
Imposing Structure by Prior Knowledge

in Semiparametric Analysis

Stefan Sperlich
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Overview

Pros and Cons for non- and semiparametric methods

I Powerful data-analytic tools
I Problems: Curse of dimensionality, bandwidth, boundary, bias
I Justified doubts, e. g. concerning forecasting performance

Hypothesis: With suitable incorporation of prior knowledge in the

statistical modeling process these methods can improve in many (economic)

fields

Will consider

I Prediction of American stock returns by parametric priors
I Prediction of Danish stock returns with generated regressors
I Marshallian demand analysis with (parametric) restrictions
I Hicksian demand anal. with generated regressors and par. restrictions

Will concentrate on kernel based local-polynomial regression
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Motivation

Propose different ways to include prior knowledge in semiparametrics

Idea: economic theory should directly guide the modeling process

Statistical advantages: dimension, variance or bias reduction by importing

more structure

Typical examples: PLM, SIM, additivity (GAM), monotonicity (for regression),

symmetry (for densities), ...

But still, in econometric-theory literature the general tendency in the

literature is to relax functional forms, not vice verse.
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First Thoughts

However, on the one hand we know already for parametric forecasting that

it improves if weak restrictions on the signs of coefficients and return

forecasts are imposed, see However, Campbell, Thompson (2008)

or that incorporating information about the order of integration can result in

large efficiency gains, see Lewellen (2004); Torous, Valkanov, Yan

(2004); Campbell, Yogo (2006).

and on the other hand for many economic model like consumer demand

systems plenty of model restrictions have to be imposed to guarantee

reasonable and interpretable outcomes

take symmetry and non-negativity of the Slutsky matrix, adding-up for the

equations and homogeneity of the functions which automatically causes

dimension reduction
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Four Case studies as for illustration

Nonparametric Prediction of Stock Returns

Preliminaries:

I A validated R2, a measure for the quality of prediction
I A bootstrap test for significant forecast power

Improved prediction through parametric prior smoothing

Prediction with predicted bonds

Semiparametric Analysis of Consumer Demand

Preliminaries:

I A system of preferences and demand
I Integrability conditions

Estimating the indirect utility under constraints

Simplifications by use of generated regressors
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Predicting Stock Index and Returns

using prior knowledge

for implicit modeling
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A performance measure: the validated R2

What is an appropriate performance measure for prediction purposes?

The classical and adjusted R2s are good for in-sample,

bad for out-sample prediction

as still very popular in finance ... looked for modification

but would like to know how well the estimate works outside the considered

moderate sample

Replace total variation and not explained variation by its cross validated

analogs

Certainly, the CV can be adapted to sample size and autocorrelation AR

function
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The definition of our performance measure in detail

We consider Yt = g(Xt ) + ξt and define

R2
V = 1 −

∑
t {Yt − ĝ−t }

2∑
t {Yt − Ȳ−t }

2
,

Properties:

R2
V ∈ (−∞, 1] where R2

V < 0 if we cannot predict better than the mean

Measures how well a given model and estimation principle predicts

compared to another (here: to the CV mean)

CV punishes overfitting, i.e. pretending a functional relationship that is not

really there (leads to R2
V < 0)
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Can we beat the historical mean?

Parametric null hypothesis vs. non-/semiparametric alternative

H0: Yt = Ȳ + ξt vs. H1: Yt = g(X t−1) + εt

Construct B bootstrap samples {Yb
1 , . . . ,Y

b
T
} with residuals under the null

Yb
t = Yt + ε̂0

t · u
b
t , ε̂0

t = Yt − ĝ−t

with iid zero-mean variance-one rv ub
t .

In each bootstrap iteration b calculate R2,b
V

Determine quantiles of empirical distribution of R2
V under the Null

F∗(u) =
1
B

∑
b

1I
{R2,b

V ≤u}
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Example I

Working with Parametric Priors
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Incorporating parametric prior knowledge

Include prior information in analysis coming from

(Simple) empirical data analysis or statistical modeling

Good economic model

Basic idea: Nonparametric estimator multiplicatively guided by, for example,
parametric model

g(x) = gθ(x) ·
g(x)

gθ(x)

Essential fact:

Prior captures characteristics of shape of g(x)

Second factor less variable than original function

Nonparametric estimator of correction factor g(x)
gθ(x)

with better results and

less bias

S.Sperlich (Université de Genève) Structure guided by prior knowledge April 14, 2011 11 / 51



Improved smoothing through prior knowledge

One idea to solve problems of fully nonparametric models:

Curse of dimensionality

Boundary problems

Bandwidth (incl. local vs global) problems

etc.

