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1. Introduction and background

Copulas – a reminder

4

What is a copula?
• A ݀-dimensional copula is a 

multivariate distribution function on 
0,1 ௗ with uniform marginals

• Example: two-dimensional 
independence copula ܥ ,ݑ ݒ ൌ ݒݑ

Why copulas are useful?
• Application in internal models
• SCR = 99.5th percentile of ܮ ଵܺ, … , ܺௗ
• Copulas provide means of separating the 

loss function ܮ from the risk factor 
distribution ଵܺ, … , ܺௗ and applying 
simulation techniques to generate a full 
PDF

• ܮ can be estimated using a proxy model
• Models for the distribution functions of 

ଵܺ, … , ܺௗ and an algorithm for simulating 
values ݑଵ,… , ௗݑ from a copula, provide 
a recipe for generating simulations of the 

ଵܺ, … , ܺௗ :

…,ଵݑ , ௗݑ → ଵܺ, … , ܺௗ
ൌ ଵܨ

ିଵ ଵݑ , … , ௗܨ
ିଵ ௗݑ

Tail dependence
• Limiting conditional probability of joint 

extreme events
• Coefficients of tail dependence zero 

for Gaussian, non-zero for Student T

Sklar’s theorem – key result
ܨ a joint distribution function with 
continuous marginals ,ଵܨ … , :ௗܨ

ܥ …,ଵݑ , ௗݑ ൌܨ ଵܨ
ିଵ ଵݑ ,… , ௗܨ

ିଵ ௗݑ
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2. Theory vs. practice

Theory vs. practice
Textbook
• Low dimensions

• Dependency between 
similar risks (e.g. between 
equity stocks, or between 
exchange rates), often 
constituents of an index

• Large volume of data

• Consistent data periods 
and frequencies (e.g. daily)

• Homogeneity assists model 
selection and fitting and 
guarantees coherence (e.g. 
PSD correlation matrices)

In practice
• Higher dimensions

• More disparate risks (e.g. equity returns vs. 
interest rates, bond spreads vs. persistency)

• Limited data (or, sometimes, no useful data at all)

• Inconsistent time periods  need to use time 
intervals where data overlaps

• Sometimes inconsistent frequencies

• Parameter values vary significantly by time period

• Have to parameterise model “bit by bit” (e.g. 
correlations estimated over different data periods) 
or using judgement to compensate for lack of data

• Can lead to inconsistencies that require 
adjustments (e.g. non-PSD correlation matrices)

6
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3. The choices available

Implicit copulas

• Copulas underlying well-known multivariate distributions, e.g. Gaussian or Student T

• Defined by ܥ …,ଵݑ , ௗݑ  ൌ   ܨ ଵܨ
ିଵ ଵݑ ,… , ௗܨ

ିଵ ௗݑ
• Straightforward to simulate from.

• T copula:
– Simulate ܼ from ܰ 0, Σ (e.g. using Cholesky) and independently ܷ from ܷ 0,1 .
– Set ܹ ൌ ఔିଵሺܷሻܩ where ܩజ is the distribution function of  ߯ఔଶ

– Set ݑଵ,… , ௗݑ  ൌ ఔିଵݐ
ഌ
ೈ
௓భ , … , ఔିଵݐ

ഌ
ೈ
௓೏

• Individuated T (generalisation of T)
– Set ௜ܹ ൌ ఔ೔ܩ

ିଵሺܷሻ where ܩఔ೔ is the distribution function of  ߯ఔ೔
ଶ

– Set ݑଵ,… , ௗݑ  ൌ ఔభݐ
ିଵ ഌభ

ೈభ
௓భ , … , ఔ೏ݐ

ିଵ ഌ೏
ೈ೏

௓೏

• Large number of free parameters (e.g. correlation matrix Σ and degrees of freedom)
• Exhibit symmetry due to presence of quadratic form (elliptical – N and T, radial – IT)
• Student T and Individuated T exhibit non-zero tail dependence

