance ... looked for modification
- but would like to know how well the estimate works outside the considered moderate sample
- Replace total variation and not explained variation by its cross validated analogs
- Certainly, the CV can be adapted to sample size and autocorrelation AR function

The definition of our performance measure in detail

We consider $Y_{t}=g\left(X_{t}\right)+\xi_{t}$ and define

$$
R_{V}^{2}=1-\frac{\sum_{t}\left\{Y_{t}-\hat{g}_{-t}\right\}^{2}}{\sum_{t}\left(Y_{t}-\bar{Y}_{-t}\right\}^{2}},
$$

Properties:

- $R_{V}^{2} \in(-\infty, 1]$ where $R_{V}^{2}<0$ if we cannot predict better than the mean
- Measures how well a given model and estimation principle predicts compared to another (here: to the CV mean)
- CV punishes overfitting, i.e. pretending a functional relationship that is not really there (leads to $R_{V}^{2}<0$)

Can we beat the historical mean?

- Parametric null hypothesis vs. non-/semiparametric alternative
- $H_{0}: Y_{t}=\bar{Y}+\xi_{t}$ vs. $H_{1}: Y_{t}=g\left(\boldsymbol{X}_{t-1}\right)+\varepsilon_{t}$
- Construct B bootstrap samples $\left\{Y_{1}^{b}, \ldots, Y_{\mathcal{T}}^{b}\right\}$ with residuals under the null

$$
Y_{t}^{b}=Y_{t}+\hat{\varepsilon}_{t}^{0} \cdot u_{t}^{b}, \quad \hat{\varepsilon}_{t}^{0}=Y_{t}-\hat{g}_{-t}
$$

with iid zero-mean variance-one rv u_{t}^{b}.

- In each bootstrap iteration b calculate $R_{V}^{2, b}$
- Determine quantiles of empirical distribution of R_{V}^{2} under the Null

$$
F^{*}(u)=\frac{1}{B} \sum_{b} \mathbb{1}_{\left\{R_{v}^{2, b} \leq u\right\}}
$$

Example I

Working with Parametric Priors

Incorporating parametric prior knowledge

Include prior information in analysis coming from

- (Simple) empirical data analysis or statistical modeling
- Good economic model

Basic idea: Nonparametric estimator multiplicatively guided by, for example, parametric model

$$
g(x)=g_{\theta}(x) \cdot \frac{g(x)}{g_{\theta}(x)}
$$

Essential fact:

- Prior captures characteristics of shape of $g(x)$
- Second factor less variable than original function
- Nonparametric estimator of correction factor $\frac{g(x)}{g_{\theta}(x)}$ with better results and less bias

Improved smoothing through prior knowledge

One idea to solve problems of fully nonparametric models:

- Curse of dimensionality
- Boundary problems
- Bandwidth (incl. local vs global) problems
- etc.

Dimension and bias (or variance) reduction:

$$
g\left(x_{1}\right)+c=\left(g_{\theta}\left(x_{2}\right)+c\right) \cdot \frac{g\left(x_{1}\right)+c}{g_{\theta}\left(x_{2}\right)+c}=\tilde{g}\left(x_{1}, x_{2}\right)
$$

Consider also higher dimensions for x_{1} and x_{2} with possibly overlapping covariates

Miscellaneous ...

Local Problem: Prior crosses x-axis

- More robust estimates with suitable trimming (censoring or truncation)
- Shift by a distance c so that new prior strictly greater than zero and does not intersect the x -axis

$$
g(x)+c=\left(g_{\theta}(x)+c\right) \cdot \frac{g(x)+c}{g_{\theta}(x)+c}
$$

- For increasing c more and more equal to usual local-polynomial: Diminishes effect of guide
- Idea goes back to Glad (1998)

Illustration with yearly Stock Price Index

Description of data

- Annual American stock market data
- January values of the Standard and Poor Composite Stock Price Index (period: 1871-2009)
- More details: Shiller $(1989,2005)$
- Variables: stock price index, dividend and earnings accruing to index, shortand long-term interest rates, consumer price index (inflation), ten-year government bond, etc.

First Step: One-dimensional

Table: Predictive power: R_{V}^{2} and p-values

	S	d	e	r	L	$i n f$	b
par	-1.0	1.0	8.0	2.7	-1.1	-1.4	-0.4
nonpar	-1.2	0.9	11.8	2.5	-0.8	-1.6	-0.7
	(0.596)	(0.193)	(0.005)	(0.079)	(0.571)	(0.759)	(0.573)

$$
Y_{t}=\beta_{0}+\beta_{1} X_{t-1}+\varepsilon_{t} \quad \text { vs. } \quad Y_{t}=g\left(X_{t-1}\right)+\xi_{t}
$$

- OLS and local-linear kernel-regression
- Only earnings and risk-free with predictive power
- Factor $\mathbf{1 . 5}$ increase for earnings

