
Parameterising emergence factors: how hard can it be?

Robert Scarth
Chair, Pragmatic Stochastic Reserving Working Party

Ultimate view and one-year view

What are emergence factors?

$$\hat{X} = \alpha(X - E[X]) + E[X]$$

Question: Where does the factor α come from?

Why use emergence factors?

Alternatives

- Merz-Wüthrich
- Actuary-in-the-Box
- Direct modelling

No well established model

Inflexible

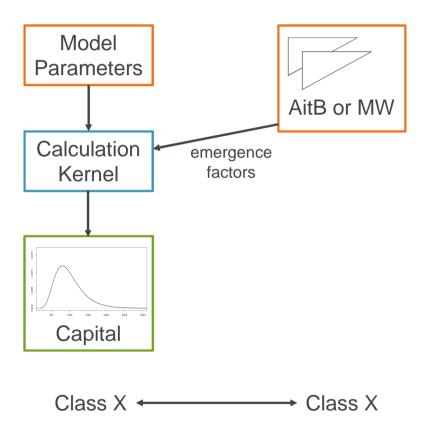
Need enough data to fit model

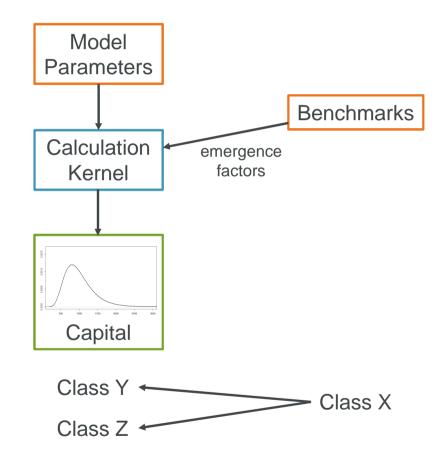
Depends on bootstrap

> Need consistent data

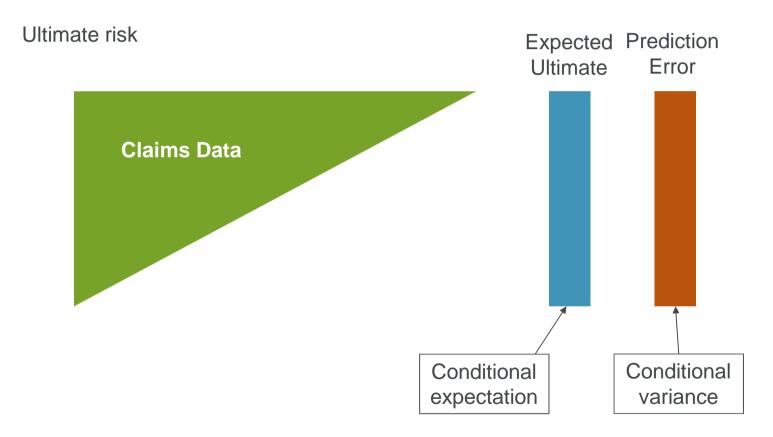
Computationally expensive

Difficult to explain

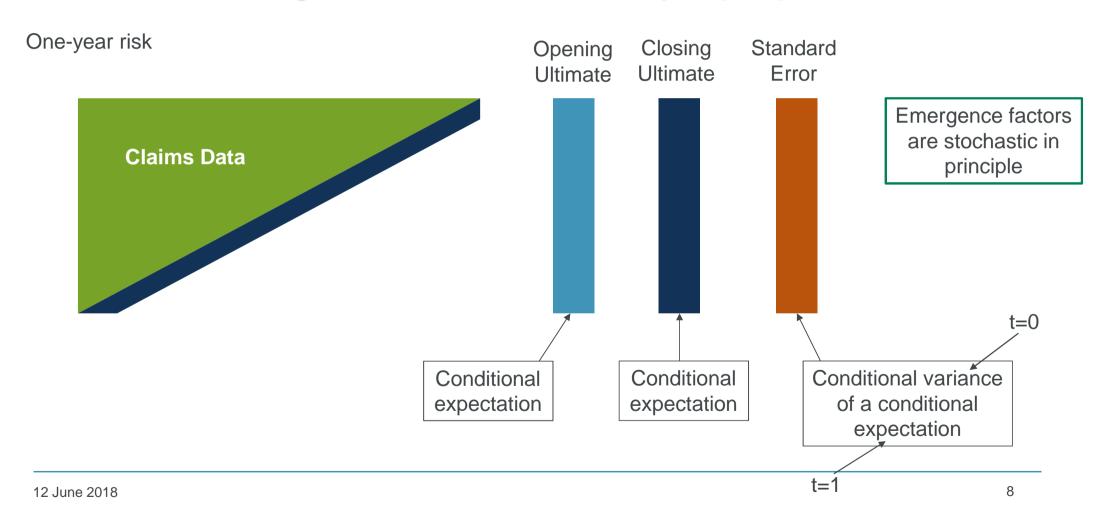

Emergence factors


- Computationally easy
- Flexible
- Simple to explain

Parameterising emergence factors


	1	2	3	4	5	6	7	8	9	10	Ultimate	One-Year	Ratio
2007	357,848	1,124,788	1,735,330	2,218,270	2,745,596	3,319,994	3,466,336	3,606,286	3,833,515	3,901,463	0	0	
2008	352,118	1,236,139	2,170,033	3,353,322	3,799,067	4,120,063	4,647,867	4,914,039	5,339,085		75,535	75,535	100%
2009	290,507	1,292,306	2,218,525	3,235,179	3,985,995	4,132,918	4,628,910	4,909,315			121,699	105,309	87%
2010	310,608	1,418,858	2,195,047	3,757,447	4,029,929	4,381,982	4,588,268				133,549	79,846	60%
2011	443,160	1,136,350	2,128,333	2,897,821	3,402,672	3,873,311					261,406	235,115	90%
2012	396,132	1,333,217	2,180,715	2,985,752	3,691,712						411,010	318,427	77%
2013	440,832	1,288,463	2,419,861	3,483,130							558,317	361,089	65%
2014	359,480	1,421,128	2,864,498								875,328	629,681	72%