8
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Explicit copulas

• Copula defined directly by a function

• Example – Archimedean copula

• ఝܥ ,ଵݑ … , ௗݑ ൌ ߮ିଵ ߮ ଵݑ ൅⋯൅ ߮ ௗݑ where ߮: ሾ0,1ሿ → ሾ0,∞ሻ is a strictly 
decreasing function (the generator function) with ߮ሺ0ሻ ൌ ∞ and ߮ 1 ൌ 0

• Large family, including Gumbel, Clayton, Frank, FGM, etc

– Gumbel ఏܥ	 ,ଵݑ ଶݑ ൌ expሺെ െ logݑଵ ఏ ൅ െ logݑଶ ఏ
భ
ഇൗ

– Clayton  ܥఏ ,ଵݑ ଶݑ ൌ ଵݑ
ିఏ ൅ ଶݑ

ିఏ െ 1
ିభ ഇൗ

• More challenging to simulate from

• Limited number of free parameters  less flexibility in modelling dependency 
in higher dimensions, but exhibit tail dependence

• Strong symmetry (under permutation of variables)

11
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Empirical copulas

• Step functions defined by data

• “Lumpy” when historical data is used

• Outputs therefore sensitive to data updates

• Can replace historical data with synthetic data generated using an 
ESG

• ESG output can be augmented to include insurance and other risks in 
addition to economic risks

• Could use Iman-Conover method as way of gluing ranks of simulated 
marginal distributions in line with ranks of simulated pseudo-
observations from copula (see e.g. Mildenhall)

• Not considered here but could be included in further work

14
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Choosing a copula
In practice

• Archimedean copulas less useful for applications in life assurance as 
they lack the number of free parameters required to reproduce range 
of correlations required in high dimensional problems

• May be more relevant for some non-life applications

• Dimensionality and modelling practicality reduces choice to elliptic 
family and generalisations – Gaussian, T and IT in practice

• Balance additional complexity with increased subjectivity of 
parameterisation against background of limited data

• Consider Use Test: transparency and communication

• Compensate for limitations (e.g. using Gaussian with stronger 
correlations)

• Vast majority of firms have opted for Gaussian, very few for T or IT

15

4. Fitting and validating
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A case study: equity, credit, fixed interest

• 211 data points: monthly 
from 31 December 1996 
to 30 June 2014

• 210 returns: monthly 
from January 1997 to 
June 2014

• Equity: returns on FTSE-
A All Share price index

• Credit: changes in OAS 
on 15 year+ ‘A’-rated 
credit

• Fixed interest: changes 
in PC1 coordinate on 
nominal gilt curve

17
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Approach

• Focus on Gaussian, T and Individuated T copulas

19

Copula Correlation Degrees of freedom

Gaussian Yes – dd matrix n/a

Student T Yes – dd matrix Yes – one

Individuated T Yes – dd matrix Yes – one for each risk

Test for evidence of 
dependence

Estimate 
parameters 
(maximum 
likelihood)

Review fitted 
copulas

Test for evidence of dependence

• Null hypothesis H0: independence copula applies

• Under H0, Spearman ~ N(0, 1/ ݊ െ 1) as ݊ → ∞

• n=210  can’t reject H0 if Spearman in [-0.136, 0.136]

• Strong evidence of non-trivial dependence

• Other tests based on other correlation measures show 
similar results

20

Risk Pair Spearman 95% CI P-value

Equity / Credit -0.426 [-0.562, -0.290] 7.310-10

Equity / PC1 0.165 [0.029, 0.300] 0.017

Credit / PC1 -0.275 [-0.410, -0.139] 7.110-5
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Parameter estimation
Individuated T density

21

ஊࣇܿ ࢛ ൌ න
߮ஊሺ

ఔభݐ
ିଵሺݑଵሻ
ఔభܩ
ିଵሺݏሻ

, … ,
ఔ೏ݐ
ିଵሺݑௗሻ
ఔ೏ܩ
ିଵሺݏሻ

ሻ	

∏ ఔೕܩ
ିଵሺݏሻௗ

௝ୀଵ

ଵ

଴

ݏ݀ ෑ 1൅
ఔೕݐ
ିଵ ௝ݑ

ଶ

௝ߥ

ି	
ఔೕାଵ
ଶ

	
Γ
௝ߥ ൅ 1
2

Γ
௝ߥ
2 ߨ௝ߥ

ௗ

௝ୀଵ

൚

where

• ߮ஊ ࢠ ൌ exp െ ଵ

ଶ
ࢠΣିଵ்ࢠ / ሺ2ߨሻௗdet	ሺΣሻ is the 

multivariate normal density

• ఔିଵݐ ݑ is the inverse of the standard Student’s T density 
with ߥ degrees of freedom