One-dimensional case - graphs

Second Step: Two-dimensional

Table: Predictive power: R_{V}^{2} and p -values

	e, S	e, d	e, r	e, L	e, inf	e, b
par	6.8	6.9	12.2	7.3	9.2	8.8
nonpar	8.5	12.6	13.7	11.0	11.0	11.3
	(0.003)	(0.003)	(0.000)	(0.004)	(0.000)	(0.000)

$$
Y_{t}=\beta_{0}+\boldsymbol{\beta}^{\top} \boldsymbol{X}_{t-1}+\varepsilon_{t} \quad \text { vs. } \quad Y_{t}=g\left(\boldsymbol{X}_{t-1}\right)+\xi_{t}
$$

- Par: Improved prediction with extra variable inf, b, r Model $\{e, r\}$ even better than one-dim. nonpar.
- Nonpar: All shown models beat significantly historical mean and seem to improve prediction compared to 2-dim par.
- Increase in predictive power of "only" $\mathbf{1 2 \%}$ compared to first step

Second Step: Two-dim. guided by prior

Table: Predictive power: R_{V}^{2}

	e, S	e, d	e, r	e, L	e, inf	e, b
nonpar	8.5	12.6	13.7	11.0	11.0	11.3
prior	6.6	13.5	12.1	12.8	9.5	8.0

- Here we include always same variables for prior (linear regression) and correction (nonpar.)
- Increase of 7% for $\{e, d\}$ and 16% for $\{e, L\}$
- Slightly decrease for the rest:

Poor prior or already adequate 2-dim. fit?

Third Step: Different variables for prior

Table: Predictive power: R_{V}^{2}

	S	d	e	r	L	inf	b
e	8.8	7.6	9.3	15.8	10.7	11.4	11.8
e, L	9.9	13.1	14.2	18.5	13.3	13.3	11.4

- Prior: 1-dim. linear regression
- Correction, i.e. nonparametric factor:
- 1-dim: $\{e, S\},\{e, r\},\{e, i n f\},\{e, b\}$ improve compared to fully nonpar.
- 2-dim: e.g. $\{e, L\}$ improvement of $\mathbf{2 9 \%}$
- Best: $\{e, L, r\}$ ($\mathbf{3 5 \%}$ to fully nonpar, $\mathbf{1 3 1 \%}$ to par)

Third Step: Graphs of best model

Example II

Working with Predicted Factors

The prediction framework

- The excess stock return:

$$
S_{t}=\log \left\{\left(P_{t}+D_{t}\right) / P_{t-1}\right\}-r_{t-1}
$$

with dividends D_{t} paid during year t, stock price P_{t} at the end of year t, and short-term interest rate r_{t}

$$
r_{t}=\log \left(1+R_{t} / 100\right)
$$

with discount rate R_{t}

- Covariates with predictive power in simple regression: dividend-price ratio, earnings-price ratio, or interest rates
- In nonpar. regression

$$
Y_{t}=g\left(d_{t-1}, S_{t-1}\right)+\varepsilon_{t}
$$

with dividend-price ratio d_{t-1} and excess stock returns S_{t-1}

Prediction with Bonds ?

There exists some economic motivation:

- Usually: separate analysis of stocks and bonds (positively correlated)
- Same year's bond yield is basically the prediction error
- FED-Model: Direct comparison of stocks and bonds
- Are stocks and bonds driven by the same factors/informations?
- To what extent they move together (co-movement)?
- Economic theory: prices are driven by fundamentals, investors should focus on forward earnings and profitability

Use unknown bond of the current year as further covariate

Prediction with constructed regressors

Consider now the two-step procedure

- 1. Step: Construct bond yields with nonparametric model

$$
b_{t}=m\left(v_{t-1}\right)+\zeta_{t}
$$

where v_{t-1} vector of regressors (e.g. last years bond yield, interest rate, dividend-price ratio, or excess stock returns)

- 2. Step: Include pilot estimate \hat{b}_{t} in local-linear kernel-regression

$$
Y_{t}=g\left(\hat{b}_{t}, w_{t-1}\right)+\varepsilon_{t}
$$

- Note:
- Bandwidth choice (CV) in each or only in the final step
- Simple linear model automatically embedded (estimated without bias)

Statistical framework

Exists some statistical motivation?

- Let \tilde{g} be the function of (unknown) actual bond

$$
Y_{t}-g\left(\hat{b}_{t}\right)=Y_{t}-\tilde{g}\left(b_{t}\right)+\tilde{g}\left(b_{t}\right)-g\left(\hat{b}_{t}\right) \simeq \tilde{\varepsilon}_{t}+g^{\prime}\left(\hat{b}_{t}\right)\left(b_{t}-\hat{b}_{t}\right)
$$

- Second term quite predictable (empirical study)
- Maybe a closer look to the prediction error clarifies the relation of bond and stock prediction
- Asymptotically for dependent data (algebraic α-mixing): as had we observed the real bond

Theorem

$$
\left|g_{L L}\left(\hat{b}_{t}\right)-\tilde{g}\left(b_{t}\right)\right| \rightarrow 0
$$

Why using constructed regressors in Statistics ?