Dimension and bias (or variance) reduction:

g(x1) + c = (gθ(x2) + c) ·
g(x1) + c
gθ(x2) + c

= g̃(x1, x2)

Consider also higher dimensions for x1 and x2 with possibly overlapping
covariates
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Miscellaneous ...

Local Problem: Prior crosses x-axis

More robust estimates with suitable trimming (censoring or truncation)

Shift by a distance c so that new prior strictly greater than zero and does

not intersect the x-axis

g(x) + c = (gθ(x) + c) ·
g(x) + c
gθ(x) + c

For increasing c more and more equal to usual local-polynomial:

Diminishes effect of guide

Idea goes back to Glad (1998)
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Illustration with yearly Stock Price Index

Description of data

Annual American stock market data

January values of the Standard and Poor Composite Stock Price Index

(period: 1871–2009)

More details: Shiller (1989, 2005)

Variables: stock price index, dividend and earnings accruing to index, short-

and long-term interest rates, consumer price index (inflation), ten-year

government bond, etc.
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First Step: One-dimensional

Table: Predictive power: R2
V and p-values

S d e r L inf b

par -1.0 1.0 8.0 2.7 -1.1 -1.4 -0.4

nonpar -1.2 0.9 11.8 2.5 -0.8 -1.6 -0.7
(0.596) (0.193) (0.005) (0.079) (0.571) (0.759) (0.573)

Yt = β0 + β1Xt−1 + εt vs. Yt = g(Xt−1) + ξt

OLS and local-linear kernel-regression

Only earnings and risk-free with predictive power

Factor 1.5 increase for earnings
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One-dimensional case - graphs
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Second Step: Two-dimensional

Table: Predictive power: R2
V and p-values

e,S e, d e, r e, L e, inf e, b

par 6.8 6.9 12.2 7.3 9.2 8.8

nonpar 8.5 12.6 13.7 11.0 11.0 11.3
(0.003) (0.003) (0.000) (0.004) (0.000) (0.000)

Yt = β0 + β>X t−1 + εt vs. Yt = g(X t−1) + ξt

Par: Improved prediction with extra variable inf , b, r

Model {e, r} even better than one-dim. nonpar.

Nonpar: All shown models beat significantly historical mean and seem to

improve prediction compared to 2-dim par.

Increase in predictive power of ”only” 12% compared to first step
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Second Step: Two-dim. guided by prior

Table: Predictive power: R2
V

e,S e, d e, r e, L e, inf e, b

nonpar 8.5 12.6 13.7 11.0 11.0 11.3
prior 6.6 13.5 12.1 12.8 9.5 8.0

Here we include always same variables for prior (linear regression) and

correction (nonpar.)

Increase of 7% for {e, d} and 16% for {e, L}

Slightly decrease for the rest:

Poor prior or already adequate 2-dim. fit ?
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Third Step: Different variables for prior

Table: Predictive power: R2
V

S d e r L inf b

e 8.8 7.6 9.3 15.8 10.7 11.4 11.8
e, L 9.9 13.1 14.2 18.5 13.3 13.3 11.4

Prior: 1-dim. linear regression

Correction, i.e. nonparametric factor:

I 1-dim: {e,S}, {e, r}, {e, inf }, {e, b} improve compared to fully nonpar.
I 2-dim: e. g. {e, L} improvement of 29%
I Best: {e, L , r} (35% to fully nonpar, 131% to par)
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Third Step: Graphs of best model
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Example II

Working with Predicted Factors
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The prediction framework

The excess stock return:

St = log{(Pt + Dt )/Pt−1} − rt−1

with dividends Dt paid during year t , stock price Pt at the end of year t ,

and short-term interest rate rt

rt = log(1 + Rt/100)

with discount rate Rt

Covariates with predictive power in simple regression: dividend-price ratio,

earnings-price ratio, or interest rates

In nonpar. regression

Yt = g(dt−1,St−1) + εt

with dividend-price ratio dt−1 and excess stock returns St−1
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Prediction with Bonds ?