• ሻݏఔିଵሺܩ is the inverse distribution of ߥ/߯ఔଶሺݏሻ

Parameter estimation
Individuated T log likelihood

22

෍log න
߮ஊሺ

ఔభݐ
ିଵሺݑ௜,ଵሻ
ఔభܩ
ିଵሺݏሻ

, … ,
ఔ೏ݐ
ିଵሺݑ௜,ௗሻ
ఔ೏ܩ
ିଵሺݏሻ

ሻ	

∏ ఔೕܩ
ିଵሺݏሻௗ

௝ୀଵ

ଵ

଴

ݏ݀

௡

௜ୀଵ

൅
1
2
෍෍ ௝ߥ ൅ 1 log 1 ൅

ఔೕݐ
ିଵ ௜,௝ݑ

ଶ

௝ߥ

ௗ

௝ୀଵ

௡

௜ୀଵ

െ ݊෍log Γ
௝ߥ ൅ 1
2

ௗ

௝ୀଵ

൅ ݊෍log Γ
௝ߥ
2

ௗ

௝ୀଵ

൅
1
2
݊෍log ௝ߥ

ௗ

௝ୀଵ

൅
1
2
݊݀ log ߨ
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Results
Numerical techniques applied
• Gaussian and Standard T: standard libraries and functions in R

• Individuated T: we had to write these ourselves

23

Eq / Cr Eq / PC1 Cr / PC1

Rho Nu1 Nu2 Rho Nu1 Nu2 Rho Nu1 Nu2

Gaussian -0.489 - - 0.180 - - -0.317 - -

T -0.463 2.589 - 0.176 6.046 - -0.308 8.748 -

IT -0.464 2.465 2.690 0.218 39.30 0.577 -0.307 5.641 11.670

Eq / Cr / PC1 Rho Nu1 Nu2 Nu3

Gaussian 1
െ0.489 1
0.183 െ0.318 1

- - -

T 1
െ0.484 1
0.159 െ0.281 1

4.440 - -

IT 1
െ0.463 1
0.151 െ0.288 1

2.510 2.885 11.708

Review fitted copulas
Filtering techniques

• Visually and numerically

– AIC = -2logL + 2p where L = likelihood, p = number of parameters

– minimise AIC: Model A preferred to Model B if AICA < AICB

• Model A has pA parameters, Model B has pB (>pA) parameters, A is a special 
case of B

– D = 2(LB – LA) ~ ߯ሺ௣ಳି௣ಲሻ
ଶ

– 95th percentile of ߯ଵ
ଶ is 3.84 and 95th percentile of ߯ଶ

ଶ is 5.99.

24

Risk Pair Gaussian Standard T Individuated T

Equity / Credit

Equity / PC1

Credit / PC1

Eq / Cr / PC1

Is the increasing complexity justified?
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Review fitted copulas
Filtering – bivariate

26

Eq / Cr Rho Nu1 Nu2 log L AIC D (>3.84)

Gaussian -0.489 - - 27.35 -52.70 -

T -0.463 2.589 - 34.05 -64.10 13.40

IT -0.464 2.465 2.690 34.06 -62.11 0.01

Cr / PC1 Rho Nu1 Nu2 log L AIC D (>3.84)

Gaussian -0.317 - - 10.42 -18.84 -

T -0.308 8.748 - 10.97 -17.94 1.10

IT -0.307 5.641 11.670 10.99 -15.98 0.04

Eq / PC1 Rho Nu1 Nu2 log L AIC D (>3.84)

Gaussian 0.180 - - 3.36 -4.72 -

T 0.176 6.046 - 4.71 -5.42 2.71

IT 0.218 39.30 0.577 5.61 -5.23 1.81
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Review fitted copula
Filtering – trivariate