- Interpret first stage as optimal nonparametric transformation
- Mapping the long-term interest rate to current bond yield

$$
L_{t-1} \longrightarrow \hat{b}_{t}
$$

- Subsequent nonparametric smoother of transformed variable is characterized by less bias
- Practical example of method of Park et al. (1997) which improves nonparametric regression with simple transformation techniques
- Small difference: We use additional variable, in their work they estimate on the original scale

The old stories ...

Why not directly v_{t-1} in stock prediction?

- Multi-dim. estimation suffers from the curse of dimensionality in several aspects:
- Dimension of the covariates
- Interpretability
- To circumvent curse of dimensionality more structure proposed:
- Additivity
- Semiparamteric modeling
- Use obtained structural information (not necessarily additive) as a kind of dimension and complexity reduction
- Reduce variation and improve predictive power in the R_{V}^{2}-sense

Illustration with Danish data

Description of the data

- Annual Danish stock and bond market data (period: 1922-1996)
- Value weighted portfolio of individual stocks (chosen to obtain maximum coverage of the market index of CSE)
- CSE open during the second world war
- Corrections for stock splits and new equity issues below market prices
- More details: Lund and Engsted (1996).
- Variables: stock price index, dividend accruing to index, bond, short- and long-term interest rates

Danish data: Bond prediction

Table: R_{V}^{2} of different Bond models 1923-1996

v_{t-1}	S	L	r	S, r	$\mathrm{S}, \mathrm{r}, \mathrm{b}$
par	11.6%	24.0%	22.3%	33.1%	37.4%
nonpar	16.3%	23.9%	26.8%	33.0%	37.4%

- Bonds seem to be predictable in an adequate way
- Actually with both, parametric and nonparametric models
- ... there exist also some (here largely neglected) literature on parametric bond prediction ...

Danish data: Stock prediction

Table: R_{V}^{2} of different Stock models 1923-1996

$w_{t-1} \backslash v_{t_{1}}$	d	r	b	d, L	d, r	r, b
par	-6.3%	-5.7%	-4.0%	-5.8%	-7.2%	0.5%
nonpar	-1.4%	-3.6%	5.9%	-6.0%	-7.4%	$-8.6 \&$
\hat{b}_{t}	8.3%	1.4%	10.6%	-3.8%	2.9%	-3.6%
\hat{b}_{t}, v_{t-1}	13.9%	16.3%	8.9%	28.3%	21.6%	20.3%

- All parametric models with negative R_{V}^{2}
- Very good results in general for diagonal $w_{t-1}=v_{t-1}$
- Improvement of prediction from $R_{V}^{2}=5.9 \%$ to
- $R_{V}^{2}=28.9 \%$ for $\hat{g}\left(\hat{b}_{t}, d_{t-1}, S_{t-1}, L_{t-1}\right)$ and $\hat{b}_{t}=\hat{p}\left(d_{t-1}, L_{t-1}\right)$
- $R_{V}^{2}=30.3 \%$ for $\hat{g}\left(\hat{b}_{t}, d_{t-1}, S_{t-1}, L_{t-1}\right)$ and $\hat{b}_{t}=\hat{p}\left(d_{t-1}\right)$

Consumer Demand Analysis

estimating expenditure equations

starting from dual problems

Preliminary Remarks to Preferences and Demand

- for utility U, nominal total expenditures X, prices \boldsymbol{P}, quantities \boldsymbol{Q}, shares \boldsymbol{W}
- Consider the consumer problem:
- Max $U=v(\boldsymbol{Q})$ subject to $\boldsymbol{P}^{\prime} \mathbf{Q}=X$
(2) $\operatorname{Min} X=\boldsymbol{P}^{\prime} \boldsymbol{Q}$ subject to $v(\boldsymbol{Q})=U$
- with solution: $Q_{i}=g_{i}(X, \boldsymbol{P})=h_{i}(U, \boldsymbol{P}), i=1, \ldots, M$
- the Marshallian (or uncompensated) demands and
(2) the Hicksian (or compensated) demands respectively
- substituting into original problems gives
(the indirect utility function $U=V(X, P)$, and
(2) the cost function $X=C(U, P)$ respectively

Some Properties of the cost function

- homogeneous in prices, i.e. $C(U, \theta \mathbf{P})=\theta C(U, \boldsymbol{P}) \forall \theta>0$
- concave in prices