There exists some economic motivation:

Usually: separate analysis of stocks and bonds (positively correlated)

Same year’s bond yield is basically the prediction error

FED-Model: Direct comparison of stocks and bonds

Are stocks and bonds driven by the same factors/informations?

To what extent they move together (co-movement)?

Economic theory: prices are driven by fundamentals, investors should

focus on forward earnings and profitability

Use unknown bond of the current year as further covariate
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Prediction with constructed regressors

Consider now the two-step procedure

1. Step: Construct bond yields with nonparametric model

bt = m(vt−1) + ζt ,

where vt−1 vector of regressors (e. g. last years bond yield, interest rate,

dividend-price ratio, or excess stock returns)

2. Step: Include pilot estimate b̂t in local-linear kernel-regression

Yt = g(b̂t ,wt−1) + εt .

Note:

I Bandwidth choice (CV) in each or only in the final step
I Simple linear model automatically embedded (estimated without bias)
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Statistical framework

Exists some statistical motivation?

Let g̃ be the function of (unknown) actual bond

Yt − g(b̂t ) = Yt − g̃(bt ) + g̃(bt ) − g(b̂t ) ' ε̃t + g′(b̂t )(bt − b̂t )

Second term quite predictable (empirical study)

Maybe a closer look to the prediction error clarifies the relation of bond and

stock prediction

Asymptotically for dependent data (algebraic α-mixing): as had we

observed the real bond

Theorem

| gLL (b̂t ) − g̃(bt ) | → 0
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Why using constructed regressors in Statistics ?

Interpret first stage as optimal nonparametric transformation

Mapping the long-term interest rate to current bond yield

Lt−1 −→ b̂t

Subsequent nonparametric smoother of transformed variable is

characterized by less bias

Practical example of method of Park et al. (1997) which improves

nonparametric regression with simple transformation techniques

Small difference: We use additional variable, in their work they estimate on

the original scale
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The old stories ...

Why not directly vt−1 in stock prediction?

Multi-dim. estimation suffers from the curse of dimensionality in several

aspects:

I Dimension of the covariates
I Interpretability

To circumvent curse of dimensionality more structure proposed:

I Additivity
I Semiparamteric modeling

Use obtained structural information (not necessarily additive) as a kind of

dimension and complexity reduction

Reduce variation and improve predictive power in the R2
V –sense
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Illustration with Danish data

Description of the data

Annual Danish stock and bond market data (period: 1922–1996)

Value weighted portfolio of individual stocks (chosen to obtain maximum

coverage of the market index of CSE)

CSE open during the second world war

Corrections for stock splits and new equity issues below market prices

More details: Lund and Engsted (1996).

Variables: stock price index, dividend accruing to index, bond, short- and

long-term interest rates
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Danish data: Bond prediction

Table: R2
V of different Bond models 1923–1996

vt−1 S L r S,r S,r,b

par 11.6% 24.0% 22.3% 33.1% 37.4%
nonpar 16.3% 23.9% 26.8% 33.0% 37.4%

Bonds seem to be predictable in an adequate way

Actually with both, parametric and nonparametric models

... there exist also some (here largely neglected) literature on parametric

bond prediction ...
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Danish data: Stock prediction

Table: R2
V of different Stock models 1923–1996

wt−1\vt1 d r b d,L d,r r,b

par -6.3% -5.7% -4.0% -5.8% -7.2% 0.5%
nonpar -1.4% -3.6% 5.9% -6.0% -7.4% -8.6&

b̂t 8.3% 1.4% 10.6% -3.8% 2.9% -3.6%
b̂t , vt−1 13.9% 16.3% 8.9% 28.3% 21.6% 20.3%