27

Copula Rho Nu1 Nu2 Nu3 log L AIC D (>6)

Gaussian 1
െ0.489 1
0.183 െ0.318 1

- - - 38.02 -70.03 -

T 1
െ0.484 1
0.159 െ0.281 1

4.440 - - 44.21 -80.42 12.39

IT 1
െ0.463 1
0.151 െ0.288 1

2.510 2.885 11.708 45.79 -79.58 3.16

• In practice, Individuated T gives greater ability to target prior 
beliefs

• But the extra complexity isn’t warranted statistically

Review fitted copula
An idea – Group T copulas

28

Copula Rho Nu1 Nu2 Nu3 log L AIC D (>3.84)

T 1
െ0.484 1
0.159 െ0.281 1

4.440 - - 44.21 -80.42 -

Group T
(IT with 
Nu1=Nu2)

1
െ0.463 1
0.151 െ0.287 1

2.733 2.733 11.391 45.79 -81.57 3.15

Group T
(IT with 
Nu1=Nu3)

1
െ0.479 1
0.154 െ0.278 1

5.055 3.191 5.055 44.52 -79.05 0.63

Group T
(IT with 
Nu2=Nu3)

1
െ0.482 1
0.158 െ0.284 1

3.587 4.861 4.861 44.31 -78.62 0.20

• A compromise could be Group T. Here it minimises AIC, but 
the change in deviance isn’t significant, albeit close.

• From here we focus on Gaussian and Student T
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Review fitted copula
Goodness of fit – Gaussian

29

Pseudo-observations (POBS)

௜ࢁ ൌ
௜ݑ
௜ݒ

Normalised POBS

௜ࢄ ൌ
Φିଵሺݑ௜ሻ
Φିଵሺݒ௜ሻ

Mardia’s test for multivariate 
normality

Independent

1

1 െ ଶߩ
Φିଵ ௜ݑ െ ௜ሻݒΦିଵሺߩ
Φିଵሺݒ௜ሻ െ ௜ሻݑΦିଵሺߩ

௜ࢄ െ ഥࢄ ்Sିଵ ௜ࢄ െ ഥࢄ

~ Scaled ߚ	and ~߯ௗ
ଶ as 

݊ → ∞

Review fitted copula
Goodness of fit – T

30

Pseudo-observations (POBS)

௜ࢁ ൌ
௜ݑ
௜ݒ

Studentised POBS

௜ࢄ ൌ
௜ሻݑሺ	ఔିଵݐ
௜ሻݒሺ	ఔିଵݐ

Independent

ଵ

ௗ
௜ࢄ െ ഥࢄ ்Sିଵ ௜ࢄ െ ഥࢄ ௗ,ఔܨ~

as ݊ → ∞
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• Under H0: Gaussian TS ൌ ௜ࢄ െ ഥࢄ ்Sିଵ ௜ࢄ െ ഥࢄ ~߯ௗ
ଶ as ݊ → ∞