O increasing in U and at least one P_{i}, nondecreasing in all
Assuming differentiability we get by Shephard's Lemma

$$
\frac{\partial C(U, \boldsymbol{P})}{\partial P_{i}}=h_{i}(U, \boldsymbol{P})=Q_{i}=g_{i}(X, \boldsymbol{P})=-\frac{\partial V / \partial P_{i}}{\partial V / \partial X}
$$

called Roy's identity, and for budget shares

$$
w_{i}=\frac{\partial \ln C(U, \boldsymbol{P})}{\partial \ln P_{i}}=\frac{\partial \ln V / \partial \ln P_{i}}{\sum \partial \ln V / \partial \ln P_{k}}
$$

Properties of Integrability

Often one concentrates on
Comogeneity $g_{i}(\theta X, \theta \boldsymbol{P})=g_{i}(X, \boldsymbol{P})=h_{i}(U, \boldsymbol{P})=h_{i}(U, \theta \boldsymbol{P})$
© symmetry $\partial h_{i}(U, \boldsymbol{P}) / \partial P_{j}=\partial h_{j}(U, \boldsymbol{P}) / \partial P_{i}$
(Negativity $\left\{\partial h_{i} / \partial P_{j}\right\}_{i, j}$ is neg. semidef.

Notes:

- Slutsky or substitution matrix: $\left\{\frac{\partial h_{i}}{\partial P_{j}}\right\}_{i, j}=\left\{\frac{\partial g_{i}}{\partial x} Q_{j}+\frac{\partial g_{i}}{\partial P_{j}}\right\}_{i, j}$
- Engel curves describing quantities (or shares) as functions of total expenditure / income

Here, we will also focus on separability and possible linearity

An Almost Ideal Case

Set $u=\ln U, \boldsymbol{p}=\ln \boldsymbol{P}$
Assume log-cost function may be written as

$$
\ln C^{A l}(\boldsymbol{p}, u)=f_{1}(\boldsymbol{p})+f_{2}(\boldsymbol{p}) u
$$

e.g. $f_{1}\left(\boldsymbol{p}=\boldsymbol{p}^{\prime} \mathbf{a}\right)+\frac{1}{2} \boldsymbol{p}^{\prime} \boldsymbol{A} \boldsymbol{p}$ and $\mathrm{f}_{2}(\boldsymbol{p})=1+\boldsymbol{p}^{\prime} \boldsymbol{b}$ Invert to get indirect utility as

$$
V^{A l}(\boldsymbol{p}, x)=\frac{x-f_{1}(\boldsymbol{p})}{f_{2}(\boldsymbol{p})}
$$

Then, the AI compensated expenditure-share system is

$$
\omega^{A l}(\boldsymbol{p}, u)=\boldsymbol{a}+\boldsymbol{p}^{\prime} \mathbf{A}+\boldsymbol{b} u
$$

and the uncompensated expenditure-share system

$$
\mathbf{w}^{\boldsymbol{A l}^{\prime}}(\boldsymbol{p}, x)=\boldsymbol{a}+\boldsymbol{p}^{\prime} \boldsymbol{A}+\boldsymbol{b} \frac{x-f_{1}(\boldsymbol{p})}{f_{2}(\boldsymbol{p})}
$$

Example III

Starting from the Indirect Utility Model

Our indirect utility Model

Define indirect utility $V(\boldsymbol{p}, x)$ to give maximum utility attained by a consumer when faced with

- \log-prices $\boldsymbol{p}=\left(p^{1}, \ldots, p^{M}\right)$
- log-total expenditure x

A partially linear indirect utility function

$$
V(\boldsymbol{p}, x)=x-\boldsymbol{f}(x)^{\top} \boldsymbol{p}-\frac{1}{2} \boldsymbol{p}^{\top} \boldsymbol{A} \boldsymbol{p}
$$

- $\boldsymbol{f}=\left(f^{1}, \ldots, f^{M}\right)^{\top}$ unknown differentiable functions of log-total expenditure
- $\boldsymbol{A}=\left\{a^{k}\right\}_{k, l=1}^{M}$ parameters

Our indirect utility Model

Define indirect utility $V(\boldsymbol{p}, x)$ to give maximum utility attained by a consumer when faced with

- $\boldsymbol{\operatorname { l o g }}$-prices $\boldsymbol{p}=\left(p^{1}, \ldots, p^{M}\right)$
- log-total expenditure x

Extension to varying coefficients

$$
V(\boldsymbol{p}, x)=x-\boldsymbol{f}(x)^{\top} \boldsymbol{p}-\frac{1}{2} \boldsymbol{p}^{\top} \boldsymbol{A}(x) \boldsymbol{p}
$$

- $\boldsymbol{f}=\left(f^{1}, \ldots, f^{M}\right)^{\top}, \boldsymbol{A}(x)=\left\{a^{k l}(x)\right\}_{k, l=1}^{M}$ unknown differentiable functions of log-total expenditure