2015	376,686	1,363,294									971,258	588,662	61%
2016	344,014										1,363,155	1,029,925	76%
											2.447.095	1 778 968	73%

Two ways of using emergence factors



What are emergence factors, exactly? (1/2)

What are emergence factors, exactly? (2/2)

The impact on the two uses

```
5
                                                            6
                                                                                                   10
2007 357,848 1,124,788 1,735,330 2,218,270 2,745,596 3,319,994 3,466,336 3,606,286 3,833,515 3,901,463
     352,118 1,236,139 2,170,033 3,353,322 3,799,067 4,120,063 4,647,867 4,914,039 5,339,085
2009 290,507 1,292,306 2,218,525 3,235,179 3,985,995 4,132,918 4,628,910 4,909,315
2010 310,608 1,418,858 2,195,047 3,757,447 4,029,929 4,381,982 4,588,268
2011 443,160 1,136,350 2,128,333 2,897,821 3,402,672 3,873,311
2012 396,132 1,333,217 2,180,715 2,985,752 3,691,712
2013 440,832 1,288,463 2,419,861 3,483,130
2014 359,480 1,421,128 2,864,498
2015 376,686 1,363,294
2016 344.014
                  3.619
                            2.016
                                      1.439
                                                1.236
                                                          1.138
                                                                             1.061
                                                                    1.047
                                                                                       1.086
                                                                                                 1.018
```