• Under H0: ݐሺߥሻ TS ൌ
ଵ

ௗ
௜ࢄ െ ഥࢄ ்Sିଵ ௜ࢄ െ ഥࢄ ௗ,ఔܨ~ as ݊ → ∞

• We can test these using standard techniques

• Parameters estimated from data  bootstrapping needed 

Approach Anderson-Darling Kolmogorov-Smirnov

0 ෍
1െ 2݅
݊

log ௌ்ܨ ௜ݔ ൅ log 1 െ ௌ்ܨ ௜ݔ

௡

௜ୀଵ

െ ݊

1 max
௫

ௌ்ܨ ݔ െ ሻݔ஽ሺ்ܨ

ሻሺ1ݔ஽ሺ்ܨ െ ሻሻݔ஽ሺ்ܨ
max
௫

ௌ்ܨ ݔ െ ሻݔ஽ሺ்ܨ

2 න
ௌ்ܨ ݔ െ ሻݔ஽ሺ்ܨ

ሻሺ1ݔ஽ሺ்ܨ െ ሻሻݔ஽ሺ்ܨ
ሻݔ஽ሺ்ܨ݀ න ௌ்ܨ ݔ െ ሻݔ஽ሺ்ܨ ሻݔ஽ሺ்ܨ݀

Review fitted copula
Testing ࣑૛ and F

31

Equity / Credit
Goodness of fit

32

ρ = -48.9% ρ = -46.3%,  = 2.6

Kolmogorov-Smirnov

KS1 p-value: 0.128

KS2 p-value: 0.292

Anderson-Darling

AD0 p-value: 0.209

AD1 p-value: 0.296

AD2 p-value: 0.269

Mardia p-values: 0.335, 0.466

Scaled beta KS p-value: 0.202

Kolmogorov-Smirnov

KS1 p-value: 0.369

KS2 p-value: 0.534

Anderson-Darling

AD0 p-value: 0.603

AD1 p-value:0.191

AD2 p-value: 0.574
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Equity / PC1
Goodness of fit

33

ρ = 18.0% ρ = 17.6%,  = 6.0

Kolmogorov-Smirnov

KS1 p-value: 0.391

KS2 p-value: 0.423

Anderson-Darling

AD0 p-value: 0.375

AD1 p-value: 0.310

AD2 p-value: 0.453

Mardia p-values: 0.922, 0.402

Scaled beta KS p-value: 0.519

Kolmogorov-Smirnov

KS1 p-value: 0.556

KS2 p-value: 0.718

Anderson-Darling

AD0 p-value: 0.636

AD1 p-value: 0.117

AD2 p-value: 0.699

Credit / PC1
Goodness of fit

34

ρ = -31.7% ρ = -30.8%,  = 8.7

Kolmogorov-Smirnov

KS1 p-value: 0.788

KS2 p-value: 0.686

Anderson-Darling

AD0 p-value: 0.812

AD1 p-value: 0.240

AD2 p-value: 0.689

Mardia p-values: 0.460, 0.263

Scaled beta KS p-value: 0.971

Kolmogorov-Smirnov

KS1 p-value: 0.968

KS2 p-value: 0.981

Anderson-Darling

AD0 p-value:0.979

AD1 p-value: 0.014

AD2 p-value: 0.977
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Equity / Credit / PC1
Goodness of fit

35

Copula Rho Nu Anderson-Darling Kolmogorov-Smirnov

Gaussian 1
െ0.489 1
0.183 െ0.318 1

- AD0 p-value: 0.146
AD1 p-value: 0.264
AD2 p-value: 0.272

KS1 p-value: 0.161
KS2 p-value: 0.254

T 1
െ0.484 1
0.159 െ0.281 1

4.4 AD0 p-value: 0.685
AD1 p-value: 0.01
AD2 p-value: 0.645

KS1 p-value: 0.806
KS2 p-value: 0.693

Tentative conclusions
Pulling together the various strands

• Different measures give different messages

• Gaussian copula fit never rejected on tests applied here

• T copula fit is rarely rejected

• Calls for judgement!

36

Risk AIC prefers D prefers GoF Gaussian GoF T

Eq / Cr T T 10/10 7/7

Eq / PC1 T Gaussian 10/10 7/7

Cr / PC1 Gaussian Gaussian 10/10 6/7

Eq / Cr / PC1 Group T T 7/7 6/7
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5. Towards a conclusion – the 
role of judgement

Choosing and parameterising a copula

38

Data

• Sparseness or even absence of 
relevant data

• Range of reasonable values
• Variation over time
• Past not necessarily a guide to the 

future
• Consistency with risk factor calibration
• Non-coincident time periods can lead 

to internal inconsistency (non-PSD)

Expert judgement

• Choice of copula model
• Choice of data and time period
• General reasoning
• Margins to compensate for limitations

Limitations

• Uncertainty
• Symmetry
• Tail dependence

Practical questions

• Can I model it?
• Additional complexity vs. materiality

Use Test

• Complexity vs. transparency
• Communication to stakeholders
• Interpretation of parameters
• Sensitivities and alternative 

assumptions
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Selecting a copula and assumptions
Tools to aid judgement

• Sensitivity testing (choice of copula, blocks of 
assumptions, individual assumptions)

– Standard techniques – not covered further here

• Confidence intervals (parametric or non-parametric)