All parametric models with negative R2
V

Very good results in general for diagonal wt−1 = vt−1

Improvement of prediction from R2
V = 5.9% to

I R2
V = 28.9% for ĝ(b̂t , dt−1,St−1, Lt−1) and b̂t = p̂(dt−1, Lt−1)

I R2
V = 30.3% for ĝ(b̂t , dt−1,St−1, Lt−1) and b̂t = p̂(dt−1)
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Consumer Demand Analysis

estimating expenditure equations

starting from dual problems
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Preliminary Remarks to Preferences and Demand

for utility U, nominal total expenditures X , prices P, quantities Q, shares W

Consider the consumer problem:

1 Max U = v(Q) subject to P ′Q = X
2 Min X = P ′Q subject to v(Q) = U

with solution: Qi = gi(X ,P) = hi(U,P), i = 1, . . . ,M

1 the Marshallian (or uncompensated) demands and
2 the Hicksian (or compensated) demands respectively

substituting into original problems gives

1 the indirect utility function U = V(X ,P), and
2 the cost function X = C(U,P) respectively
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Some Properties of the cost function

1 homogeneous in prices, i.e. C(U, θP) = θC(U,P) ∀θ > 0

2 concave in prices

3 increasing in U and at least one Pi , nondecreasing in all

Assuming differentiability we get by Shephard’s Lemma

∂C(U,P)

∂Pi
= hi(U,P) = Qi = gi(X ,P) = −

∂V/∂Pi

∂V/∂X

called Roy’s identity, and for budget shares

wi =
∂ ln C(U,P)

∂ ln Pi
=

∂ ln V/∂ ln Pi∑
∂ ln V/∂ ln Pk
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Properties of Integrability

Often one concentrates on

1 homogeneity gi(θX , θP) = gi(X ,P) = hi(U,P) = hi(U, θP)

2 symmetry ∂hi(U,P)/∂Pj = ∂hj(U,P)/∂Pi

3 Negativity {∂hi/∂Pj}i,j is neg. semidef.

Notes:

Slutsky or substitution matrix: { ∂hi
∂Pj
}i,j =

{
∂gi
∂X Qj + ∂gi

∂Pj

}
i,j

Engel curves describing quantities (or shares) as functions of total

expenditure / income

Here, we will also focus on separability and possible linearity
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An Almost Ideal Case

Set u = ln U, p = ln P
Assume log-cost function may be written as

ln CAI(p, u) = f1(p) + f2(p)u

e.g. f1(p = p′a) + 1
2 p′Ap and f2(p) = 1 + p′b

Invert to get indirect utility as

VAI(p, x) =
x − f1(p)

f2(p)

Then, the AI compensated expenditure-share system is

ωAI(p, u) = a + p′A + bu

and the uncompensated expenditure-share system

wAI(p, x) = a + p′A + b
x − f1(p)

f2(p)
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Example III

Starting from the Indirect Utility Model
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Our indirect utility Model

Define indirect utility V(p, x) to give maximum utility attained by a consumer

when faced with

log–prices p = (p1, . . . , pM)

log–total expenditure x

A partially linear indirect utility function

V(p, x) = x − f(x)>p −
1
2

p>Ap

f = (f1, . . . , fM)> unknown differentiable functions of log–total expenditure

A = {akl}Mk ,l=1 parameters
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Our indirect utility Model

Define indirect utility V(p, x) to give maximum utility attained by a consumer

when faced with

log–prices p = (p1, . . . , pM)

log–total expenditure x

Extension to varying coefficients

V(p, x) = x − f(x)>p −
1
2

p>A(x)p

f = (f1, . . . , fM)>, A(x) = {akl(x)}Mk ,l=1 unknown differentiable functions of

log–total expenditure
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The Regression Model

With Roy’s identity

wk (p, x) = −
∂V(p, x)/∂pk

∂V(p, x)/∂x

we get expenditure shares as functions of total expenditure and all prices

w(p, x) =
f(x) + Ap

1 − ∇x f(x)> p

Rationality restrictions:

Slutsky-symmetry if A = A>

For homogeneity use x̃ = x − pM and p̃k = pk − pM for all k

Adding-up by construction wM(p̃, x̃) = 1 −
M−1∑
k=1

wk (p̃, x̃)
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Estimation

Consider M − 1 expenditure share equations

w(p̃, x̃) =
f(x̃) + Ap̃

1 − ∇x̃ f(x̃)> p̃

Basic idea:

