The Impact of Longevity Risk Hedging on Economic Capital

Andrew J.G. Cairns
Heriot-Watt University, Edinburgh

IFoA Life Conference, November 2016

ARC Research Programmes

Actuarial Research Centre (ARC):
funded research arm of the Institute and Faculty of Actuaries

Three major programmes started in 2016, including Modelling, Measurement and Management of Longevity and Morbidity Risk

- New/improved models for modelling longevity
- Management of longevity risk
- Underlying drivers of mortality
- Modelling morbidity risk for critical illness insurance

Outline

- Introduction and motivation
- Hedging longevity risk with an index-based call-spread option contract
- Anatomy of a hedging calculation in 22 easy steps!
- Numerical example
- Discussion

Motivation

- Longevity risk
- Measurement
- e.g. Capital Requirement
- Best estimate + extra for risk
- Longevity risk management
- customised hedges
- index-based hedges

Motivation

- Why use General Population Longevity Index based risk transfer instruments?
\rightarrow Capacity and Price
- Pros/cons
- Transferred risk is efficiently priced
- But hedger left with basis risk
- Thus we need
- a clear and rigorous approach to quantify basis risk
- hedger and regulator agreement on approach
- to quantify properly the Capital Relief

Introduction

- Underlying problem:
- Life insurer
- Aim 1: measure mortality/longevity risk
- Aim 2: manage mortality/longevity risk
- e.g. to reduce regulatory capital
\Longleftrightarrow regulatory engagement/acceptance
- e.g. to reduce economic capital
- e.g. to increase economic value
- Further aim:
to bridge the Academic/Practitioner gap

Regulatory Capital Requirements: Annuity Portfolio

- Solvency II options:
- Solvency Capital Requirement, SCR= difference between Best estimate of annuity liabilities (BE) and Annuity liabilities following an immediate 20% reduction in mortality
- or $\mathrm{SCR}=$ extra capital required at time 0 to ensure solvency at time 1 with 99.5% probability
- or $S C R=$ extra capital at time 0 to ensure solvency at time T with $x \%$ probability

Liability to be Hedged

- $L=$ random PV at time 0 of liabilities
- $L(0)=$ point estimate of L based on time 0 info
- $L(T)=$ point estimate of L based on info at T $=\mathrm{PV}$ of actual cashflows up to T + PV of estimated cashflows after T
- Risk \Rightarrow capital requirements

What type of hedge to modify capital requirements and manage risk?

Hedging Options

- Index-based hedge
- Synthetic $\tilde{L}(T) \approx$ true $L(T)$
- Call spread derived from underlying $\tilde{L}(T)$ Payoff at T, per unit

$$
H(T)= \begin{cases}0 & \text { if } \tilde{L}(T)<A P \text { (Attachment Point) } \\ \tilde{L}(T)-A P & \text { if } A P \leq \tilde{L}(T)<E P \text { (Exhaustion Point) } \\ E P-A P & \text { if } E P \leq \tilde{L}(T)\end{cases}
$$

The Synthetic $\tilde{L}(T)$

- $\tilde{L}=$ random PV at time 0 of a portfolio of synthetic liabilities
- Synthetic mortality experience
- based on general population mortality
- adjusted using experience ratios
- $\tilde{L}(T)=$ point estimate of \tilde{L} based on info at T $=\mathrm{PV}$ of actual synthetic cashflows up to T +PV of estimated synthetic cashflows after T

Questions and Observations

- What impact $L(T) \quad \longrightarrow \quad L(T)-H(T)$?
- Need a two population mortality model
- Practical reality: calculation is more complex than academic 'ideal world'
- What are good choices of $A P, E P, T$?

Anatomy of a Hedging Calculation in 22 Easy Steps!

Anatomy of a Hedging Calculation: Steps 1, 2

Anatomy of a Hedging Calculation: Steps 3-5

Anatomy of a Hedging Calculation: Steps 6, 7, 14, 15, 17

Anatomy of a Hedging Calculation: Steps 8, 9, 12

Anatomy of a Hedging Calculation: Steps 10,11,13,14,16,18

Anatomy of a Hedging Calculation: Steps 19-22

How many models do you need?

Academic 'ideal': One model
In practice:

- Time 0 :
- Liability valuation model (BE + SCR)
- Simulation model $(0 \rightarrow T)$
- Time T :
- Hedge instrument valuation model
- Liability valuation model
- 'Models' for extrapolating to high (and low) ages

Time 0 Models

- Unhedged Liabilitiies:

Deterministic BE $+20 \%$ stress

- Simulation: (by way of example)
- General population: (Lee-Carter/M1)

$$
\ln m_{\text {gen }}(x, t)=A(x)+B(x) K(t) \quad(\text { Lee-Carter } / \mathrm{M} 1)
$$

- Hedger's own population: (M1-M5X)

$$
\ln m_{p o p}(x, t)=\ln m_{\text {gen }}(x, t)+a(x)+k_{1}(t)+k_{2}(t)(x-\bar{x})
$$

Time T models

- Hedge instrument:
- Lee-Carter (M1) for general population
- Recalibration: on basis specified at time 0

$$
q_{p o p}^{H}(x, t)=q_{g e n}^{H}(x, t) \times E R(x, 0) \rightarrow \tilde{L}(T) \rightarrow H(T)
$$