• Conditional probabilities

39

Selecting a copula and assumptions
Allowing for tail dependence (or lack of it)

• Practical choice comes down to 
Gaussian, Student T and Individuated T

• Correlation is primary factor in 
determining conditional probabilities

• Tail dependence less significant where 
biting scenario is closer to body of 
distribution

• If using Gaussian, can make implicit 
allowance by margins in correlations 
and validate by sensitivity testing

– e.g. compare Gaussian with correlation 
margins to Student T with no margins

• Vast majority of UK internal model firms 
plan to use Gaussian initially 

40
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41

• Consider uncertainty 
surrounding correlation point 
estimate.

• Bootstrap confidence 
interval most robust

• Fisher Z CI good approx.

tanh arctanh ߩ േ
1.96

݊ െ 3	

• Choose in [-54%,-43%]?

– passes through all CIs

• Additional margins?

• Care needed: PSD

Selecting a copula and assumptions
Confidence intervals for correlations

Selecting a copula and assumptions
Conditional probabilities

• Compare empirical conditional probabilities in upper and 
lower tails with those from chosen copula

• Can then adjust parameterisation of copula to target 
specific probability or general shape of tail

– guide choice of correlation assumption for a Gaussian copula

– guide choice of correlation assumption and degree of freedom for 
Student T

• See Gary G. Venter “Quantifying Correlated Reinsurance 
Exposures with Copulas” (Casualty Actuarial Society, 
2004)

42
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43

44

Keep 
correlation 
but change 
to Student T 
with DoF = 6
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45

Keep 
Gaussian 
but 
change 
correlation

6. Next steps for our work
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Next steps for our work

• IT copula not developed here – not warranted statistically. However:

– this may not always be so, e.g. change in data, or other risk factors, and

– IT is more flexible, albeit harder to parameterise – discarding may be premature.

• We fitted the IT copula successfully, but there were no easy (or 
quick!) techniques to test the fit. There are bootstrapping techniques 
in the literature (e.g. Berg (2007) carries out power tests), but:

– each bootstrap iteration requires the copula to be refitted to simulated data, and

– at c.½ hour per IT fit, a single test could take c.20 days!

• Augmenting ESG files is an interesting line of approach.

• Vine copulas also.

• Ultimately, expand our work into a SIAS (or perhaps Sessional 
Meeting) paper.

47
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49

Expressions of individual views by members of the Institute and 
Faculty of Actuaries and its staff are encouraged.

The views expressed in this presentation are those of the 
presenters and not of their employers.

Questions Comments

Appendix: copulas – technical 
background material
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Copula – technical definition

• A ݀-dimensional copula is a multivariate distribution function on 0,1 ௗ

with uniform marginals

• i.e. a function ܥ: 0,1 ௗ → 0,1 which satisfies the following 
conditions:

i. ܥ ,ଵݑ … , ௗݑ ൌ 0	if	ݑ௜ ൌ 0	for any ݅

ii. ܥ 1, … , 1, ,௜ݑ 1, … , 1 ൌ ݅	all	for	௜ݑ ∈ 1, … , ݀ ௜ݑ	; ∈ 0,1

iii. For	all	 ܽଵ, … , ܽௗ , ܾଵ, … , ܾௗ ∈ 0,1 ௗ	such	that	ܽ௜ ൑ ܾ௜

෍ … ෍ െ1 ሺ∑ ௜ೕ
೏
ೕసభ ሻܥሺݑଵ,௜భ, … , ௗ,௜೏ሻݑ ൒ 0

ଶ

௜೏ୀଵ

ଶ

௜భୀଵ

where ݑ௜ଵ ൌ ܽ௜  and  ݑ௜ଶ ൌ ܾ௜	for	all	݅ ∈ 1, … , ݀

• Property (iii) ensures that Pr …,ଵݑ , ௗݑ ∈ ܽଵ, ܾଵ ൈ⋯ൈ ܽௗ, ܾௗ ൒ 0

• Example: two-dimensional independence copula – ܥ ,ݑ ݒ ൌ ݒݑ
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Sklar’s Theorem