The Regression Model

With Roy's identity

$$
w^{k}(\boldsymbol{p}, x)=-\frac{\partial V(\boldsymbol{p}, x) / \partial p^{k}}{\partial V(\boldsymbol{p}, x) / \partial x}
$$

we get expenditure shares as functions of total expenditure and all prices

$$
\boldsymbol{w}(\boldsymbol{p}, x)=\frac{\boldsymbol{f}(x)+\boldsymbol{A} \boldsymbol{p}}{1-\nabla_{x} \boldsymbol{f}(x)^{\top} \boldsymbol{p}}
$$

Rationality restrictions:

- Slutsky-symmetry if $\boldsymbol{A}=\boldsymbol{A}^{\top}$
- For homogeneity use $\tilde{x}=x-p^{M}$ and $\tilde{p}^{k}=p^{k}-p^{M}$ for all k
- Adding-up by construction $w^{M}(\tilde{\boldsymbol{p}}, \tilde{x})=1-\sum_{k=1}^{M-1} w^{k}(\tilde{\boldsymbol{p}}, \tilde{x})$

Estimation

Consider M-1 expenditure share equations

$$
\mathbf{w}(\tilde{\boldsymbol{p}}, \tilde{x})=\frac{\boldsymbol{f}(\tilde{x})+\boldsymbol{A} \tilde{\boldsymbol{p}}}{1-\nabla_{\tilde{x}} \boldsymbol{f}(\tilde{x})^{\top} \tilde{\boldsymbol{p}}}
$$

Basic idea:

- Iteratively solving minimization problems for nonparametric part (adapted kernel smoothing)
- Symmetry-restricted least squares for parametric coefficients
- Local-polynomial approximation

$$
\boldsymbol{f}(t) \approx \boldsymbol{f}(\tilde{x})+\nabla_{\tilde{x}} \boldsymbol{f}(\tilde{x})(t-\tilde{x}) \approx \alpha(\tilde{x})+\boldsymbol{\beta}(\tilde{x})(t-\tilde{x})
$$

Estimation - Notes

The local problem is then

$$
\begin{gathered}
\min _{\alpha(\tilde{x}), \boldsymbol{\beta}(\tilde{x}), \boldsymbol{A}} \sum_{i=1}^{N} \boldsymbol{e}_{i}^{\top} \boldsymbol{\Omega} \mathbf{e}_{i} \\
\mathbf{e}_{i} \equiv \boldsymbol{w}_{i}-\frac{\boldsymbol{\alpha}(\tilde{x})+\left(\tilde{x}_{i}-\tilde{x}\right) \boldsymbol{\beta}(\tilde{x})+\boldsymbol{A} \tilde{\boldsymbol{p}}_{i}}{1-\boldsymbol{\beta}(\tilde{x})^{\top} \tilde{\boldsymbol{p}}_{i}}
\end{gathered}
$$

with $(M-1) \times(M-1)$ weighting matrix $\boldsymbol{\Omega}$

Key idea:

- Local-polynomial model for numerator
- Lower-order local-polynomial in denominator
- Get starting values from reference group where $\tilde{\boldsymbol{p}}=\mathbf{0}$

Example IV

Starting from the Log-Cost Model

Our log-cost Model

Redef. $\left\{W_{i}^{1}, \ldots, W_{i}^{M}, P_{i}^{1}, \ldots, P_{i}^{M}, X_{i}\right\}_{i=1}^{n}$ random vector giving the expenditure shares, log-prices, and log-expenditures

Extend the (homothetic) translog model to

$$
\ln C(\boldsymbol{p}, u)=u+\boldsymbol{p}^{\prime} \overline{\boldsymbol{\beta}}(u)+\frac{1}{2} \boldsymbol{p} \boldsymbol{A} \boldsymbol{p}
$$

Dual indirect utility function is

$$
u=V(\boldsymbol{p}, x)=x-\boldsymbol{p}^{\prime} \overline{\boldsymbol{\beta}}(u)-\frac{1}{2} \boldsymbol{p} \boldsymbol{A} \boldsymbol{p}
$$

cannot be solved for u analytically
Shephard's Lemma gives compensated expenditure share

$$
\omega(\boldsymbol{p}, u)=\overline{\boldsymbol{\beta}}(u)+\boldsymbol{A} \boldsymbol{p}
$$

The (Almost) Observable Demand System

- Properties yield Restrictions: $\iota^{\prime} \overline{\boldsymbol{\beta}}(u)=1$ and $\boldsymbol{A}^{\prime} \iota=\mathbf{0}_{M}$ are sufficient for homogeneity, $\boldsymbol{A}=\boldsymbol{A}^{\prime}$ for symmetry
- re-scale prices s.th. $\overline{\boldsymbol{p}}=\mathbf{0}_{M}$, then $V(\overline{\boldsymbol{p}}, x)=x$
- log real expenditure, $x^{R}=R(\boldsymbol{p}, x)$, with reference $\overline{\boldsymbol{p}}$, then

$$
V(\boldsymbol{p}, x)=V\left(\overline{\boldsymbol{p}}, x^{R}\right), \quad x^{R}=R(\boldsymbol{p}, x)=\ln C(\overline{\boldsymbol{p}}, V(\boldsymbol{p}, x))
$$

what yields $R(\mathbf{p}, x)=V(\boldsymbol{p}, x)$.