Is there a better method?

```
1 2 3 4 5 6 7 8 9 10
2007 357,848 1,124,788 1,735,330 2,218,270 2,745,596 3,319,994 3,466,336 3,606,286 3,833,515 3,901,463
2008 352,118 1,236,139 2,170,033 3,353,322 3,799,067 4,120,063 4,647,867 4,914,039 5,339,085
2009 290,507 1,292,306 2,218,525 3,235,179 3,985,995 4,132,918 4,628,910 4,909,315
2010 310,608 1,418,858 2,195,047 3,757,447 4,029,929 4,381,982 4,588,268
2011 443,160 1,136,350 2,128,333 2,897,821 3,402,672 3,873,311
2012 396,132 1,333,217 2,180,715 2,985,752 3,691,712
2013 440,832 1,288,463 2,419,861 3,483,130
2014 359,480 1,421,128 2,864,498
2015 376,686 1,363,294
2016 344,014
```

ì	CDR standard errors												
	0-1	1-2	2-3	3-4	4-5	5-6	6-7	7-8	8-9	Ultimate			
	0	0	0	0	0	0	0	0	0	0			
	75,535	0	0	0	0	0	0	0	0	75,535			
	105,309	60,996	0	0	0	0	0	0	0	121,699			
	79,846	91,093	56,232	0	0	0	0	0	0	133,549			
	235,115	60,577	82,068	51,474	0	0	0	0	0	261,406			
	318,427	233,859	57,825	82,433	51,999	0	0	0	0	411,010			
	361,089	328,989	243,412	59,162	85,998	54,343	0	0	0	558,317			
	629,681	391,249	359,352	266,320	64,443	94,166	59,533	0	0	875,328			
	588,662	554,574	344,763	318,493	236,576	56,543	83,645	52,965	0	971,258			
	1,029,925	538,726	511,118	317,142	293,978	218,914	51,661	77,317	49,055	1,363,155			

Emergence factors from multi-year CDRs (1/2)

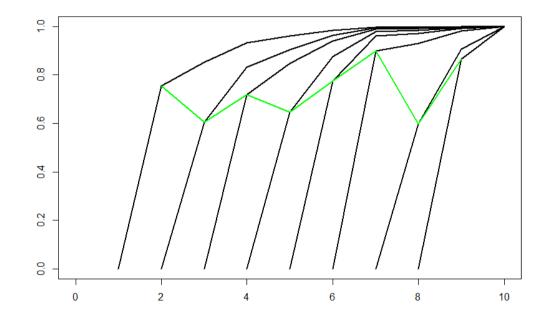
CDR standard errors												
0-1	1-2	2-3	3-4	4-5	5-6	6-7	7-8	8-9	Ultimate			
0	0	0	0	0	0	0	0	0	0			
75,535	0	0	0	0	0	0	0	0	75,535			
105,309	60,996	0	0	0	0	0	0	0	121,699			
79,846	91,093	56,232	0	0	0	0	0	0	133,549			
235,115	60,577	82,068	51,474	0	0	0	0	0	261,406			
318,427	233,859	57,825	82,433	51,999	0	0	0	0	411,010			
361,089	328,989	243,412	59,162	85,998	54,343	0	0	0	558,317			
629,681	391,249	359,352	266,320	64,443	94,166	59,533	0	0	875,328			
588,662	554,574	344,763	318,493	236,576	56,543	83,645	52,965	0	971,258			
1,029,925	538,726	511,118	317,142	293,978	218,914	51,661	77,317	49,055	1,363,155			
			Cumu	llative CDR	standard (errors						
0-1	1-2	2-3	3-4	4-5	5-6	6-7	7-8	8-9	Ultimate			
									0			
75,535									75,535			
105,309	121,699								121,699			
79,846	121,133	133,549							133,549			
235,115	242,793	256,289	261,406						261,406			
318,427	395,077	399,287	407,707	411,010					411,010			
361,089	488,487	545,773	548,971	555,666	558,317				558,317			
629,681	741,332	823,837	865,814	868,209	873,301	875,328			875,328			
588,662	808,749	879,168	935,080	964,543	966,199	969,813	971,258		971,258			
1,029,925	1,162,313	1,269,729	1,308,737	1,341,348	1,359,095	1,360,076	1,362,272	1,363,155	1,363,155			