Iteratively solving minimization problems for nonparametric part (adapted

kernel smoothing)

Symmetry-restricted least squares for parametric coefficients

Local-polynomial approximation

f(t) ≈ f(x̃) + ∇x̃ f(x̃)(t − x̃) ≈ α(x̃) + β(x̃)(t − x̃)
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Estimation - Notes

The local problem is then

min
α(x̃), β(x̃), A

N∑
i=1

e>i Ω e i

e i ≡ w i −
α(x̃) + (x̃i − x̃)β(x̃) + Ap̃ i

1 − β(x̃)>p̃ i

with (M − 1) × (M − 1) weighting matrix Ω

Key idea:

Local-polynomial model for numerator

Lower-order local-polynomial in denominator

Get starting values from reference group where p̃ = 0
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Example IV

Starting from the Log-Cost Model
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Our log-cost Model

Redef. {W1
i , ...,W

M
i ,P

1
i , ...,P

M
i ,Xi}

n
i=1 random vector giving the expenditure

shares, log-prices, and log-expenditures

Extend the (homothetic) translog model to

ln C(p, u) = u + p′β (u) +
1
2

p′Ap

Dual indirect utility function is

u = V(p, x) = x − p′β (u) −
1
2

p′Ap

cannot be solved for u analytically

Shephard’s Lemma gives compensated expenditure share

ω(p, u) = β (u) + Ap
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The (Almost) Observable Demand System

Properties yield Restrictions: ι′β (u) = 1 and A ′ι = 0M are sufficient for

homogeneity, A = A ′ for symmetry

re-scale prices s.th. p = 0M , then V(p, x) = x

log real expenditure, xR = R(p, x) , with reference p, then

V(p, x) = V(p, xR), xR = R(p, x) = ln C(p,V(p, x))

what yields R(p, x) = V(p, x).

Thus, uncompensated shares can be defined by substituting xR for u

in compensated demand system:

w(p, x) = ω(p,V(p, x)) = ω(p,V(p,R(p, x)))

= β (V(p,R(p, x))) + Ap = β
(
xR

)
+ Ap
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Estimation of parametric part

Consider for each product j the sample

w j
i − w j

k = βj(xR
i ) − βj(xR

k ) + a j(p i − pk ) + ε
j
i − ε

j
k ,∀ i , k .

Weighting inversely to |xR
i − xR

k | cancels βj , and estimator is

ÂRSF = Ĥ−1
PPĤPW

ĤPW =

(
n
2

)−1 n∑
i=1

n−1∑
k=i+1

(p i − pk )(w i − wk )T v̂ik

and ĤPP analogously, where v̂ik = Kh(x̂R
i − x̂R

k )

√
n
(
â j

RSF − a j
)
→ N

(
0,E

[
Σ−1

P |XR

]
E [PXσjj(X ,P)P ′X ] E

[
Σ−1

P |XR

])
where PX := P − E[P |XR ].
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Estimation of the nonparametric part

Have in mind xR is predicted, so make use of constructed regressors

As A is estimated with parametric rate, use ordinary loc.lin.

θ̂(xR) = argmin
n∑

i=1

{
(w j

i − â jp i) − θ1 − θ2(x̂R
i − xR)

}2
Kh(x̂R

i − xR)

Then we get√
(nh ∧ ngn)

{
β̂(xR) − β(xR) − Bβ(xR)

}
−→ N

(
0,Σβ(xR)

)
Bβ(xR) =

h2

2
µ2(K)β′′(xR) − BX (x0,p0)β′(xR)

where µl(K) =
∫

v lK(v)dv and

1
nh ∧ ngn

Σβ(xR) =
1

nh
p−1(xR)||K ||22Σε(xR) ⊕ σ2

X (x0,p0)β′2(xR)
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Varying Price Effects