- Thus, uncompensated shares can be defined by substituting x^{R} for u
- in compensated demand system:

$$
\begin{aligned}
& \boldsymbol{w}(\boldsymbol{p}, x)=\omega(\boldsymbol{p}, V(\boldsymbol{p}, x))=\omega(\boldsymbol{p}, V(\overline{\boldsymbol{p}}, R(\boldsymbol{p}, x))) \\
& =\overline{\boldsymbol{\beta}}(V(\overline{\boldsymbol{p}}, R(\boldsymbol{p}, x)))+\boldsymbol{A} \boldsymbol{p}=\boldsymbol{\beta}\left(x^{R}\right)+\boldsymbol{A} \boldsymbol{p}
\end{aligned}
$$

Estimation of parametric part

Consider for each product j the sample

$$
w_{i}^{j}-w_{k}^{j}=\beta^{j}\left(x_{i}^{R}\right)-\beta^{j}\left(x_{k}^{R}\right)+\boldsymbol{a}^{j}\left(\boldsymbol{p}_{i}-\boldsymbol{p}_{k}\right)+\epsilon_{i}^{j}-\epsilon_{k}^{j}, \forall i \neq k .
$$

Weighting inversely to $\left|x_{i}^{R}-x_{k}^{R}\right|$ cancels β^{j}, and estimator is

$$
\begin{aligned}
& \hat{\boldsymbol{A}}_{\text {RSF }}= \hat{H}_{P P}^{-1} \hat{H}_{P W} \\
& \hat{H}_{P W}=\binom{n}{2}^{-1} \sum_{i=1}^{n} \sum_{k=i+1}^{n-1}\left(\boldsymbol{p}_{i}-\boldsymbol{p}_{k}\right)\left(\boldsymbol{w}_{i}-\boldsymbol{w}_{k}\right)^{T} \hat{v}_{i k} \\
& \text { and } \hat{H}_{P P} \quad \text { analogously, where } \hat{v}_{i k}=K_{h}\left(\hat{x}_{i}^{R}-\hat{x}_{k}^{R}\right) \\
& \sqrt{n}\left(\hat{\boldsymbol{a}}_{R S F}^{j}-\boldsymbol{a}^{j}\right) \rightarrow N\left(0, E\left[\Sigma_{P \mid X X}^{-1}\right] E\left[\boldsymbol{P}_{X} \sigma_{j j}(X, \boldsymbol{P}) \boldsymbol{P}_{X}^{\prime}\right] E\left[\Sigma_{P \mid X^{R}}^{-1}\right]\right) \\
& \text { where } \boldsymbol{P}_{X}:=\boldsymbol{P}-E\left[\boldsymbol{P} \mid X^{R}\right] .
\end{aligned}
$$

Estimation of the nonparametric part

Have in mind x^{R} is predicted, so make use of constructed regressors
As \boldsymbol{A} is estimated with parametric rate, use ordinary loc.lin.

$$
\hat{\theta}\left(x^{R}\right)=\operatorname{argmin} \sum_{i=1}^{n}\left\{\left(w_{i}^{j}-\hat{\boldsymbol{a}}^{j} \boldsymbol{p}_{i}\right)-\theta_{1}-\theta_{2}\left(\hat{x}_{i}^{R}-x^{R}\right)\right\}^{2} K_{h}\left(\hat{x}_{i}^{R}-x^{R}\right)
$$

Then we get

$$
\begin{gathered}
\sqrt{\left(n h \wedge n g_{n}\right)}\left\{\hat{\boldsymbol{\beta}}\left(x^{R}\right)-\boldsymbol{\beta}\left(x^{R}\right)-B_{\beta}\left(x^{R}\right)\right\} \rightarrow N\left(0, \Sigma_{\beta}\left(x^{R}\right)\right) \\
B_{\beta}\left(x^{R}\right)=\frac{h^{2}}{2} \mu_{2}(K) \boldsymbol{\beta}^{\prime \prime}\left(x^{R}\right)-B_{x}\left(x^{0}, \boldsymbol{p}^{0}\right) \boldsymbol{\beta}^{\prime}\left(x^{R}\right)
\end{gathered}
$$

where $\mu_{l}(K)=\int v^{\prime} K(v) d v$ and

$$
\frac{1}{n h \wedge n g_{n}} \Sigma_{\beta}\left(x^{R}\right)=\frac{1}{n h} p^{-1}\left(x^{R}\right)\|K\|_{2}^{2} \Sigma_{\epsilon}\left(x^{R}\right) \oplus \sigma_{x}^{2}\left(x^{0}, \boldsymbol{p}^{0}\right) \boldsymbol{\beta}^{2}\left(x^{R}\right)
$$

