The Impact of Longevity Risk Hedging on Economic Capital

Andrew J.G. Cairns

Heriot-Watt University, Edinburgh

IFoA Life Conference, November 2016

ARC Research Programmes

Actuarial Research Centre (ARC):

funded research arm of the Institute and Faculty of Actuaries

Three major programmes started in 2016, including

Modelling, Measurement and Management of Longevity and Morbidity Risk

- New/improved models for modelling longevity
- Management of longevity risk
- Underlying drivers of mortality
- Modelling morbidity risk for critical illness insurance

Outline

- Introduction and motivation
- Hedging longevity risk with an index-based call-spread option contract
- Anatomy of a hedging calculation in 22 easy steps!
- Numerical example
- Discussion

Motivation

- Longevity risk
- Measurement
 - e.g. Capital Requirement
 - Best estimate + extra for risk
- Longevity risk management
 - customised hedges
 - index-based hedges

Motivation

- Why use General Population Longevity Index based risk transfer instruments?
 - → Capacity and **Price**
- Pros/cons
 - Transferred risk is efficiently priced
 - But hedger left with basis risk
- Thus we need
 - a clear and rigorous approach to quantify basis risk
 - hedger and regulator agreement on approach
 - to quantify properly the Capital Relief

Introduction

- Underlying problem:
 - Life insurer
 - Aim 1: measure mortality/longevity risk
 - Aim 2: manage mortality/longevity risk
 - e.g. to reduce regulatory capital
 regulatory engagement/acceptance
 - e.g. to reduce economic capital
 - e.g. to increase economic value
- Further aim:
 to bridge the Academic/Practitioner gap

Regulatory Capital Requirements: Annuity Portfolio

- Solvency II options:
 - Solvency Capital Requirement,
 SCR= difference between
 Best estimate of annuity liabilities (BE) and
 Annuity liabilities following an immediate
 20% reduction in mortality
 - or SCR= extra capital required at time 0 to ensure solvency at time 1 with 99.5% probability
 - or SCR= extra capital at time 0 to ensure solvency at time T with x% probability

Liability to be Hedged

- L = random PV at time 0 of liabilities
- L(0) = point estimate of L based on time 0 info
- L(T) = point estimate of L based on info at T
 = PV of actual cashflows up to T
 + PV of estimated cashflows after T
- Risk ⇒ capital requirements

What type of hedge to modify capital requirements and manage risk?

Hedging Options

- Index-based hedge
 - $_{ullet}$ Synthetic $ilde{\it L}({\it T}) \; pprox \; \; {
 m true} \; {\it L}({\it T})$
 - Call spread derived from underlying $\tilde{L}(T)$ Payoff at T, $per\ unit$

$$H(T) = \left\{ \begin{array}{ll} 0 & \text{if } \tilde{L}(T) < AP \text{ (Attachment Point)} \\ \tilde{L}(T) - AP & \text{if } AP \leq \tilde{L}(T) < EP \text{ (Exhaustion Point)} \\ EP - AP & \text{if } EP \leq \tilde{L}(T) \end{array} \right.$$

The Synthetic $\tilde{L}(T)$

- ullet $\tilde{L}=$ random PV at time 0 of a portfolio of synthetic liabilities
- Synthetic mortality experience
 - based on general population mortality
 - adjusted using experience ratios
- $\tilde{L}(T)$ = point estimate of \tilde{L} based on info at T
 - = PV of actual *synthetic* cashflows up to T
 - + PV of estimated *synthetic* cashflows after *T*

Questions and Observations

- What impact $L(T) \longrightarrow L(T) H(T)$?
- Need a two population mortality model
- Practical reality: calculation is more complex than academic 'ideal world'
- What are good choices of AP, EP, T?

Anatomy of a Hedging Calculation in 22 Easy Steps!

Anatomy of a Hedging Calculation: Steps 1, 2

Anatomy of a Hedging Calculation: Steps 3-5

Anatomy of a Hedging Calculation: Steps 6, 7, 14, 15, 17

Anatomy of a Hedging Calculation: Steps 8, 9, 12

Anatomy of a Hedging Calculation: Steps 10,11,13,14,16,18

Anatomy of a Hedging Calculation: Steps 19-22

How many models do you need?

Academic 'ideal': One model In practice:

- Time 0:
 - Liability valuation model (BE + SCR)
 - Simulation model $(0 \rightarrow T)$
- Time *T*:
 - Hedge instrument valuation model
 - Liability valuation model
- 'Models' for extrapolating to high (and low) ages

Time 0 Models

- Unhedged Liabilitiies:
 Deterministic BE + 20% stress
- Simulation: (by way of example)
 - General population: (Lee-Carter/M1)

$$\ln m_{gen}(x,t) = A(x) + B(x)K(t) \text{ (Lee-Carter/M1)}$$

Hedger's own population: (M1-M5X)

$$\ln m_{pop}(x,t) = \ln m_{gen}(x,t) + a(x) + k_1(t) + k_2(t)(x-\bar{x})$$

Time T models

- Hedge instrument:
 - Lee-Carter (M1) for general population
 - Recalibration: on basis specified at time 0

$$q_{pop}^{H}(x,t) = q_{gen}^{H}(x,t) \times ER(x,0) \rightarrow \tilde{L}(T) \rightarrow H(T)$$