• Isolates the dependency structure (i.e. copula) and marginal 
distributions of a multivariate distribution

• Every multivariate distribution can be expressed in terms of a copula 
and its marginal distributions

– ܨ a joint distribution function with continuous marginals ,ଵܨ … ,  ௗ, thenܨ
there is a unique copula ܥ such that ܨ …,ଵݔ , ௗݔ ൌ ܥ ଵܨ ଵݔ , … , ௗܨ ௗݔ
for each ݔଵ, … , ௗݔ ∈ Թௗ

– Conversely, given a copula ܥ and continuous univariate distribution 
functions ܨଵ,… , ܨ ௗ, the multivariate distributionܨ defined by (##) has 
marginals …,ଵܨ , ௗܨ

• For a continuous multivariate distribution ܨ, its copula is defined by 
the mapping

…,ଵݑ , ௗݑ ∈ 0,1 ௗ 
஼
ܨ   → ଵܨ

ିଵ ଵݑ ,… , ௗܨ
ିଵ ௗݑ ∈ 0,1
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Why are copulas useful?

• Calculation of economic capital requirements, e.g. Solvency II SCR using an internal 
model.

• ܴܥܵ ൌ ଴.ଽଽହݍ	 ܮ ଵܺ, … , ܺௗ where q is the quantile function and ܮ is the loss function 
representing losses over a one year time horizon arising from a change ଵܺ, … , ܺௗ in 
risk factors.

• Copulas allow you to simulate the ଵܺ, … , ܺௗ and produce a full probability distribution 
forecast of profits and losses (required by internal model standards of Solvency II).

• Copulas provide means of separating the loss function ܮ from the risk factor 
distribution.

• Risk factor distribution ଵܺ, … , ܺௗ and loss function ܮ can be updated separately. Not 
possible with variance/covariance matrix approach which would require stress tests to 
be re-done using actuarial models.

• ܮ can be estimated using a proxy model (e.g. “curve fitting”).

• You may have a view on the marginal distributions ܨଵ,… , ௗܨ of the changes in risk 
factors ଵܺ, … , ܺௗ 	െ	 Sklar’s Theorem tells us that all you need to define the joint 
distribution of ଵܺ, … , ܺௗ 	is a copula to “glue” the marginals together.
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Why are copulas useful?

• Provided we have an algorithm for simulating values ݑଵ,… , ௗݑ from the copula, it 
gives us a recipe for generating simulations of the ଵܺ, … , ܺௗ :

…,ଵݑ , ௗݑ ∈ 0,1 ௗ → ଵܺ, … , ܺௗ ൌ ଵܨ
ିଵ ଵݑ , … , ௗܨ

ିଵ ௗݑ

• For example, given a ݀-dimensional multivariate Normal distribution with mean 0 and 
correlation matrix Σ with Cholesky decomposition Σ ൌ 	ܣ with	்ܣܣ lower triangular:

i. Generate a ݀-tuple of independent uniform RVs ்ܷ ൌ …,ଵݑ , ௗݑ 	using a 
standard pseudo-random-number-generator 

ii. Define ܼ௜ ൌ Φିଵ
௜ܷ

iii. Set ܻ ൌ 	,	ܼܣ ܻ is a multivariate normal distribution with mean 0 and correlation 
matrix ்ܣܣ ൌ Σ

iv. Define ݑ௝ ൌ Φ ௝ݕ

• To assign probabilities and allow for the effects of diversification, need to generate the 
joint distribution of changes in risk factors ଵܺ, … , ܺௗ . Diversification depends on the 
risk exposures of the company, granularity of presentation, as well as choice of 
dependency structure and its parameterisation – can range from 40% to 60%.
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Tail dependence – definition

• Coefficients of upper and lower tail dependence

• Limiting value of conditional probability that extreme value 
in one variable occurs given that an extreme value of the 
other variable has been realised

• ௎ߣ ൌ lim
௤→ଵି

Pr ௑ܨ ܺ ൐ ݍ ௒ܨ ܻ ൐ ݍ ൌ lim
௤→ଵି

஼ ଵି௤,ଵି௤

ଵି௤

• ௅ߣ ൌ lim
௤→଴ା

Pr ௑ܨ ܺ ൏ ݍ ௒ܨ ܻ ൏ ݍ ൌ lim
௤→଴ା

஼ ௤,௤

௤
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Limiting value of ratio of darker shaded to lighter shaded box