If second-order price effects are not independent of utility:

ln C(p, u) = u + p′β (u) +
1
2

p′A(u)p

Indirect utility and compensated expenditure-shares are

u = V(p, x) = x − p′β (u) −
1
2

p′A(u)p

ω(p, u) = β (u) + A(u)p

Again, at base prices one has

β(u) = β
(
xR

)
, A

(
xR

)
= A(u) = A(V(p, x)) = A(V(p, xR))

Therefore, we get w(p, xR) = β
(
xR

)
+ A(xR)p

Combine consistency results on varying coeffs with those on generated
regressors
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Estimation of Model with varying Price Effects

Following Cleveland, Grosse, Shyu (1991), and Sperlich (2009)

n∑
i=1

[
W j

i − β
j
0 − β

j
1(x̂R

i − xR
0 ) −

{
a j

0 + a j
1(x̂R

i − xR
0 )

}′
P i

]2
Kh(x̂R

i − xR
0 )

β̂j(xR
0 ) := β

j
0 , â j(xR

0 ) = (â j
1, . . . , â

j
M)′(xR

0 ) := a j
0

V1 E[(p j)2s] < ∞ for some s > 2, ∀j. Second derivative of

rjk (xR) := E[p jpk |xR ] is cont. and bounded from zero

V2 Second derivatives of A(xR) are cont. and bounded

Set a j
0(xR) := βj(xR) , P0

i ≡ 1 for all i
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Set αk :=
(
ak

0 , a
k
1 , · · · , a

k
M

)′
for k = 1, . . . ,M. Then it holds√

(nh ∧ ngn)
{
α̂k − αk − Bk (xR)

}
−→ N

(
0,Σαk (xR)

)
with

Bk (xR) =
h2

2
µ2(K)α′′k − BX (x0, p0)α′k

The covariance structure is given by

1
nh

p−1(xR)||K ||22ΩΣεk ,k (xR) ⊕ σ2
X (x0, p0)(α′k )2

respectively by
1

nh
p−1(xR)||K ||22Ωj,jΣε(xR) ⊕ σ2

X (x0, p0)γ′2j

where Ω−1 := E
[
(P0,P1, . . . ,PM)′(P0,P1, . . . ,PM)|xR

]
and γj = (a1

j , a
2
j , . . . , a

M
j ), j = 0, . . . ,M
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Consistent initial estimator for x̂R
i

Def. log nominal expenditure, xN = N(p, x) as level of expend. at p which

yields same level of utility as x at p.

Again, is implicitly defined by

x = V(p, x) = V(p, xN) = xN − p′β
{
V(p, x)

}
−

1
2

p′Ap

⇐⇒ xN = N(p, x) = x + p′β (x) +
1
2

p′Ap

Further, note xR = R(p, x) = N−1(p, x) .

Monotonic increasing costs in utility give monotonic increase of R(p, x) and

N(p, x) in x for each p, i.e. we can invert N. Further, for each p fixed, and

t = N̂(p, x), R̂(p, t) = N̂−1(p, t),

sup
t
|R̂(p, t) − R(p, t)| ≤ sup

t
|
d
dt

R(p, t)| sup
v
|N(p, v) − N̂(p, v)|

so initial estimate for function N would do
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Initial Estimators for β and A

Recall that for p = 0M we have xR = R(p, x) = x, s.th.

E[W i |Xi = x,P i = p] = β(x) = β(xR)

Use smoother for people facing p (or including neighbors)

A is matrix of log-price derivatives of compensated expenditure share eqns,

i.e. of compensated semi-elasticities. In general, can be expressed in terms

of observables:

Υ(p, x) = ∇ppw(p, x) + ∇xw(p, x)w(p, x)′

Therefore, a consistent estimator for A is given by

Â0 =
1
n

n∑
i=1

Υ̂(P i ,Xi)

with estimating w(p, x) and its derivatives nonparametrically
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Inference and Restrictions

Easy to impose homogeneity,

straight forward to impose symmetry,

but hard to guarantee concavity / negativity without overdoing.

Restricted estimators provide directly specification tests, usually based on

bootstrap or subsampling.

In application rejected for example symmetry but - different to parametric

models - could analyze why !

Typical criticism

Hard to implement and calculate

Dependence on bandwidth choice

Extensions

IV methods for problems of endogeneity
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