Cumulate use squareroot of sum-of-squares along each origin period

$$121,133^2 = 79,846^2 + 91,093^2$$

$$133,549^2 = 121,133^2 + 56,232^2$$

CDRs over non-overlapping periods are uncorrelated


Emergence factors from multi-year CDRs (2/2)

Cumulative % CDR standard errors											
0-1	1-2	2-3	3-4	4-5	5-6	6-7	7-8	8-9			
100.0%											
86.5%	100.0%										
59.8%	90.7%	100.0%									
89.9%	92.9%	98.0%	100.0%								
77.5%	96.1%	97.1%	99.2%	100.0%							
64.7%	87.5%	97.8%	98.3%	99.5%	100.0%		_				
71.9%	84.7%	94.1%	98.9%	99.2%	99.8%	100.0%					
60.6%	83.3%	90.5%	96.3%	99.3%	99.5%	99.9%	100.0%				
75.6%	85.3%	93.1%	96.0%	98.4%	99.7%	99.8%	99.9%	100.0%			

t – prior development

k – future development

Problems to overcome

- Do different origin periods have a common emergence pattern?
- Could we assume that emergence factors are deterministic?
- Different origin periods have seen different amounts of development can the emergence factors from different origin periods be compared in a meaningful way?
- Emergence factors are ratios with this difficulty can we find an unbiased estimator for emergence factors?

Formula linking emergence factors

$$1 - \alpha_{t+k_1,k_2}^2 = \frac{1 - \alpha_{t,k_1+k_2}^2}{1 - \alpha_{t,k_1}^2}$$

If emergence factors are deterministic then this equation holds

Application of formula linking emergence factors

Cumulative % CDR standard errors											
0-1	1-2	2-3	3-4	4-5	5-6	6-7	7-8	8-9			
100.0%											
86.5%	100.0%										
59.8%	90.7%	100.0%									
89.9%	92.9%	98.0%	100.0%								
77.5%	96.1%	97.1%	99.2%	100.0%							
64.7%	87.5%	97.8%	98.3%	99.5%	100.0%						
71.9%	84.7%	94.1%	98.9%	99.2%	99.8%	100.0%					
60.6%	83.3%	90.5%	96.3%	99.3%	99.5%	99.9%	100.0%				
75.6%	85.3%	93.1%	96.0%	98.4%	99.7%	99.8%	99.9%	100.0%			
			Implied or	ie-year em	ergence						
100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%			
86.5%	84.4%	84.5%	84.5%	84.5%	84.6%	84.7%	85.1%				
59.8%	49.1%	49.6%	50.1%	50.3%	51.0%	53.0%					
89.9%	90.1%	90.1%	90.0%	90.0%	90.0%						
77.5%	77.1%	77.2%	77.2%	77.3%							
64.7%	63.9%	64.1%	64.3%								
71.9%	71.8%	71.8%									
60.6%	60.3%										
75.6%											

Conclusions

- Emergence factors are simple to explain and calculate with
- Emergence factors can be used in different ways
- No satisfactory way of parameterising emergence factors is known
- Parameterisation is a fundamentally difficult problem
- Simplicity has been gained by packaging-up complexity into a single parameter
- Great care and judgement should be exercised if using externally parameterised emergence factors

Questions Comments

The views expressed in this presentation are those of invited contributors and not necessarily those of the IFoA. The IFoA do not endorse any of the views stated, nor any claims or representations made in this presentation and accept no responsibility or liability to any person for loss or damage suffered as a consequence of their placing reliance upon any view, claim or representation made in this presentation.

The information and expressions of opinion contained in this publication are not intended to be a comprehensive study, nor to provide actuarial advice or advice of any nature and should not be treated as a substitute for specific advice concerning individual situations. On no account may any part of this presentation be reproduced without the written permission of the IFoA.

Contact Details

- Robert Scarth
- robert.scarth@rpc.co.uk