- Liability: specific (hedger's) population
 - Lee-Carter (M1) for general population
 - Possibly different calibration from the hedge instrument
 - $q_{pop}^L(x, t) = q_{gen}^L(x, t) \times ER(x, T) \rightarrow L(T)$
 - Approach must mimic local practice

Hedging Example

- Data: Netherlands
 - CBS national data
 - CVS insurance data (Dutch aggregated industry experience data)

- ullet Hedge instrument maturity: T=10
- Attachment and exhaustion points at 60% and 95% quantiles of $\tilde{L}(T)$
- ullet Key point: *EP* ''<<'' 99.5% quantile of $ilde{L}(T)$

Hedging Example

- Portfolio of deferred and immediate annuities
- Current ages 40 to 89
- Weights (\equiv pension amounts):

$$w_x = \begin{cases} x - 25 & \text{for } 40 \le x < 50\\ 25 & \text{for } 50 \le x < 65\\ 90 - x & \text{for } x \ge 65 \end{cases}$$

- Deferred to age 65
- Before and after: Compare L(T) with L(T) H(T)
- SCR = 99.5% quantile mean

Hedging Example (n = 10,000) scenarios)

Simulated Annuity Portfolio Present Values

Hedging Example: Unhedged VaR = 11,649

Hedging Example: Hedged VaR = 11,199

PV(0) Specific Portfolio Liability, L(T)

Plot shows kinked contours of L(T) - H(T).

Hedged VaR = 11,119 with no Pop. Basis Risk

Plot shows kinked contours of L(T) - H(T).

Hedging Example: VaR Calculations

Note: CDF makes no allowance for the price of the hedge.

Hedging Example: Higher AP (0.65) and EP (0.995)

Numerical Example: AP, EP = 60% and 95% quantiles

<i>L</i> (0):	$SCR_{20\%stress}$	840	
$\tilde{L}(T)$:	SCR_{10}	840	(Pop 1; no hedge)
$\tilde{L}(T) - H(T)$:	SCR_{11}	478	(Pop 1; with $\tilde{L}(T)$ hedge)
<i>L(T)</i> :	SCR_{20}	960	(Pop 2; no hedge)
L(T) - H(T):	SCR_{21}	598	(Pop 2; with $\tilde{L}(T)$ hedge)

Table: SCR values in excess of the mean liability. For the hedging instrument AP=10779 (60% quantile) and EP=11228 (95% quantile). Pop 1: synthetic $\tilde{L}(T)$. Pop 2: true L(T).

How good is the hedge?

- "Good" ⇒ price and risk reduction
- ullet "Good" \leftrightarrow Types of basis risk
 - Structural (e.g. non-linear payoff)
 - Population basis risk
 - Within population (e.g.linkage to different cohort)
 - Different population
- Hedge effectiveness ⇒ % reduction in required capital
- Haircut ⇒ impact on capital relief as a result of population basis risk
- EIOPA Solvency II guidelines ⇒
 regulatory approval should focus on the haircut

Numerical Example: AP, EP = 60% and 95% quantiles

<i>L</i> (0):	SCR _{20%stress}	840	
$\tilde{L}(T)$:	SCR_{10}	840	(Pop 1; no hedge)
$\tilde{L}(T) - H(T)$:	SCR_{11}	478	(Pop 1; with $ ilde{\it L}(\it T)$ hedge)
<i>L(T)</i> :	SCR ₂₀	960	(Pop 2; no hedge)
L(T) - H(T):	SCR_{21}	598	(Pop 2; with $\tilde{L}(T)$ hedge)

Table: SCR values in excess of the mean liability. For the hedging instrument AP=10779 (60% quantile) and EP=11228 (95% quantile). Pop 1: synthetic $\tilde{L}(T)$. Pop 2: true L(T).

What is the impact of Population basis risk on hedge effectiveness?

Haircut
$$HC = 1 - \frac{SCR_{20} - SCR_{21}}{SCR_{10} - SCR_{11}} = 0.000.$$

Haircut \approx 0: Interpretation

- Here EP "<<" 99.5% quantile
- Above the 99.5% quantile the call spread (almost) always pays off in full
- So population basis risk ⇒ little impact
- Structural basis risk prevails

More detailed analysis ⇒
 Haircut is worst (highest) when EP is close to the 99.5% quantile.

Reduction in SCR: Dependence on AP and EP

Sensitivity to Hedge Maturity, T

- e.g. T = 20
- % reduction in SCR is slightly higher
- Haircut is slightly worse
- ullet Haircut is still pprox 0 for $EP \leq 99.5\%$ quantile
- The longer the maturity:
 - less liquid market
 - less confidence in future reserving method
 - more future capital relief (everything else held constant)

Summary

- Bridging the gap:
 Academics ↔ Insurance practitioners ↔ Regulators
- Academics: practice is more messy than you would like!
- Practitioners: insightful exercise, ultimately allows for flexible longevity risk management.

Thank You!

Questions?