- Liability: specific (hedger's) population
- Lee-Carter (M1) for general population
- Possibly different calibration from the hedge instrument
- $q_{\text {pop }}^{L}(x, t)=q_{g e n}^{L}(x, t) \times E R(x, T) \rightarrow L(T)$
- Approach must mimic local practice

Hedging Example

- Data: Netherlands
- CBS national data
- CVS insurance data (Dutch aggregated industry experience data)
- Hedge instrument maturity: $T=10$
- Attachment and exhaustion points at 60% and 95% quantiles of $\tilde{L}(T)$
- Key point: $E P^{\prime \prime} \ll^{\prime \prime} 99.5 \%$ quantile of $\tilde{L}(T)$

Hedging Example

- Portfolio of deferred and immediate annuities
- Current ages 40 to 89
- Weights (\equiv pension amounts):

$$
w_{x}= \begin{cases}x-25 & \text { for } 40 \leq x<50 \\ 25 & \text { for } 50 \leq x<65 \\ 90-x & \text { for } x \geq 65\end{cases}
$$

- Deferred to age 65
- Before and after: Compare $L(T)$ with $L(T)-H(T)$
- SCR $=99.5 \%$ quantile - mean

Hedging Example ($n=10,000$ scenarios)

Simulated Annuity Portfolio Present Values

Hedging Example: Unhedged VaR $=11,649$

Simulated Annuity Portfolio Present Values

Hedging Example: Hedged $V a R=11,199$

Simulated Annuity Portfolio Present Values

Plot shows kinked contours of $L(T)-H(T)$.

Hedged $\operatorname{VaR}=11,119$ with no Pop. Basis Risk

Simulated Annuity Portfolio Present Values

Plot shows kinked contours of $L(T)-H(T)$.

Hedging Example: VaR Calculations

Liability Distribution Functions

Liability Distribution Functions

Note: CDF makes no allowance for the price of the hedge.

Hedging Example: Higher AP (0.65) and EP (0.995)

Liability Distribution Functions

Liability Distribution Functions

Numerical Example: AP, EP $=60 \%$ and 95% quantiles

$L(0):$	$S C R_{20 \% \text { stress }}$	840	
$\tilde{L}(T):$	$S C R_{10}$	840	(Pop 1; no hedge)
$\tilde{L}(T)-H(T):$	$S C R_{11}$	478	(Pop 1; with $\tilde{L}(T)$ hedge)
$L(T):$	$S C R_{20}$	960	(Pop 2; no hedge)
$L(T)-H(T):$	$S C R_{21}$	598	(Pop 2; with $\tilde{L}(T)$ hedge)

Table: SCR values in excess of the mean liability. For the hedging instrument $A P=10779$ (60% quantile) and $E P=11228$ (95% quantile). Pop 1: synthetic $\tilde{L}(T)$. Pop 2: true $L(T)$.

How good is the hedge?

- "Good" \Rightarrow price and risk reduction
- "Good" \leftrightarrow Types of basis risk
- Structural (e.g. non-linear payoff)
- Population basis risk
- Within population (e.g.linkage to different cohort)
- Different population
- Hedge effectiveness \Rightarrow \% reduction in required capital
- Haircut \Rightarrow impact on capital relief as a result of population basis risk
- EIOPA Solvency II guidelines \Rightarrow regulatory approval should focus on the haircut

Numerical Example: AP, EP $=60 \%$ and 95% quantiles

$L(0):$	$S C R_{20 \% \text { stress }}$	840	
$\tilde{L}(T):$	$S C R_{10}$	840	(Pop 1; no hedge)
$\tilde{L}(T)-H(T):$	$S C R_{11}$	478	(Pop 1; with $\tilde{L}(T)$ hedge)
$L(T):$	$S C R_{20}$	960	(Pop 2; no hedge)
$L(T)-H(T):$	$S C R_{21}$	598	(Pop 2; with $\tilde{L}(T)$ hedge)

Table: SCR values in excess of the mean liability. For the hedging instrument $A P=10779$ (60% quantile) and $E P=11228$ (95\% quantile). Pop 1: synthetic $\tilde{L}(T)$. Pop 2: true $L(T)$.

What is the impact of Population basis risk on hedge effectiveness?

$$
\text { Haircut } H C=1-\frac{S C R_{20}-S C R_{21}}{S C R_{10}-S C R_{11}}=0.000
$$

Haircut ≈ 0 : Interpretation

- Here $E P$ " \ll " 99.5% quantile
- Above the 99.5% quantile the call spread (almost) always pays off in full
- So population basis risk \Rightarrow little impact
- Structural basis risk prevails
- More detailed analysis \Rightarrow Haircut is worst (highest) when EP is close to the 99.5% quantile.

Reduction in SCR: Dependence on AP and EP

Reduction in SCR with Hedge as a Percentage of SCR without Hedge

Sensitivity to Hedge Maturity, T

- e.g. $T=20$
- \% reduction in SCR is slightly higher
- Haircut is slightly worse
- Haircut is still ≈ 0 for $E P \leq 99.5 \%$ quantile
- The longer the maturity:
- less liquid market
- less confidence in future reserving method
- more future capital relief (everything else held constant)

Summary

- Bridging the gap:

Academics \leftrightarrow Insurance practitioners \leftrightarrow Regulators

- Academics: practice is more messy than you would like!
- Practitioners: insightful exercise, ultimately allows for flexible longevity risk management.

Thank You!

Questions?