Copula Coefficient of tail dependence

Gaussian ௎=0ߣ=௅ߣ

Student T ௅ߣ ൌ ௎ߣ ൌ ఔାଵݐ2 െ ߥ ൅ 1 1 െ ߩ 1 ൅ ⁄ߩ

Individuated T ௅ߣ ൌ ௎ߣ ൌ Ω ,ߩ ߭ଵ, ߭ଶ ൅ Ω ,ߩ ߭ଶ, ߭ଵ
Formula for Ω complicated! – see Luo & Shevchenko

Clayton λ୐ ൌ 2ି
భ
ಐൗ  for θ ൐ 0, λ୙ ൌ 0

Gumbel ௅ߣ ൌ ௎ߣ ,0 ൌ 2 െ 2
భ
ഇൗ  for θ ൐ 1

Appendix: textbook example
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Theory vs. practice
Textbook example
• Log returns on Intel, Microsoft & General Electric shares over 1996 to 2000 (5 years)

• Daily data
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Pseudo-observations

Theory vs. practice
Model postulation
• Raw data suggests an elliptic copula (e.g. Gaussian or Student T)

• Pseudo-observations suggest clustering in tails
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• Likelihood ratio test has p-value of 0  additional degree of freedom 
parameter of Student T distribution is significant

• Akaike Information Criterion (AIC) favours Student T

Copula Rho Nu log L AIC

Gaussian 1
0.578 1
0.340 0.402 1

- 375.5 -745.4

Student T 1
0.588 1
0.359 0.422 1

6.50 419.3 -830.5
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Theory vs. practice
Goodness of fit

59

• Gaussian copula fails goodness of fit test

• Student T copula appears acceptable

Copula P-value of KS 
statistic

P-value of Cramer 
von Mises 
statistic

Accept  H0?

Gaussian 0.00 0.03 Reject

T (DoF=6) 0.26 0.38 Do not reject

T (DoF=7) 0.15 0.45 Do not reject

Appendix: maximum likelihood
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Parameter estimation
Maximum likelihood – a reminder

• Choose parameters ߴ to maximise the likelihood 
L ߴ ൌ ∏ ݃ሺݔ௜; ሻߴ

௡
௜ୀଵ

– ݃ is the density function

– ௜ݔ ൌ ሺݔ௜,ଵ, … , ௜,ௗሻݔ is the observed data

– ߴ ൌ ሺߴଵ, … , ௣ሻߴ are the parameters to be estimated

– assuming that the ݔ௜ are iid sample

• Maximising the log-likelihood ℓ ߴ ൌ ∑ log	ሺ݃ ;௜ݔ ߴ ሻ௡
௜ୀଵ is 

equivalent
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Parameter estimation
Maximum likelihood

• We use the result that:

ܥ ,ଵݑ … , ௗݑ ൌ ܨ ଵܨ
ିଵ ଵݑ ,… , ௗܨ

ିଵ ௗݑ

	⇒ 		ܿ ,ଵݑ … , ௗݑ ൌ
߲ௗܥሺݑଵ, … , ௗሻݑ
ଵݑ߲ ௗݑ߲…

ൌ
݂ሺܨଵ

ିଵ ଵݑ , … , ௗܨ
ିଵ ௗݑ ሻ

ଵ݂ ଵܨ
ିଵ ଵݑ … ௗ݂ሺܨௗ

ିଵ ௗݑ ሻ

to derive the log-likelihood as:

෍ log ݂ ଵܨ
ିଵ ௜,ଵݑ , … , ௗܨ

ିଵ ௜,ௗݑ
௡

௜ୀଵ
	െ	෍ ෍ log ௝݂ ௝ܨ

ିଵ ௜,௝ݑ
ௗ

௝ୀଵ

௡

௜ୀଵ

• Sometimes some terms are irrelevant to the optimisation

– e.g. the second term is irrelevant for Gaussian
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