Varying Price Effects

If second-order price effects are not independent of utility:

$$
\ln C(\boldsymbol{p}, u)=u+\boldsymbol{p}^{\prime} \overline{\boldsymbol{\beta}}(u)+\frac{1}{2} \boldsymbol{p}^{\prime} \overline{\boldsymbol{A}}(u) \boldsymbol{p}
$$

Indirect utility and compensated expenditure-shares are

$$
\begin{aligned}
u & =V(\boldsymbol{p}, x)=x-\boldsymbol{p}^{\prime} \overline{\boldsymbol{\beta}}(u)-\frac{1}{2} \boldsymbol{p}^{\prime} \overline{\boldsymbol{A}}(u) \boldsymbol{p} \\
\omega(\boldsymbol{p}, u) & =\overline{\boldsymbol{\beta}}(u)+\overline{\boldsymbol{A}}(u) \boldsymbol{p}
\end{aligned}
$$

Again, at base prices one has

$$
\overline{\boldsymbol{\beta}}(u)=\boldsymbol{\beta}\left(x^{R}\right), \boldsymbol{A}\left(x^{R}\right)=\overline{\boldsymbol{A}}(u)=\overline{\boldsymbol{A}}(V(\boldsymbol{p}, x))=\overline{\boldsymbol{A}}\left(V\left(\overline{\boldsymbol{p}}, x^{R}\right)\right)
$$

Therefore, we get $\boldsymbol{w}\left(\boldsymbol{p}, x^{R}\right)=\boldsymbol{\beta}\left(x^{R}\right)+\boldsymbol{A}\left(x^{R}\right) \boldsymbol{p}$
Combine consistency results on varying coeffs with those on generated regressors

Estimation of Model with varying Price Effects

Following Cleveland, Grosse, Shyu (1991), and Sperlich (2009)

$$
\sum_{i=1}^{n}\left[W_{i}^{j}-\beta_{0}^{j}-\beta_{1}^{j}\left(\hat{x}_{i}^{R}-x_{0}^{R}\right)-\left\{\mathbf{a}_{0}^{j}+\boldsymbol{a}_{1}^{j}\left(\hat{x}_{i}^{R}-x_{0}^{R}\right)\right\}^{\prime} \boldsymbol{P}_{i}\right]^{2} K_{h}\left(\hat{x}_{i}^{R}-x_{0}^{R}\right)
$$

$\widehat{\beta^{j}}\left(x_{0}^{R}\right):=\beta_{0}^{j}, \widehat{\boldsymbol{a}^{j}}\left(x_{0}^{R}\right)=\left(\hat{a}_{1}^{j}, \ldots, \hat{a}_{M}^{j}\right)^{\prime}\left(x_{0}^{R}\right):=\boldsymbol{a}_{0}^{j}$
V1 $E\left[\left(p^{j}\right)^{2 s}\right]<\infty$ for some $s>2, \forall j$. Second derivative of
$r_{j k}\left(x^{R}\right):=E\left[p^{j} p^{k} \mid x^{R}\right]$ is cont. and bounded from zero
V2 Second derivatives of $\boldsymbol{A}\left(x^{R}\right)$ are cont. and bounded Set $a_{0}^{j}\left(x^{R}\right):=\beta^{j}\left(x^{R}\right), \quad P_{i}^{0} \equiv 1$ for all i

Set $\alpha_{k}:=\left(a_{0}^{k}, a_{1}^{k}, \cdots, a_{M}^{k}\right)^{\prime}$ for $k=1, \ldots, M$. Then it holds

$$
\sqrt{\left(n h \wedge n g_{n}\right)}\left\{\hat{\alpha}_{k}-\alpha_{k}-B_{k}\left(x^{R}\right)\right\} \longrightarrow N\left(0, \Sigma_{\alpha_{k}}\left(x^{R}\right)\right)
$$

with

$$
B_{k}\left(x^{R}\right)=\frac{h^{2}}{2} \mu_{2}(K) \alpha_{k}^{\prime \prime}-B_{X}\left(x^{0}, p^{0}\right) \alpha_{k}^{\prime}
$$

The covariance structure is given by

$$
\frac{1}{n h} p^{-1}\left(x^{R}\right)\|K\|_{2}^{2} \Omega \Sigma_{\epsilon k, k}\left(x^{R}\right) \oplus \sigma_{x}^{2}\left(x^{0}, p^{0}\right)\left(\alpha_{k}^{\prime}\right)^{2}
$$

respectively by

$$
\frac{1}{n h} p^{-1}\left(x^{R}\right)\|K\|_{2}^{2} \Omega_{j, j} \Sigma_{\epsilon}\left(x^{R}\right) \oplus \sigma_{x}^{2}\left(x^{0}, p^{0}\right) \gamma_{j}^{\prime 2}
$$

where $\Omega^{-1}:=E\left[\left(P^{0}, P^{1}, \ldots, P^{M}\right)^{\prime}\left(P^{0}, P^{1}, \ldots, P^{M}\right) \mid x^{R}\right]$ and $\gamma_{j}=\left(a_{j}^{1}, a_{j}^{2}, \ldots, a_{j}^{M}\right), j=0, \ldots, M$

Consistent initial estimator for \hat{x}_{i}^{R}

- Def. log nominal expenditure, $x^{N}=N(\boldsymbol{p}, x)$ as level of expend. at \boldsymbol{p} which yields same level of utility as x at $\overline{\boldsymbol{p}}$.
- Again, is implicitly defined by

$$
\begin{aligned}
x= & V(\overline{\boldsymbol{p}}, x)=V\left(\boldsymbol{p}, x^{N}\right)=x^{N}-\boldsymbol{p}^{\prime} \overline{\boldsymbol{\beta}}\{V(\overline{\boldsymbol{p}, x})\}-\frac{1}{2} \boldsymbol{p}^{\prime} \boldsymbol{A} \boldsymbol{p} \\
& \Longleftrightarrow \quad x^{N}=N(\boldsymbol{p}, x)=x+\boldsymbol{p}^{\prime} \boldsymbol{\beta}(x)+\frac{1}{2} \boldsymbol{p}^{\prime} \boldsymbol{A} \boldsymbol{p}
\end{aligned}
$$

Further, note $x^{R}=R(\boldsymbol{p}, x)=N^{-1}(\boldsymbol{p}, x)$.

- Monotonic increasing costs in utility give monotonic increase of $R(\boldsymbol{p}, x)$ and $N(\boldsymbol{p}, x)$ in x for each \boldsymbol{p}, i.e. we can invert N. Further, for each \boldsymbol{p} fixed, and $t=\hat{N}(\boldsymbol{p}, x), \hat{R}(\boldsymbol{p}, t)=\hat{N}^{-1}(\boldsymbol{p}, t)$,

$$
\sup _{t}|\hat{R}(\boldsymbol{p}, t)-R(\boldsymbol{p}, t)| \leq \sup _{t}\left|\frac{d}{d t} R(\boldsymbol{p}, t)\right| \sup _{v}|N(\boldsymbol{p}, v)-\hat{N}(\boldsymbol{p}, v)|
$$

so initial estimate for function N would do

Initial Estimators for $\boldsymbol{\beta}$ and \boldsymbol{A}

- Recall that for $\overline{\boldsymbol{p}}=\mathbf{0}_{M}$ we have $x^{R}=R(\overline{\boldsymbol{p}}, x)=x$, s.th.

$$
E\left[\boldsymbol{W}_{i} \mid X_{i}=x, \boldsymbol{P}_{i}=\overline{\boldsymbol{p}}\right]=\boldsymbol{\beta}(x)=\boldsymbol{\beta}\left(x^{R}\right)
$$

Use smoother for people facing $\overline{\boldsymbol{p}}$ (or including neighbors)

- \boldsymbol{A} is matrix of log-price derivatives of compensated expenditure share eqns, i.e. of compensated semi-elasticities. In general, can be expressed in terms of observables:

$$
\Upsilon(\boldsymbol{p}, x)=\boldsymbol{\nabla}_{p p} \boldsymbol{w}(\boldsymbol{p}, x)+\boldsymbol{\nabla}_{x} \boldsymbol{w}(\boldsymbol{p}, x) \boldsymbol{w}(\boldsymbol{p}, x)^{\prime}
$$

Therefore, a consistent estimator for \boldsymbol{A} is given by

$$
\hat{\boldsymbol{A}}_{0}=\frac{1}{n} \sum_{i=1}^{n} \widehat{\boldsymbol{r}}\left(\boldsymbol{P}_{i}, X_{i}\right)
$$

with estimating $\boldsymbol{w}(\boldsymbol{p}, x)$ and its derivatives nonparametrically

Inference and Restrictions

- Easy to impose homogeneity,
- straight forward to impose symmetry,
- but hard to guarantee concavity / negativity without overdoing.
- Restricted estimators provide directly specification tests, usually based on bootstrap or subsampling.
- In application rejected for example symmetry but - different to parametric models - could analyze why !
- Typical criticism

Hard to implement and calculate
Dependence on bandwidth choice

- Extensions

IV methods for problems of endogeneity

